LOCALLY CONSISTENT EQUATIONS, THE STRUCTURE OF SOLUTION SPACES, AND QUANTUM INFORMATION GAMES

Albert Atserias Universitat Politècnica de Catalunya

based on joint with Kolaitis, Ochremiak, Roberson, Severini

Talk plan

- $1.\ \mbox{What I}$ worked on before the program
- 2. What I learned and worked on at the program
- 3. What I worked on after the program

Homomorphism and Isomorphism Problems

 $\begin{array}{c} G \xrightarrow{\mathsf{hom}} H \\ G \xrightarrow{\mathsf{iso}} H \end{array}$

Part I

LOGICO-COMBINATORIAL RELAXATIONS

Logico-Combinatorial Relaxations

$G \xrightarrow{\mathsf{hom}} H \iff G \xrightarrow{\mathsf{E}_+} H \implies G \xrightarrow{\mathsf{E}_+^k} H$

 E_+ : existential-positive first-order logic, i.e., atoms, $\wedge, \exists.$ E_+^k : $k\text{-variable fragment of }\mathsf{E}_+$

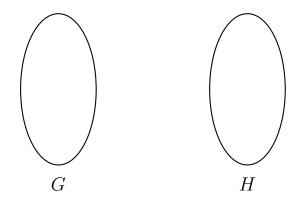
Logico-Combinatorial Relaxations

$$G \xrightarrow{\mathsf{hom}} H \iff G \xrightarrow{\mathsf{E}_+} H \implies G \xrightarrow{\mathsf{E}_+^k} H$$

 E_+ : existential-positive first-order logic, i.e., atoms, $\wedge, \exists.$ E^k_+ : $k\text{-variable fragment of }\mathsf{E}_+$

$$G \stackrel{\mathsf{iso}}{\equiv} H \iff G \stackrel{\mathsf{C}}{\equiv} H \implies G \stackrel{\mathsf{C}^k}{\equiv} H$$

C : counting logic, i.e., atoms, \neg , \land , $\exists^{\geq 1}$, $\exists^{\geq 2}$, ... C^k : k-variable fragment of C. Ehrenfeucht-Fraïssé-type k-pebble games



 E_{+}^{k} : existential-positive k-pebble game [KV95] C^{k} : bijective k-pebble game [H96]

Counterexamples to reverse implication for E_{+}^{k}

An easy counterexample:

$$\begin{array}{c} K_{k+1} \xrightarrow{\text{hom}} K_k \\ K_{k+1} \xrightarrow{\mathsf{E}^k_+} K_k \end{array}$$

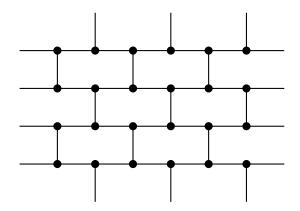
A stronger counterexample from [A05]:

$$\begin{array}{c} \mathsf{TSEITIN}_{k,\mathsf{odd}} \xrightarrow{\mathsf{hom}} 3\text{-}\mathsf{XOR} \\ \xrightarrow{\mathsf{TSEITIN}_{k,\mathsf{odd}}} \xrightarrow{\mathsf{E}^k_+} 3\text{-}\mathsf{XOR} \end{array}$$

where

3-XOR = template for parity equations, i.e., $(\{\pm 1\}, xyz = \pm 1)$ TSEITIN_{k,odd} = certain system of parity eqns on the k^2 -wall

The *m*-wall graph

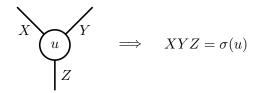


Tseitin system of parity equations

Construction of TSEITIN (G, σ) :

G is an undirected graph. $\sigma: V(G) \to \{\pm 1\} \text{ is a } \pm 1 \text{ labelling of the nodes of } G.$

There is a variable at every edge. There is an equation at every node:



Counterexamples to reverse implication for C^k

A counterexample from [CFI95]:

$$\mathsf{CFI}^+_k \stackrel{\mathsf{iso}}{
eq} \mathsf{CFI}^-_k$$

 $\mathsf{CFI}^+_k \stackrel{\mathsf{C}^k}{\equiv} \mathsf{CFI}^-_k$

A reinterpretation of CFI from [ABD07]:

$$\begin{array}{rcl} \mathsf{TSEITIN}_{k,\mathsf{even}}^{\times 2} & \stackrel{\mathsf{iso}}{\neq} & \mathsf{TSEITIN}_{k,\mathsf{odd}}^{\times 2} \\ \mathsf{TSEITIN}_{k,\mathsf{even}}^{\times 2} & \stackrel{\mathsf{C}^{k}}{\equiv} & \mathsf{TSEITIN}_{k,\mathsf{odd}}^{\times 2} \end{array}$$

