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ridesharing platforms

Your friend with a car

@ critical components of modern urban transit
@ crucible for Real-Time Decision Making/Ops Management/EconCS
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ridesharing: overview

How Lyft Works

1. Request 2. Ride 3. Pay
Whether you're riding solo or with Get picked up by the best. Qur When the ride ends, just pay and
friends, you've got options. Tap to reliable drivers will get you where rate your driver through your
request Lyft, Lyft Line, or Lyft Plus. you need to go. phone.
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ridesharing: pricing
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rideshare platforms: pricing

Thanks for riding with !
Ride ending January 31 at 12:35 AM

Pickup:

Dropoff:

Ride 2.5 mi & 10 min: $8.28
Prime Time*: $2.07
Trust & Safety Fee: $1.50
Total charged to $11.85

*25% Prime Time was included in your total. Prime Time
encourages more people to drive when Lyft gets really busy.

Learn More

credit: lyft.com
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rtdm in ridesharing: mapping

ETAs

credit: lyft data science team
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rtdm in ridesharing: logistics

credit: lyft data science team
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rtdm in ridesharing: market design

Prime Time

Sid Banerjee (Cornell ORIE)

ridesharing

Supply Levers

bonus

esee0 ATAT LTE

O

page:

9:54 AM [CRE R ] )
s.lyftmail.com

Easier. More Money.

The Power Driver Bonus

Upgrade.

DRIVE

30 Total Rides

0 PEAK HOUR RIDES

50 Total Rides

20 PEAK HOLR RIDES

80 Total Rides
05¢

AK HOUR RIDES

100 Total Rides

20 PLAK HOUR REES

120 Total Rides

28 PEAR HOUA ADES

You know the Power Driver Bonus as a reliable way to earn almost
all of your commission back each week - and now it's even better.

With this upgrade, you can earn even more with greater flexibility.
The new PDB features five extra bonuses and three additional tiers
starting with a new 30-ride benchmark.

GET

$50 Bonus

$100 Bonus

10% Back + $150 Bonus
20% Back + $150 Bonus

20% Back + $200 Bonus

Plus, we added 19 more eligible peak hours that eount toward your

credit: lyft data science team
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the bigger picture: on-demand transportation

cifibike 560 Ouwr

— fast operational timescales; complex network externalities
— new control-levers: dynamic pricing/dispatch, incentives, pooling
— new(er) challenges: competition, effect on public transit, urban planning
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the bigger picture: on-demand transportation

cifibike 560 Ouwr

— fast operational timescales; complex network externalities
— new control-levers: dynamic pricing/dispatch, incentives, pooling
— new(er) challenges: competition, effect on public transit, urban planning

this talk

@ ‘where do we come from?’

simple framework for ridesharing: data, state, controls
@ ‘where are we?’

approximate optimal control for ridesharing logistics
market mechanisms as a tool for algorithmic self-calibration

@ ‘'where are we going?’

Sid Banerjee (Cornell ORIE) ridesharing January 23, 2018 9 /39



main challenge: rebalancing

demand heterogeneity = non-uniform supply across space and time

logistical ‘solution’: rebalance the vehicle fleet
economic ‘solution’: incentives for passengers and drivers
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main challenge: rebalancing

demand heterogeneity = non-uniform supply across space and time

logistical ‘solution’: rebalance the vehicle fleet
economic ‘solution’: incentives for passengers and drivers
control-levers: pricing/incentives, dispatch, empty-car rebalancing
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(stochastic-network) model for ridesharing

O
O

’
s
’
s
’
’

O (@)

@)
@)

@ m units (cars) across n stations (here, we have m = 6, n = 4)
@ system state € Sy m = {(xi)ig[n]l Sy xi=m}
@ | — j passengers arrive via Poisson process with rate ¢;
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(stochastic-network) model for ridesharing

O O
O O

@)
@)

o platform sets state-dependent prices p;j(X)
e quantile g;}(X) =1 — Fj(p;j(X)): fraction willing to pay p;j(X)
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(stochastic-network) model for ridesharing

O

O O
O O

@ car travels with passenger to destination

o (this talk: assume travel-times are zero)
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(stochastic-network) model for ridesharing

Y
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(stochastic-network) model for ridesharing
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(stochastic-network) model for ridesharing

