LOCALLY CONSISTENT EQUATIONS, THE STRUCTURE OF SOLUTION SPACES, AND QUANTUM INFORMATION GAMES

Albert Atserias

Universitat Politècnica de Catalunya
based on joint with
Kolaitis, Ochremiak, Roberson, Severini

Talk plan

1. What I worked on before the program
2. What I learned and worked on at the program
3. What I worked on after the program

Homomorphism and Isomorphism Problems

$$
\begin{aligned}
& G \stackrel{\text { hom }}{\longrightarrow} H \\
& G \stackrel{\text { iso }}{\equiv} H
\end{aligned}
$$

Part I

LOGICO-COMBINATORIAL RELAXATIONS

Logico-Combinatorial Relaxations

$$
G \xrightarrow{\text { hom }} H \Longleftrightarrow G \xrightarrow{\mathrm{E}_{+}} H \Longrightarrow G \xrightarrow{\mathrm{E}_{+}^{k}} H
$$

E_{+}: existential-positive first-order logic, i.e., atoms, \wedge, \exists. $\mathrm{E}_{+}^{k}: k$-variable fragment of E_{+}

Logico-Combinatorial Relaxations

$$
G \xrightarrow{\text { hom }} H \Longleftrightarrow G \xrightarrow{\mathrm{E}_{+}} H \Longrightarrow G \xrightarrow{\mathrm{E}_{+}^{k}} H
$$

E_{+}: existential-positive first-order logic, i.e., atoms, \wedge, \exists. $\mathrm{E}_{+}^{k}: k$-variable fragment of E_{+}

$$
G \stackrel{\text { iso }}{\equiv} H \Longleftrightarrow G \xlongequal{\equiv} H \Longrightarrow G \xlongequal{C^{k}} H
$$

C : counting logic, i.e., atoms, $\neg, \wedge, \exists \geq^{\geq 1}, \exists \geq 2, \ldots$
$\mathrm{C}^{k}: k$-variable fragment of C .

Ehrenfeucht-Fraïssé-type k-pebble games

E_{+}^{k} : existential-positive k-pebble game [KV95]
C^{k} : bijective k-pebble game [H96]

Counterexamples to reverse implication for E_{+}^{k}

An easy counterexample:

$$
\begin{aligned}
& K_{k+1} \xrightarrow{\text { hom }} K_{k} \\
& K_{k+1} \xrightarrow{\text { E. }} K_{k}
\end{aligned}
$$

A stronger counterexample from [A05]:

$$
\begin{aligned}
& \text { TSEITIN }_{k, \text { odd }} \xrightarrow{\text { hom }} 3-\mathrm{XOR} \\
& \text { TSEITIN }_{k, \text { odd }} \xrightarrow{\mathrm{E}_{+}^{k}} 3-\mathrm{XOR}
\end{aligned}
$$

where
$3-\mathrm{XOR}=$ template for parity equations, i.e., $(\{ \pm 1\}, x y z= \pm 1)$
TSEITIN $_{k, \text { odd }}=$ certain system of parity eqns on the k^{2}-wall

The m-wall graph

Tseitin system of parity equations

Construction of TSEITIN (G, σ) :
G is an undirected graph.
$\sigma: V(G) \rightarrow\{ \pm 1\}$ is a ± 1 labelling of the nodes of G.
There is a variable at every edge.
There is an equation at every node:

Counterexamples to reverse implication for C^{k}

A counterexample from [CFI95]:

$$
\begin{aligned}
& \mathrm{CFI}_{k}^{+} \stackrel{\text { iso }}{\not \equiv \mathrm{CFI}_{k}^{-}} \\
& \mathrm{CFI}_{k}^{+} \stackrel{\mathrm{C}^{k}}{\equiv} \mathrm{CFI}_{k}^{-}
\end{aligned}
$$

A reinterpretation of CFI from [ABD07]:

$$
\begin{array}{ll}
\text { TSEITIN }_{k, \text { even }}^{\times 2} & \stackrel{\text { iso }}{\not \equiv} \text { TSEITIN }_{k, \text { odd }}^{\times 2} \\
\text { TSEITIN }_{k, \text { even }}^{\times 2} & \stackrel{\mathrm{C}^{k}}{\equiv} \text { TSEITIN }_{k, \text { odd }}^{\times 2}
\end{array}
$$

