

Feedback Control Theory: Architectures and Tools for Real-Time Decision Making

Richard M. Murray California Institute of Technology

Real-Time Decision Making Bootcamp Simons Institute for the Theory of Computing

24 January 2018

Goals for this lecture

- Give an *overview* of key ideas from control theory that might be relevant for applications in real-time decision making
- Encourage you to come find me if you want to learn more or work on a joint project applying ideas from control theory
- RMM schedule: Tue-Thu most weeks from now to end of Mar

What is "Control"?

Traditional view

• Use of feedback to provide stability, performance, robustness

Emerging view

- Collection of tools and techniques for analyzing, designing, implementing complex systems in presence of uncertainty
- Combination of dynamics, interconnection (feedback/ feedforward), communications, computing and software

Control = dynamics \otimes uncertainty \otimes feedforward \otimes feedback

Key principles for control systems

- Principle #1: Feedback is a tool for managing uncertainty (system and environment) [no uncertainty ⇒ don't bother]
- Principle #2: Feedforward & feedback are tools for design of dynamics via integration of sensing, actuation & computation
- Corollary: Feedback enables subsystem modularity and interoperability ⇒ ability to manage complexity at scale

Important Trends in Control in the Last 15 Years

(Online) Optimization-based control

- Increased use of online optimization (MPC/RHC)
- Use knowledge of (current) constraints & environment to allow performance and adaptability

Layering, architectures, networked control systems

- Command & control at multiple levels of abstraction
- Modularity in product families via layers

Formal methods for analysis, design and synthesis

- Build on work in hybrid and discrete event systems
- Formal methods from computer science, adapted for "cyberphysical" (computing + control) systems

$\textbf{Components} \rightarrow \textbf{Systems} \rightarrow \textbf{Enterprise}$

- Increased scale: supply chains, smart grid, IoT
- Use of modeling, analysis and synthesis techniques at all levels. Integration of "software" with "controls"

Outline

Control Systems: Architectures and Examples

- "Standard model" (for control systems)
- Examples and relationship to real-time decision making

Control System Design Patterns

Design of Feedback Systems

- Specifications for control systems
- Integral feedback (and PID)
- State feedback

Design of Feedforward Systems

- Real-time optimization
- Receding horizon control

Layered architectures

Discrete state systems (reactive protocols)

Control System "Standard Model"

Key elements

- Process: input/output system w/ dynamics (memory)
- Environment: description of the uncertainty present in the system (bounded set of inputs/behaviors)
- Observer: real-time processing of process data
- Controller: achieve desired task via data, actions

Disadvantages of feedback

- Increased complexity
- Potential for instability
- Amplification of noise

Advantages of feedback

- Robustness to uncertainty
- Modularity and interoperability

Control System Examples

Application	Process description (input/output)	Specifications	Comments
Scientific	Actuator: N/A	Detect events	Observer only
detection	Sensor: instruments		
Transportat'n	Actuator: schedules, incentives	Optimize utility	Open-loop at fast time scale;
networks	Sensor: demand, supply	function	closed-loop at slower rates
Autonomous	Actuator: gas, steer	A to B w/out	Multiple decision-making loops;
vehicles	Sensor: cameras, radar, LIDAR, traffic	hitting anyone	very complex environment

Different Types of Control Systems

System type	Modeling approaches	Specifications	Comments
Continuous states	Ordinary and partial differential equations; difference equations	Integrated cost over time/space	Well-studied; excellent tools avail (especially LTI systems)
Discrete state systems	Finite state automata, timed automata, Petri nets	Temporal logic formulae	Good tools for verification; design/synthesis is harder
Probabilistic systems	Stochastic ODEs, Kolmogorov equations, Markov chains	Expected values and moments	Well-studied; excellent tools avail (especially LTI, MDPs)

Control System Specifications

Level	Model	Specification
Regulation	$y = P_{yu}(s) u + P_{yd}(s) d$ $ W(s)d(s) \le 1$	$\ W_1S + W_2T\ _{\infty} < \gamma$
Optimization (planning)	$\dot{x} = f_{lpha}(x, u) \ g_{lpha}(x, u, z) \leq 0$	$\min J = \int_0^T L_\alpha(x, u) dt + V(x(T))$
Decision- Making		$ \begin{vmatrix} \phi_{\text{init}} \land \Box \phi_{\text{env}} \end{pmatrix} \implies \\ (\Box \phi_{\text{safe}} \land \Box \Diamond_{\leq T} \phi_{\text{live}}) $

Transient: initial response to input

• Step response: rise time, overshoot, settling time, etc

Steady state: response after the transients have died out

• Frequency response: magnitude and phase for sinusoids

Safety: constraints that the system should never violate

Liveness: conditions that system should satisfy repeatedly

Design Patterns for Control Systems

Predictive compensation

- Reference input shaping
- Feedback on output error
- Compensator dynamics shape closed loop response
- *Uncertainty* in process dynamics + external disturbances and noise
- Goals: stability, performance (tracking), robustness

• Explicit computation of trajectories given a model of the process and environment

Feedback Design Tools: PID Control

Time

Feedback Design Tools: State Space Control

$$\dot{x} = Ax + Bu$$
 $x \in \mathbb{R}^n, x(0)$ given
 $y = Cx + Du$ $u \in \mathbb{R}, y \in \mathbb{R}$

Goal: find a linear control law $u = -Kx + k_r r$ such that the closed loop system

$$\dot{x} = Ax + Bu = (A - BK)x + Bk_r r$$

is stable at equilibrium point x_e with $y_e = r$.