O
O

O O

G—6

@ myopic customers: abandon system if
— vehicle unavailable
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(stochastic-network) model for ridesharing

O

@)
@)

@ myopic customers: abandon system if
— vehicle unavailable or
— price too high
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(stochastic-network) model for ridesharing

O
O

O O
O O

@ objective:
— optimize chosen long-run average system objective
— objectives: revenue, welfare, customer engagement, etc.
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control levers for ridesharing

@ pricing
— modulates demand between locations
— dynamic, state-dependent
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control levers for ridesharing

@ dispatch: choose ‘nearby’ car to serve demand
— can use any car within ‘ETA target’
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control levers for ridesharing

O O
O O

@ rebalancing: re-direct free car to empty location
— incur a cost for moving the car
— driver ‘nudges’ (heat-maps), autonomous vehicles
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intermezzo: why model?

scales and economics

— need controls that work in real-time, at large-scales
— complex controls need more resources; non-commensurate (?) impact
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intermezzo: why model?

scales and economics

— need controls that work in real-time, at large-scales
— complex controls need more resources; non-commensurate (?) impact

known(?) unknowns

— errors in estimation and forecasting
— difficulties in learning demand/supply curves
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intermezzo: why model?
scales and economics

— need controls that work in real-time, at large-scales

— complex controls need more resources; non-commensurate (?) impact
known(?) unknowns

— errors in estimation and forecasting

— difficulties in learning demand/supply curves

unknown unknowns

Surge pricing has been turned off at #JFK Airport.
This may result in longer wait times. Please be
patient.

s3 114 2 EAGEENOE0
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intermezzo: why this model?

assumption 1: timescales of platform operations

number of cars, arrival rates, demand elasticities remain constant over time
— time-varying rates (re-solve policies at change-points. . .)

— driver entry/exit behavior

— effect of bursty arrivals?
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number of cars, arrival rates, demand elasticities remain constant over time
— time-varying rates (re-solve policies at change-points. . .)

— driver entry/exit behavior

— effect of bursty arrivals?

assumption 2: timescales of strategic interactions

— passengers abandon if price too high/no vehicle
— drivers react at longer timescales
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intermezzo: why this model?

assumption 1: timescales of platform operations

number of cars, arrival rates, demand elasticities remain constant over time
— time-varying rates (re-solve policies at change-points. . .)

— driver entry/exit behavior

— effect of bursty arrivals?

assumption 2: timescales of strategic interactions

— passengers abandon if price too high/no vehicle
— drivers react at longer timescales

assumption 3: availability of data

platform has perfect knowledge of arrival rates, demand elasticities
— is that really true?
— is that really needed?
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data-driven optimization for vehicle-sharing

Pricing and Optimization in Shared Vehicle Systems
Banerjee, Freund & Lykouris (2016)
https://arxiv.org/abs/1608.06819
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model recap

Pba

¢ba(pha)

pbc

¢’bc(pbc)

Pbd

®ba(Poa)

| X, +Xp+ X +Xg=m|

g

— m units spread across n nodes

— control: state-dependent pricing policy p'= {p;j(x)} (or quantiles )
— flows of cars in network: realized via Markov chain dynamics

Sid Banerjee (Cornell ORIE)
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technical challenges

objective
_max Zﬂa(x) Z E[reward rate from i — j rides]
a={q.(x)} " (i)

long-run avg under control q
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technical challenges

objective

max 3" m;(x)( S s - 6eqe() - le(qe(x)
a={qe(x)} N N—— —
* e=(iy) availability at / E[reward for i — j ride]

assumption:  gl;j(q) is concave
true for throughput; welfare; revenue under regular Fj;
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technical challenges

objective

q<[0,1]1El

max E. (x) [Zd)eqe le(q(X))

assumption:  ql;j(q) is concave

challenges

@ exponential size of policy
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technical challenges

objective

max E. (x) [Zd)eqe le(q(X))

qe[0,1] 1|

assumption:  ql;j(q) is concave

challenges
@ exponential size of policy

@ non-convex problem: even with state-independent g;;
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approximately optimal control policies

objective

qe[0,1] 1l

max B, (x) Z ¢i;q(X)1;;(q(X))
iJ

challenges
@ exponential number of states

@ non-convex optimization problem

theorem [Banerjee, Freund & Lykouris 2016]

convex relaxation gives state-independent pricing policy with approximation
factor of 1 4 number of stations
number of cars
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@ exponential number of states