Part II

LINEAR AND SEMIDEFINITE PROGRAMMING RELAXATIONS

Part II

OR, BY DUALITY, SHERALI-ADAMS AND LASSERRE/SUMS-OF-SQUARES REFUTATIONS

Hom and Iso as systems of polynomial equations

Variables:

$$
X_{u, v}: \text { a variable for each } u \in V(G) \text { and } v \in V(H)
$$

Equations:

$$
\begin{array}{ll}
\sum_{v} X_{u, v}-1=0 & \text { for all } u \\
X_{u, v} X_{u^{\prime}, v^{\prime}}=0 & \text { for all }\left(u, u^{\prime}\right) \in E(G) \text { and }\left(v, v^{\prime}\right) \notin E(H) \\
X_{u, v} X_{u^{\prime}, v^{\prime}}=0 & \text { for all } u=u^{\prime} \text { and } v \neq v^{\prime} \\
X_{u, v}^{2}-X_{u, v}=0 & \text { for all } u \text { and } v
\end{array}
$$

Hom and Iso as systems of polynomial equations

Variables:

$$
X_{u, v}: \text { a variable for each } u \in V(G) \text { and } v \in V(H)
$$

Equations:

$$
\begin{array}{ll}
\sum_{v} X_{u, v}-1=0 & \text { for all } u \\
\sum_{u} X_{u, v}-1=0 & \text { for all } v \\
X_{u, v} X_{u^{\prime}, v^{\prime}}=0 & \text { for all }\left(u, u^{\prime}\right) \in E(G) \text { and }\left(v, v^{\prime}\right) \notin E(H) \\
X_{u, v} X_{u^{\prime}, v^{\prime}}=0 & \text { for all }\left(u, u^{\prime}\right) \notin E(G) \text { and }\left(v, v^{\prime}\right) \in E(H) \\
X_{u, v} X_{u^{\prime}, v^{\prime}}=0 & \text { for all } u=u^{\prime} \text { and } v \neq v^{\prime} \\
X_{u, v} X_{u^{\prime}, v^{\prime}}=0 & \text { for all } u \neq u^{\prime} \text { and } v=v^{\prime} \\
X_{u, v}^{2}-X_{u, v}=0 & \text { for all } u \text { and } v
\end{array}
$$

Nullstellensatz, Sherali-Adams, and Lasserre/SOS

Systems of polynomial equations over $\{0,1\}^{n}$:

$$
\begin{gathered}
X_{1}^{2}-X_{1}=0, \ldots, X_{n}^{2}-X_{n}=0 \\
P_{1}(X)=0, \ldots, P_{m}(X)=0
\end{gathered}
$$

Nullstellensatz refutation of degree k :

$$
\sum_{j=1}^{t} P_{i_{j}} Q_{j}=-1
$$

where Q_{1}, \ldots, Q_{t} are arbitrary polynomials of total degree $\leq k$.

Nullstellensatz, Sherali-Adams, and Lasserre/SOS

Systems of polynomial equations over $\{0,1\}^{n}$:

$$
\begin{gathered}
X_{1}^{2}-X_{1}=0, \ldots, X_{n}^{2}-X_{n}=0 \\
P_{1}(X)=0, \ldots, P_{m}(X)=0
\end{gathered}
$$

Sherali-Adams refutation of degree k :

$$
\sum_{j=1}^{t} P_{i_{j}} Q_{j}+Q_{0}=-1
$$

where Q_{1}, \ldots, Q_{t} are arbitrary polynomials and

$$
Q_{0}=\sum_{i} c_{i}^{2} \prod_{i \in I} X_{i} \prod_{i \in J}\left(1-X_{i}\right)
$$

all of total degree $\leq k$.

Nullstellensatz, Sherali-Adams, and Lasserre/SOS

Systems of polynomial equations over $\{0,1\}^{n}$:

$$
\begin{gathered}
X_{1}^{2}-X_{1}=0, \ldots, X_{n}^{2}-X_{n}=0 \\
P_{1}(X)=0, \ldots, P_{m}(X)=0
\end{gathered}
$$

Lasserre/SOS refutation of degree k :

$$
\sum_{j=1}^{t} P_{i_{j}} Q_{j}+Q_{0}=-1
$$

where Q_{1}, \ldots, Q_{t} are arbitrary polynomials and

$$
Q_{0}=\sum_{i} Q_{0, i}^{2}
$$

all of total degree $\leq k$.