Remarks

- If r = 0, control law simplifies to u = -Kx and system becomes $\dot{x} = (A BK)x$
- Stability based on eigenvalues \Rightarrow use *K* to make eigenvalues of (*A BK*) stable
- Can also link eigenvalues to *performance* (eg, initial condition response)
- Q: Can we place the eigenvalues anyplace that we want?

MATLAB/Python: K = place(A, B, eigs), K = lqr(A, B, Q, R), ...

A: Yes, if *reachable*

Note: this is *design of dynamics*

Feedforward Design Tools: Real-Time Trajectory Generation

Goal: find a feasible trajectory that satisfies dynamics/constraints

$$egin{aligned} \min J &= \int_{t_0}^T q(x,u)\,dt + V(x(T),u(T)) \ \dot{x} &= f(x,u) \ lb \leq g(x,u) \leq ub \end{aligned}$$

Solve as a constrained optimization problem

- Various tricks to get very fast calculations
- Need to update solutions at the rate at which the reference (task description) is modified

Use feedback ("inner loop") to track trajectory

- Trajectory generation provides feasible trajectory plus nominal input
- Feedback used to correct for disturbances and model uncertainties
- Example of "two degree of freedom" design

Feedforward Design Tools: Receding Horizon Control

Basic idea: recompute solutions

$$u_{[t,t+\Delta T]} = \arg\min\int_{t}^{t+T} L(x(\tau), u(\tau)) d\tau + V(x(t+T))$$

$$x_{0} = x(t) \quad x_{f} = x_{d}(t+T)$$

$$\dot{x} = f(x, u) \quad \sigma(x, u) < 0$$

ref

- Provides second feedback loop to manage uncertainty
- Need to be careful about terminal constraints

Richard M. Murray, Caltech CDS

Design of Modern (Networked) Control Systems

Control = dynamics, uncertainty, feedforward, feedback

2016 Bode Lecture

Examples

- Aerospace systems
- Self-driving cars
- Factory automation/ process control
- Smart buildings, grid, transportation

Challenges

- How do we define the layers/interfaces (vertical contracts)
- How do we scale to many devices (horizontal contracts)
- Stability, robustness, security, privacy

Layered Approaches to Design

Specifying Discrete Behavior Using Temporal Logic

Linear temporal logic (LTL)

- "eventually" satisfied at some point in the future
- "always" satisfied nowand forever into the future
- "next" true at next step

Signal temporal logic (STL)

- Allow predicates that compare values
- Allow temporal bounds

- $p \rightarrow \Diamond q$ p implies eventually q (response)
- $p \rightarrow q U r$ p implies q until r (precedence)
- □◊p always eventually p (progress)
- ◊□p eventually always p (stability)
- $\Diamond p \rightarrow \Diamond q$ eventually p implies eventually q (correlation)
- $V < V_{\text{max}}$ V(t) less than threshold (V_{max})
- $\Box_{[t_1,t_2]} p$ p true for all time in $[t_1, t_2]$
- $p \rightarrow \Diamond_{[0,t]} q$ if p occurs, q will occur w/in time *t*

Baier and Katoen, Principles of Model Checking, 2007

□◊green

 $\Box \text{ (green } \rightarrow \neg \circ \text{ red)}$

PNNL, 21 Feb 2017

Richard M. Murray, Caltech CDS

16

Synthesis of Reactive Controllers

Reactive Protocol Synthesis

- Find control action that insures that specification is always satisfied
- For LTL, complexity is doubly exponential (!) in the size of system specification

GR(1) synthesis for reactive protocols

- Piterman, Pnueli and Sa'ar, 2006
- Assume environment fixes action before controller (breaks symmetry)
- For certain class of specifications, get complexity cubic in # of states (!)

 $(\phi_{\text{init}}^{\text{e}} \land \Box \phi_{\text{safe}}^{\text{e}} \land \Box \Diamond \phi_{\text{prog}}^{\text{e}}) \to (\phi_{\text{init}}^{\text{s}} \land \Box \phi_{\text{safe}}^{\text{s}} \land \Box \Diamond \phi_{\text{prog}}^{\text{s}})$

Environment assumption

- GR(1) = general reactivity formula
- Assume/guarantee style specification

Summary: Feedback Control Theory

Two main principles of (feedback) control theory

- Feedback is a tool to provide robustness to uncertainty
 - Uncertainty = noise, disturbances, unmodeled dynamics
 - Useful for modularity: consistent behavior of subsystems
- Feedback is a tool to design the dynamics of a system
 - Convert unstable systems to stable systems
 - Tune the performance of a system to meet specifications
- Combined, these principles enable modularity and hierarchy

Control theory: past, present and future

- Tools originally developed to design low-level control systems
- Increasing application to networked (hybrid) control systems
- New challenges: systematic design of layered architectures and control protocols, security and privacy, data-driven (AI/ML)

More information

• Feedback Systems (free download): <u>https://fbsbook.org</u>

for Scientists and Engineers

Karl Johan Åström & Richard M. Murray

Feedback

Sustems

An Introduction