@ non-convex optimization problem

theorem [Banerjee, Freund & Lykouris 2016]

convex relaxation gives state-independent pricing policy with approximation
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approximately optimal control policies

objective

qe[0,1] 1l

max B, (x) Z ¢i;q(X)1;;(q(X))
iJ

challenges
@ exponential number of states

@ non-convex optimization problem

theorem [Banerjee, Freund & Lykouris 2016]

convex relaxation gives state-independent pricing policy with approximation
factor of 1 4 number of stations
number of cars

@ extends to dispatch, rebalancing
@ large-supply/large-market optimality: factor goes to 1 as system scales
ridesharing January 23, 2018 18 / 39



proof roadmap

relaxation + resource augmentation

step 1: elevated flow relaxation: convex program that upper bounds
performance, encodes essential conservation laws
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proof roadmap

relaxation + resource augmentation

step 1: elevated flow relaxation: convex program that upper bounds
performance, encodes essential conservation laws

step 2: show EFR is tight for a class of state-independent pricing policies,
in the ‘infinite-unit system' (i.e., m — o0)
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proof roadmap

relaxation + resource augmentation

step 1: elevated flow relaxation: convex program that upper bounds
performance, encodes essential conservation laws

step 2: show EFR is tight for a class of state-independent pricing policies,
in the ‘infinite-unit system' (i.e., m — o0)

step 3: bound objective in finite-unit system against infinite-unit system for
this simpler class of policies

OBJn(Pm(X) | < [EFR(P')

= |0BJ.(p-)

< | (1/0,) OB, (p-.)
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the elevated flow relaxation

objective
max qu(x) E <;3,-jq(X)l,'j(q(X))
iJj

qe[0,1] /€|

Suppose we knew q*: Let §* = E_, (x)[¢*(X)]
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the elevated flow relaxation

objective

E i
e e | S ss00M600)

Suppose we knew q*: Let §* = E_, (x)[¢*(X)]

B () Z%q Mi(q* (X)) | < Z(bu G*1;j(§*) (Jensen’s Ineq.)
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the elevated flow relaxation

objective

max qu (X) Zqﬁuq (X))

q€[0,1]I€l

Suppose we knew g*: Let §* = qu*(x)[q*(X)]
Er o (X) Z%q )i(g* (X)) | < qu,ﬁ*lu §*) (Jensen's Ineq.)

< max Z o qiili(ai)

|E|
q€[0,1]= T
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the elevated flow relaxation

objective

max qu (X) Z(bqu ))

q€[0,1]I€l

Suppose we knew g*: Let §* = qu*(x)[q*(X)]
Er o (X) Z%q )i(g* (X)) | < qu,ﬁ*lu §*) (Jensen's Ineq.)

< max Z o qiili(ai)

|E|
q€[0,1]= T

this is convex! however, it is too weak
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the elevated flow relaxation

objective

max qu (X) Z(bqu ))

q€[0,1]I€l

Suppose we knew g*: Let §* = qu*(x)[q*(X)]
B () Z%q )Mi(g*(X)) | < Zqﬁu G*1;(6*) (Jensen's Ineq.)

< max Z o qiili(ai)

qel0 |E|
[ ’ ] I’J
thIS iS COHVGX! hOWGVGl, |t iS too Weak

idea: strengthen relaxation by adding additional constraints on q

e circulation: > : ¢;q; = >y dkiqui Vi€V
o Little's law: E[unlts in transit] < m
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In summary

|0BJ(pn(X)) | < [EFR(pY)

= |OBJ,,(p,,)

< | (1/0,)OBJ, (p-.

theorem [Banerjee, Freund & Lykouris 2016]

state-independent prices P, (from EFR) in m-unit system gives

OBJm(Pso) = a@mnOPT,, ,  where oy = =
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= |OBJ,,(p,,)

< | (1/0,)OBJ, (p-.

theorem [Banerjee, Freund & Lykouris 2016]

state-independent prices P, (from EFR) in m-unit system gives

OBJm(Px) > amnOPTy ,  where amy = 21—

main takeaway

new technique for optimizing stochastic dynamical system in steady-state
@ can extend to more complex settings (7)
(travel-times, multi-objective, pooling, reservations)
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In summary

|0BJ(pn(X)) | < [EFR(pY)