Proof complexity relaxations

$$
\begin{aligned}
& G \stackrel{\text { hom }}{\longrightarrow} H \Longrightarrow G \xrightarrow{\mathrm{SOS}^{k}} H \Longrightarrow G \stackrel{\mathrm{SA}^{k}}{\longrightarrow} H \Longrightarrow G \xrightarrow{\mathrm{NS}^{k}} H \\
& G \stackrel{\text { iso }}{=} H \Longrightarrow G \stackrel{\mathrm{SO}^{k}}{\equiv} H \Longrightarrow G \stackrel{\mathrm{SA}^{k}}{=} H \Longrightarrow G \stackrel{\mathrm{NS}^{k}}{\equiv} H
\end{aligned}
$$

Counterexamples to reverse implications?

Counterexamples to reverse implications?

Proof complexity of graph iso (an incomplete survey)

Counterexamples to reverse implications?

Proof complexity of graph iso (an incomplete survey)

- CFI is hard for SA^{k} and hence NS^{k} [AM11]

Counterexamples to reverse implications?

Proof complexity of graph iso (an incomplete survey)

- CFI is hard for SA^{k} and hence NS^{k} [AM11]
- CFI is hard also for SOS k [OWWZ13,SSC14].

Counterexamples to reverse implications?

Proof complexity of graph iso (an incomplete survey)

- CFI is hard for SA^{k} and hence NS^{k} [AM11]
- CFI is hard also for SOS k [OWWZ13,SSC14].
- CFI is hard for PC^{k} [BG15].

Counterexamples to reverse implications?

Proof complexity of graph iso (an incomplete survey)

- CFI is hard for SA^{k} and hence NS^{k} [AM11]
- CFI is hard also for SOS k [OWWZ13,SSC14].
- CFI is hard for PC^{k} [BG15].
- CFI is hard for resolution [T13] (follows also from [AM11]).

Implication diagram

$$
G \stackrel{\text { SOS }^{k}}{\equiv} H \quad G \stackrel{\text { SA }}{\equiv}{ }^{k} H \stackrel{\text { NS }^{k}}{=} H
$$

Implication diagram

Implication diagram

$$
\begin{aligned}
& G \stackrel{\text { mon- }-C^{k}}{=} H
\end{aligned}
$$

Implication diagram

$$
\begin{aligned}
& G \stackrel{\text { mon- } \mathrm{PC}^{k}}{=} H
\end{aligned}
$$

Implication diagram

$$
\begin{aligned}
& G \stackrel{\text { mon- } \mathrm{PC}^{k}}{=} H
\end{aligned}
$$

Implication diagram

Implication diagram

Counterexamples to reverse implications?

Proof complexity of graph iso (an incomplete survey)

- CFI is hard for SA^{k} and hence NS^{k} [AM11]
- CFI is hard also for SOS k [OWWZ13,SSC14].
- CFI is hard for PC^{k} [BG15].
- CFI is hard for resolution [T13] (follows also from [AM11]).

Counterexamples to reverse implications?

Proof complexity of graph iso (an incomplete survey)

- CFI is hard for SA^{k} and hence NS^{k} [AM11]
- CFI is hard also for SOS k [OWWZ13,SSC14].
- CFI is hard for PC^{k} [BG15].
- CFI is hard for resolution [T13] (follows also from [AM11]).
- ...
- CFI is hard for any proof system whose "proof existence problem" is expressible in C^{k} (implicitly stated in [GP17], and more explicitly stated in [GP17b]).

Counterexamples to reverse implications?