= |OBJ,,(p,,)

< | (1/0,)OBJ, (p-.

theorem [Banerjee, Freund & Lykouris 2016]

state-independent prices P, (from EFR) in m-unit system gives

OBJm(Px) > amnOPTy ,  where amy = 21—

main takeaway

new technique for optimizing stochastic dynamical system in steady-state
@ can extend to more complex settings (7)
(travel-times, multi-objective, pooling, reservations)

@ but where do we get the demand-rate and price-elasticity estimates?
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market design in ride-share platforms

o

Pricing in Ride-Share Platforms
Banerjee, Johari & Riquelme (2015)
(EC'15: https://ssrn.com/abstract=2568258)
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why market design? and why ridesharing?

Over the next 10 years, the major breakthrough of economics will
be in applications of market design, which improves the efficiency
of markets using a combination of game theory, economics and
algorithm design. We've already seen fruitful application in search
and spectrum auctions, kidney exchange and school assignment.
(2016 will be the year that) Silicon Valley recognizes that the
value of Uber is its marketplace, not the data...

R. Preston McAfee
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why market design? and why ridesharing?

Over the next 10 years, the major breakthrough of economics will
be in applications of market design, which improves the efficiency
of markets using a combination of game theory, economics and
algorithm design. We've already seen fruitful application in search
and spectrum auctions, kidney exchange and school assignment.
(2016 will be the year that) Silicon Valley recognizes that the
value of Uber is its marketplace, not the data...

R. Preston McAfee

data-driven optimization vs. market design

@ default approach for complex operational problems:
model — calibrate from data — optimize specific problem instance

@ market mechanisms self-calibrate to solve the optimization problem

@ ridesharing unique among online marketplaces: platform sets prices
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quasi-static vs. dynamic

for a large block of time (e.g., few hours), region (e.g., city-neighborhood),
mean system parameters are constant, predictable.
why not have hourly location-based prices?

¥

San Fiafic

et
Source: whatsthefare.com

dynamic pricing vs. static pricing
@ dynamic: price changes instantaneously, in response to system state

@ (quasi) static: constant over several hours (predictably changing)
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model for studying rideshare pricing

focus on a single block of time, and a single region.
system state = number of available drivers

assumption 1: mean system parameters stay constant
@ state-dependent (dynamic) pricing policy:

if # of available drivers= A, then price for ride= P(A)

@ platform earns a (fixed) fraction - of every dollar spent

assumption 2: the two sides react at different time-scales

@ myopic passengers: sensitive to instantaneous prices, availability

@ drivers are sensitive to long-term (average) earnings and ride-volume

Sid Banerjee (Cornell ORIE)
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rideshare pricing model: the details

stochastic dynamics + passenger/driver strategic behavior

strategic model for passengers

@ a (potential) passenger requests a ride iff:
reservation value V' > current price, and driver available

V ~ Fy, i.i.d. across ride requests

@ fig = exogenous rate of “app opens”, ;1 = actual rate of requests
when A drivers present: = puoFv(P(A))

Sid Banerjee (Cornell ORIE) ridesharing January 23, 2018 26 / 39



rideshare pricing model: the details

stochastic dynamics + passenger/driver strategic behavior

A® A

Available drivers (M/M(n)/1)

strategic behavior of drivers

@ a driver works on the platform iff:
reservation rate C x E[per-ride time spent] < E[per-ride earning]

C ~ Fc, i.i.d. across drivers

o)
2
T Gexit -
Busy drivers (M/G/«)

o Ao = “potential” driver-arrival rate, A = actual driver-arrival rate

= Do F

Gexit

Sid Banerjee (Cornell ORIE)

E[Per-ride earning]

E{Idle (waiting) time + Ride time}

ridesharing
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driver decision aids
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rideshare pricing model: overview
putting it together: equilibrium

given pricing policy P(-), equilibrium (A, u, 7,7, ¢) such that:

© [u: passenger-arrival rate, given state A, satisfies:

1= poFv (P(A))

@ \: driver-arrival rate )\, given ¢, 7, satisfies:

Ui
A=NoFc | ——
0 C<L+T>

© 1 steady-state distribution of A given A\, u
© 1: E[Earning per ride], given P(.) and 7
@ ¢ E[ldle time per ride], given P(.) and 7
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platform equilibrium under static pricing