Proof complexity of graph iso (an incomplete survey)

- CFI is hard for SA^{k} and hence NS^{k} [AM11]
- CFI is hard also for SOS k [OWWZ13,SSC14].
- CFI is hard for PC^{k} [BG15].
- CFI is hard for resolution [T13] (follows also from [AM11]).
- ...
- CFI is hard for any proof system whose "proof existence problem" is expressible in C^{k} (implicitly stated in [GP17], and more explicitly stated in [GP17b]).
- NS ${ }^{k}$ by [GP17],
- mon-PC ${ }^{k}$ by [GP17b],
- width- k and Horn resolution by [GP17b]
$-\mathrm{SA}^{k}$ by [ADH15],
$-\mathrm{PC}^{k}$ and SOS^{k} ?

Part III

QUANTUM RELAXATIONS

An Important Example: Mermin-Peres Magic Square

Nine variables, six equations:

$$
\begin{aligned}
& X_{11} X_{12} X_{13}=+1 \\
& X_{21} X_{22} X_{23}=+1 \\
& X_{31} X_{32} X_{33}=+1 \\
& X_{11} X_{21} X_{31}=+1 \\
& X_{12} X_{22} X_{32}=+1 \\
& X_{13} X_{23} X_{33}=-1
\end{aligned}
$$

An Important Example: Mermin-Peres Magic Square

Nine variables, six equations:

$$
\begin{aligned}
& X_{11} X_{12} X_{13}=+1 \\
& X_{21} X_{22} X_{23}=+1 \\
& X_{31} X_{32} X_{33}=+1 \\
& \|\quad\| \quad \| \\
& + \pm \quad \downarrow
\end{aligned}
$$

Proof of unsatisfiability (over \mathbb{R})

$$
\begin{aligned}
& X_{11} X_{12} X_{13} X_{21} X_{22} X_{23} X_{31} X_{32} X_{33}=+1 \\
& X_{11} X_{21} X_{31} X_{12} X_{22} X_{32} X_{13} X_{23} X_{33}=-1
\end{aligned}
$$

Proof of unsatisfiability (over \mathbb{R})

$$
\begin{aligned}
& X_{11} X_{12} X_{13} X_{21} X_{22} X_{23} X_{31} X_{32} X_{33}=+1 \\
& X_{11} X_{21} X_{31} X_{12} X_{22} X_{32} X_{13} X_{23} X_{33}=-1
\end{aligned}
$$

Remark:

Relies heavily on the fact that product commutes.

There is a solution in 4×4 complex matrices

$$
\begin{array}{ccccc}
I \otimes Z & Z \otimes I & Z \otimes Z & =+I \\
X \otimes I & I \otimes X & X \otimes X & =+I \\
X \otimes Z & Z \otimes X & Y \otimes Y & =+I \\
\| & \| & \| & & \\
+I & +I & -I & &
\end{array}
$$

where X, Y, Z are the Pauli matrices:

$$
X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Guess what ...

MERMIN SQUARE $=\operatorname{TSEITIN}\left(K_{3,3}\right.$, odd $)$

and
$$
K_{3,3}=\text { twisted } 6 \text {-wall }
$$

Where does this come from? Quantum entanglement
[Einstein-Podolsky-Rosen 1935], [Bell 1964], [Mermin 1990]

Where does this come from? Quantum entanglement

[Einstein-Podolsky-Rosen 1935], [Bell 1964], [Mermin 1990]

$\hat{p}_{i j, a b}:=$ "empirical probability that $i j$ lights as $a b "$

Where does this come from? Quantum entanglement

[Einstein-Podolsky-Rosen 1935], [Bell 1964], [Mermin 1990]

$\hat{p}_{i j, a b}:=$ "empirical probability that $i j$ lights as $a b$ "

- Not explained by classical probability: $\hat{p}_{i j, a b} \neq \mu(a b \mid i j)$
- Explained by quantum entanglement: $\hat{p}_{i j, a b}=\langle\psi| P_{i j, a b}|\psi\rangle$.

Quantum homomorphisms and isomorphisms

Quantum homomorphisms defined in [MR12]
 Quantum isomorphisms defined in [AMRŠSV17]
 Both defined in terms of non-local games

Here we define them algebraically (equivalences are proved in the papers)

Quantum isomorphism

Variables:

$$
X_{u, v}: \text { a variable for each } u \in V(G) \text { and } v \in V(H)
$$

Equations:

$$
\begin{array}{ll}
\sum_{v} X_{u, v}-1=0 & \text { for all } u \\
\sum_{u} X_{u, v}-1=0 & \text { for all } v \\
X_{u, v} X_{u^{\prime}, v^{\prime}}=0 & \text { for all } u, u^{\prime}, v, v^{\prime} \text { s.t. } \operatorname{atp}_{G}\left(u, u^{\prime}\right) \neq \operatorname{atp}_{G}\left(v, v^{\prime}\right) \\
X_{u, v}^{2}-X_{u, v}=0 & \text { for all } u \text { and } v
\end{array}
$$

Subject to:

Each $X_{u, v}$ is a self-adjoint linear operator of a Hilbert space.

Quantum relaxation of isomorphism

$$
\begin{array}{cc}
G \stackrel{\text { iso }}{=} H \Longrightarrow G \stackrel{\text { qiso }}{=} H \Longrightarrow G \xlongequal{\Longrightarrow} \xlongequal{\Longrightarrow} H \\
\stackrel{?}{=} & {[\text { MRV17] }} \\
\Longleftrightarrow & \nLeftarrow
\end{array}
$$

Quantum relaxation of isomorphism

$$
\begin{aligned}
G \stackrel{\text { iso }}{\equiv} H & \Longrightarrow \stackrel{\text { qiso }}{\equiv} H \Longrightarrow G \\
\stackrel{?}{\Longrightarrow} & \stackrel{\mathrm{C}^{3}}{\equiv} H \\
& \Longleftrightarrow
\end{aligned}
$$

Fact [AMRŠSV17]:

Quantum relaxation of isomorphism

$$
\begin{array}{cc}
G \stackrel{\text { iso }}{=} H & \Longrightarrow G \stackrel{\text { qiso }}{=} H \Longrightarrow G \xlongequal{\Longrightarrow} \xlongequal{\Longrightarrow} H \\
& ? \\
& {[\text { MRV17] }} \\
\models & \nLeftarrow
\end{array}
$$

Fact [AMRŠSV17]:

$$
\mathrm{CFI}_{k}^{+} \stackrel{\text { qiso }}{\equiv} \mathrm{CFI}_{k}^{-} \quad \text { but } \quad \mathrm{CFI}_{k}^{+} \stackrel{\text { iso }}{\equiv} \mathrm{CFI}_{k}^{-}
$$

Proof.

- View CFI as TSEITIN in disguise (by [ABD07])
- Build the matrix solution from the one for Mermin's square.

A fundamental-looking problem

A fundamental-looking problem

$$
\begin{gathered}
\text { Find a logic } \mathcal{L} \text { for which } \\
G \stackrel{\text { qiso }}{=} H \text { iff } G \xlongequal[\equiv]{=} H
\end{gathered}
$$

Part IV

QUANTUM SATISFIABILITY

Schaefer's framework for generalized satisfiability

Schaefer's framework for generalized satisfiability

Boolean domain: $\{ \pm 1\}$ with $+1=$ false and and $-1=$ true;

Schaefer's framework for generalized satisfiability

Boolean domain: $\{ \pm 1\}$ with $+1=$ false and and $-1=$ true; Constraint language: a set A of relations $R \subseteq\{ \pm 1\}^{r}$

Schaefer's framework for generalized satisfiability

Boolean domain: $\{ \pm 1\}$ with $+1=$ false and and $-1=$ true; Constraint language: a set A of relations $R \subseteq\{ \pm 1\}^{r}$
relations \leftrightarrow predicates \leftrightarrow polynomial equations

Schaefer's framework for generalized satisfiability

Boolean domain: $\{ \pm 1\}$ with $+1=$ false and and $-1=$ true; Constraint language: a set A of relations $R \subseteq\{ \pm 1\}^{r}$
relations \leftrightarrow predicates \leftrightarrow polynomial equations个
characteristic function

$$
R:\{ \pm 1\}^{r} \rightarrow\{0,1\}
$$

Schaefer's framework for generalized satisfiability

Boolean domain: $\{ \pm 1\}$ with $+1=$ false and and $-1=$ true; Constraint language: a set A of relations $R \subseteq\{ \pm 1\}^{r}$
relations \leftrightarrow predicates \leftrightarrow polynomial equations

characteristic function

$$
R:\{ \pm 1\}^{r} \rightarrow\{0,1\}
$$

Fourier-Welsh transform

$$
R\left(X_{1}, \ldots, X_{r}\right)=0
$$

Schaefer's framework for generalized satisfiability

Boolean domain: $\{ \pm 1\}$ with $+1=$ false and and $-1=$ true; Constraint language: a set A of relations $R \subseteq\{ \pm 1\}^{r}$
relations \leftrightarrow predicates \leftrightarrow polynomial equations

characteristic function

$$
R:\{ \pm 1\}^{r} \rightarrow\{0,1\}
$$

Fourier-Welsh transform

$$
R\left(X_{1}, \ldots, X_{r}\right)=0
$$

Examples:

OR disjunctions of literals
LIN linear equations over \mathbb{Z}_{2}
1-IN-3 triples with one -1 and two +1 components
NAE triples with not-all-equal components

Generalized Satisfiability Problems: SAT (A)

$$
\exists X_{1} \cdots X_{n}\left(C_{1} \wedge \cdots \wedge C_{m}\right)
$$

Generalized Satisfiability Problems: SAT (A)

Examples:
3-SAT
1-IN-3-SAT
HORN-SAT NAE-SAT
LIN-SAT
[Schaefer 1978]
... via Operator Assignments [CM14]

$$
\exists X_{1} \cdots X_{n}\left(C_{1} \wedge \cdots \wedge C_{m}\right)
$$

... via Operator Assignments [CM14]

range over $B(\mathcal{H})$, the
self-adjoint linear operators
of a Hilbert space \mathcal{H}

... via Operator Assignments [CM14]

$$
\exists X_{1} \cdots X_{n}\left(C_{1} \wedge \cdots \wedge C_{m}\right)
$$

variables $X_{1}, \ldots, X_{n} \quad$ constraints C_{1}, \ldots, C_{m} each range over $B(\mathcal{H})$, the of the form $R\left(Y_{1}, \ldots, Y_{r}\right)=0$ self-adjoint linear operators $\quad Y_{i} Y_{j}=Y_{j} Y_{i}$ for all $i, j \in[r]$ of a Hilbert space \mathcal{H}

... via Operator Assignments [CM14]

$$
\exists X_{1} \cdots X_{n}\left(C_{1} \wedge \cdots \wedge C_{m}\right)
$$

variables $X_{1}, \ldots, X_{n} \quad$ constraints C_{1}, \ldots, C_{m} each range over $B(\mathcal{H})$, the of the form $R\left(Y_{1}, \ldots, Y_{r}\right)=0$ self-adjoint linear operators $\quad Y_{i} Y_{j}=Y_{j} Y_{i}$ for all $i, j \in[r]$ of a Hilbert space \mathcal{H}

$$
\stackrel{\text { and }}{X_{i}^{2}=I \text { for all } i \in[n]}
$$

... via Operator Assignments [CM14]

range over $B(\mathcal{H})$, the of the form $R\left(Y_{1}, \ldots, Y_{r}\right)=0$ self-adjoint linear operators $Y_{i} Y_{j}=Y_{j} Y_{i}$ for all $i, j \in[r]$
of a Hilbert space \mathcal{H}

$$
\begin{gathered}
\text { and } \\
X_{i}^{2}=I \text { for all } i \in[n]
\end{gathered}
$$

SAT(A) satisfiability over Boolean domain SAT $^{*}(A) \quad$ satisfiability over some finite-dimensional \mathcal{H} SAT $^{* *}(A) \quad$ satisfiability over some arbitrary \mathcal{H}

Gap Instances

$$
X_{11} X_{12} X_{13}=+1
$$

$$
X_{21} X_{22} X_{23}=+1 \quad \text { Unsatisfiable SAT-instance of LIN }
$$

$$
X_{31} X_{32} X_{33}=-1 \quad \text { Satisfiable SAT*-instance of LIN }
$$

$$
\begin{array}{lll}
\| & \| & \| \\
\pm & \pm & \pm
\end{array}
$$

Gap Instances

$$
\begin{aligned}
& \text { SAT-vs-SAT** } \\
& \text { SAT--vs-SAT }^{* *} \\
& \text { SAT*}^{*} \text {-vs-SAT*** }
\end{aligned}
$$