Normalized Rate of Completed Rides r, /n vs p: Scaling with n

08

06

n=1

0.4

02

0.00
p
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platform equilibrium under static pricing

Normalized Rate of Completed Rides r, /n vs p: Scaling with n

n=10

08
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0.4
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0.00
p
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platform equilibrium under static pricing

Normalized Rate of Completed Rides r, /n vs p: Scaling with n
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platform equilibrium under static pricing

Normalized Rate of Completed Rides r, /n vs p: Scaling with n
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platform equilibrium under static pricing

Normalized Rate of Completed Rides r, /n vs p: Scaling with n

theorem: static pricing in large-market limit = demand-supply curve

rate of rides in large-market limit = min{available supply, available demand}
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Platform Equilibrium under Static Pricing

Theorem: Static pricing in large-market limit

Under static pricing (i.e., P(A) = pV A), let r,(p) denote the equilibrium
rate of completed rides in the n" system. Then:

) = 7(p) £ min { 20 e (22) iofa — Fi (o)

Qexit

Some intuition:
@ At any price, queueing system is always stable (else idle times blow up)
o If supply < demand: Drivers become fully saturated

@ If supply > demand: Drivers forecast high idle times and don’t enter
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platform equilibrium under dynamic pricing

Normalized Rate of Completed Rides r, /n vs p: Scaling with n

08

06

0.4

02

— Static pricing
— Dynamic pricing

0.00

Sid Banerjee (Cornell ORIE)

p

ridesharing

4

January 23, 2018

31 /39



platform equilibrium under dynamic pricing
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platform equilibrium under dynamic pricing

Normalized Rate of Completed Rides r, /n vs p: Scaling with n
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static vs. dynamic pricing: optimality

A(p)vs p Elli(p)lvs p
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theorem [Banerjee, Johari & Riquelme 2015]
if F\/ has increasing hazard rate: then

rate of rides for any dynamic policy < rate of rides under optimal static pricing.
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static vs. dynamic pricing: sensitivity to parameters
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static vs. dynamic pricing: sensitivity to parameters

Robustness of Pricing Policies to Demand Shocks
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theorem [Banerjee, Johari & Riquelme 2015]
dynamic pricing > ‘linear approximation’ of optimal static-pricing throughput
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summary, and the road ahead

main takeaway
ridesharing platforms: crucible for real-time decision making
o well modeled by steady-state stochastic models
@ approximate control via new convex relaxation techniques

@ algorithm self-calibration via market mechanisms
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the road ahead

some short term targets

@ the value of state-dependent controls
— for general controls, objectives: no improvement possible
— for dispatch: can achieve exponential decay in m!
(joint work with Pengyu Qian and Yash Kanoria (Columbia))
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price of fragmentation in ridesharing markets
(with Thibault Séjourné (Ecole Polytechnique), S. Samaranayake (Cornell))

O O
O O

@ what is the ‘societal cost’ of decentralized optimization?
— multiple platforms with (random) exogenously partitioned demands
— individual platforms do optimal empty-vehicle rebalancing
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price of fragmentation in ridesharing markets
(with Thibault Séjourné (Ecole Polytechnique), S. Samaranayake (Cornell))

O O
O O

@ what is the ‘societal cost’ of decentralized optimization?
— multiple platforms with (random) exogenously partitioned demands
— individual platforms do optimal empty-vehicle rebalancing

price of fragmentation

increase in rebalancing costs of multiple platforms (with exogenous demand
splits) vs. single platform (under large-market scaling)
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price of fragmentation in vehicle-sharing markets

result (in brief)

as demand scales, the price of fragmentation undergoes a phase transition
based on structure of underlying demand flows

— both regimes observed in NYC taxi-data (=~ 10% fragmentation-affected)
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the road ahead

some short term targets

@ the value of state-dependent controls
— for general controls, objectives: no improvement possible
— for dispatch: can achieve exponential decay in m!
(joint work with Pengyu Qian and Yash Kanoria (Columbia))

@ non-stationary and/or bursty arrivals

@ algorthms for more complex problems
(policies for ride-pooling, reservation mechanisms)

going further beyond
@ impact of platform competition
@ the value of information: forecasting vs. self-calibration
@ ridesharing + public transit

@ appropriate mix of employees, freelancers and autonomous cars
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