gap of the first kind gap of the second kind gap of the third kind

Gap Instances

$$
X_{11} X_{12} X_{13}=+1
$$

$$
X_{21} X_{22} X_{23}=+1 \quad \text { Unsatisfiable SAT-instance of LIN }
$$

$$
X_{31} X_{32} X_{33}=-1 \quad \text { Satisfiable SAT*-instance of LIN }
$$

$$
\begin{array}{llll}
\| & \| & \| \\
+ & + & + & \downarrow \\
\bullet & \sqcup & \text { a SAT-vs-SAT* }
\end{array}
$$

$$
\begin{array}{ll}
\text { SAT-vs-SAT* } & \text { gap of the first kind } \\
\text { SAT-vs-SAT }^{* *} & \text { gap of the second kind } \\
\text { SAT*}^{*} \text {-vs-SAT** } & \text { gap of the third kind }
\end{array}
$$

Gaps of first kind for LIN exist Gaps of third kind for LIN exist
[Mermin 1990]
[Slofstra 2017]

Gaps of first kind for 2-SAT or HORN do not exist
[Ji 2014]

Classification

Theorem:

For every Boolean constraint language A,

1. either gaps of every kind for A exist,
2. or gaps of no kind for A exist.

Classification

Theorem:

For every Boolean constraint language A,

1. either gaps of every kind for A exist,
2. or gaps of no kind for A exist.

Moreover:

Classification

Theorem:

For every Boolean constraint language A,

1. either gaps of every kind for A exist,
2. or gaps of no kind for A exist.

Moreover:

gaps for A do not exist
iff
A is of one of the following types:
iff
LIN is not pp-definable from A

1 -valid

Horn

dual Horn

bijunctive\end{array}\right.\)

Comparison with Schaefer's dichotomy for tractability

	Tractable	Gaps exist
0-valid/1-valid	YES	NO
Horn/dual-Horn	YES	NO
bijunctive	YES	NO
linear	YES	YES
anythingelse	NO	YES

Primitive Positive Definitions

$$
\begin{aligned}
& R\left(Y_{1}, \ldots, Y_{r}\right) \equiv \exists Z_{1} \cdots \exists Z_{s}\left(C_{1} \wedge \cdots \wedge C_{t}\right) \\
& 7 \\
& \text { auxiliary } \\
& \text { variables } \\
& \text { constraints on } \\
& \text { the } Y \text { 's and } Z \text { 's }
\end{aligned}
$$

Primitive Positive Definitions

$$
R\left(Y_{1}, \ldots, Y_{r}\right) \quad \equiv \overbrace{\begin{array}{l}
\text { auxiliary } \\
\text { variables }
\end{array}}^{\exists Z_{1} \cdots \exists Z_{s}\left(C_{1} \wedge \cdots \wedge C_{t}\right)}
$$

Example:

$$
\operatorname{NAE}(X, Y, Z) \equiv(X \vee Y \vee Z) \wedge(\bar{X} \vee \bar{Y} \vee \bar{Z})
$$

Proof technique

Proof technique

Ingredient 1: gap preserving reductions

Lemma:

If A is pp-definable from B, then gaps for B imply gaps for A.

Proof technique

Ingredient 1: gap preserving reductions

Lemma:

If A is pp-definable from B, then gaps for B imply gaps for A.

Ingredient 2: Post's Lattice of Boolean co-clones
Theorem [Post 1941]:
There are countably many Boolean constraint languages up to pp-definability, and we know them.

Post's Lattice

More on Primitive Positive Definability

$$
R\left(Y_{1}, \ldots, Y_{r}\right) \equiv \exists Z_{1} \cdots \exists Z_{s}\left(C_{1} \wedge \cdots \wedge C_{t}\right)
$$

pp-def $\quad Z_{i}$'s range over $B\left(\mathbb{C}\right.$) (i.e., over $\{ \pm 1\}$ by $Z_{i}^{2}=I$) $\mathbf{p p}^{*}$-def $\quad Z_{i}$'s range over $B(\mathcal{H})$, for some finite-dim \mathcal{H} $\mathbf{p p}^{* *}$-def $\quad Z_{i}$'s range over $B(\mathcal{H})$, for some arbitrary \mathcal{H}

A Conservativity Theorem

Theorem:

For every two constraint languages A and B, the following statements are equivalent.

1. every relation in A is pp-definable from B
2. every relation in A is pp^{*}-definable from B

A Conservativity Theorem

Theorem:

For every two constraint languages A and B, the following statements are equivalent.

1. every relation in A is pp-definable from B
2. every relation in A is pp^{*}-definable from B

Corollary: OR is not pp^{*}-definable from LIN

Closure Operations via Operators

R is invariant under $F: B\left(\mathcal{H}_{1}\right) \times \cdots \times B\left(\mathcal{H}_{s}\right) \rightarrow B(\mathcal{H})$ if

$$
\left.\begin{array}{ccc}
R\left(\begin{array}{ccc}
A_{1,1} & , \cdots, & A_{1, r} \\
\vdots & \ddots & \vdots
\end{array}\right)=0 \text { and commute } \\
R(& A_{s, 1} & , \cdots, \\
A_{s, r}
\end{array}\right)=0 \text { and commute } .
$$

$$
R\left(F\left(\mathbf{A}_{*, 1}\right), \cdots, F\left(\mathbf{A}_{*, r}\right)\right)=0 \text { and commute }
$$

Closure Operations via Operators

R is invariant under $F: B\left(\mathcal{H}_{1}\right) \times \cdots \times B\left(\mathcal{H}_{s}\right) \rightarrow B(\mathcal{H})$ if

$$
\left.\begin{array}{ccc}
R\left(\begin{array}{ccc}
A_{1,1} & , \cdots, & A_{1, r} \\
\vdots & \ddots & \vdots
\end{array}\right)=0 \text { and commute } \\
R\left(A_{s, 1}\right. & , \cdots, & A_{s, r}
\end{array}\right)=0 \text { and commute }
$$

$$
R\left(F\left(\mathbf{A}_{*, 1}\right), \cdots, F\left(\mathbf{A}_{*, r}\right)\right)=0 \text { and commute }
$$

Lemma: If A is invariant under $F:\{ \pm 1\}^{s} \rightarrow\{ \pm 1\}$, then every $R \subseteq\{ \pm 1\}^{r} \mathrm{pp}^{*}$-definable from A is invariant under

$$
F^{*}\left(X_{1}, \ldots, X_{s}\right):=\sum_{S \subseteq[s]} \widehat{F}(S) \bigotimes_{i=1}^{s} X_{i}^{S(i)}
$$

Proof by Example

Operator composition doesn't work:

$$
\begin{aligned}
& X_{11} X_{12} X_{13}=+1 \\
& X_{21} X_{22} X_{23}=+1 \\
& X_{31} X_{32} X_{33}=+1 \\
& \|\quad\| \quad \| \\
& +\quad \pm \quad \neq+1(!)
\end{aligned}
$$

Proof by Example

Operator composition doesn't work:

$$
\begin{aligned}
& X_{11} X_{12} X_{13}=+1 \\
& X_{21} X_{22} X_{23}=+1 \\
& X_{31} X_{32} X_{33}=+1 \\
& \|\| \\
& \pm \pm \stackrel{\square}{ \pm} \neq+1(!)
\end{aligned}
$$

Operator tensoring works:

$$
\begin{aligned}
& \left(X_{11} \otimes X_{21} \otimes X_{31}\right)\left(X_{12} \otimes X_{22} \otimes X_{32}\right)\left(X_{13} \otimes X_{23} \otimes X_{33}\right)= \\
& \left(X_{11} X_{12} X_{13}\right) \otimes\left(X_{21} X_{22} X_{23}\right) \otimes\left(X_{31} X_{32} X_{33}\right)= \\
& (+I) \otimes(+I) \otimes(+I)= \\
& +I
\end{aligned}
$$

Future Work

Question 1:

> Are SAT*(LIN) and QISO* decidable?

Question 2:

Is $\mathrm{pp}^{* *}$-definability $=\mathrm{pp}$-definability also?

Question 3:
Find a logic \mathcal{L} for which

$$
G \stackrel{\text { qiso }}{=} H \text { iff } G \xlongequal[\equiv \mathcal{L}]{=} H
$$

Acknowledgments

Simons Institute,
ERC-2014-CoG 648276 (AUTAR) EU.