Part II

LINEAR AND SEMIDEFINITE PROGRAMMING RELAXATIONS

Part II

OR, BY DUALITY, SHERALI-ADAMS AND LASSERRE/SUMS-OF-SQUARES REFUTATIONS

Hom and Iso as systems of polynomial equations

Variables:

 $X_{u,v}$: a variable for each $u \in V(G)$ and $v \in V(H)$

Equations:

 $\sum_{v} X_{u,v} - 1 = 0 \qquad \text{for all } u$ $X_{u,v} X_{u',v'} = 0 \qquad \text{for all } (u, u') \in E(G) \text{ and } (v, v') \notin E(H)$ $X_{u,v} X_{u',v'} = 0 \qquad \text{for all } u = u' \text{ and } v \neq v'$ $X_{u,v}^2 - X_{u,v} = 0 \qquad \text{for all } u \text{ and } v$

Hom and Iso as systems of polynomial equations

Variables:

 $X_{u,v}$: a variable for each $u \in V(G)$ and $v \in V(H)$

Equations:

$$\begin{array}{ll} \sum_{v} X_{u,v} - 1 = 0 & \text{for all } u \\ \sum_{u} X_{u,v} - 1 = 0 & \text{for all } v \\ X_{u,v} X_{u',v'} = 0 & \text{for all } (u,u') \in E(G) \text{ and } (v,v') \notin E(H) \\ X_{u,v} X_{u',v'} = 0 & \text{for all } (u,u') \notin E(G) \text{ and } (v,v') \in E(H) \\ X_{u,v} X_{u',v'} = 0 & \text{for all } u = u' \text{ and } v \neq v' \\ X_{u,v} X_{u',v'} = 0 & \text{for all } u \neq u' \text{ and } v = v' \\ X_{u,v}^2 X_{u,v}^2 - X_{u,v} = 0 & \text{for all } u \text{ and } v \end{array}$$

Nullstellensatz, Sherali-Adams, and Lasserre/SOS

Systems of polynomial equations over $\{0,1\}^n$:

$$X_1^2 - X_1 = 0, \dots, X_n^2 - X_n = 0$$

$$P_1(X) = 0, \dots, P_m(X) = 0$$

Nullstellensatz refutation of degree k:

$$\sum_{j=1}^{t} P_{i_j} Q_j = -1$$

where Q_1, \ldots, Q_t are arbitrary polynomials of total degree $\leq k$.

Nullstellensatz, Sherali-Adams, and Lasserre/SOS

Systems of polynomial equations over $\{0,1\}^n$:

$$X_1^2 - X_1 = 0, \dots, X_n^2 - X_n = 0$$

 $P_1(X) = 0, \dots, P_m(X) = 0$

Sherali-Adams refutation of degree k:

$$\sum_{j=1}^{t} P_{i_j} Q_j + Q_0 = -1$$

where Q_1, \ldots, Q_t are arbitrary polynomials and

$$Q_0 = \sum_i c_i^2 \prod_{i \in I} X_i \prod_{i \in J} (1 - X_i),$$

all of total degree $\leq k$.

Nullstellensatz, Sherali-Adams, and Lasserre/SOS

Systems of polynomial equations over $\{0,1\}^n$:

$$X_1^2 - X_1 = 0, \dots, X_n^2 - X_n = 0$$

$$P_1(X) = 0, \dots, P_m(X) = 0$$

Lasserre/SOS refutation of degree k:

$$\sum_{j=1}^{t} P_{i_j} Q_j + Q_0 = -1$$

where Q_1, \ldots, Q_t are arbitrary polynomials and

$$Q_0 = \sum_i Q_{0,i}^2,$$

all of total degree $\leq k$.

Proof complexity relaxations

$$G \xrightarrow{\text{hom}} H \Longrightarrow G \xrightarrow{\text{SOS}^k} H \Longrightarrow G \xrightarrow{\text{SA}^k} H \Longrightarrow G \xrightarrow{\text{NS}^k} H$$
$$G \xrightarrow{\text{iso}} H \Longrightarrow G \xrightarrow{\text{SOS}^k} H \Longrightarrow G \xrightarrow{\text{SA}^k} H \Longrightarrow G \xrightarrow{\text{NS}^k} H$$

Proof complexity of graph iso (an incomplete survey)

Proof complexity of graph iso (an incomplete survey)

• CFI is hard for SA^k and hence NS^k [AM11]

Proof complexity of graph iso (an incomplete survey)

- CFI is hard for SA^k and hence NS^k [AM11]
- CFI is hard also for SOS^k [OWWZ13,SSC14].

Proof complexity of graph iso (an incomplete survey)

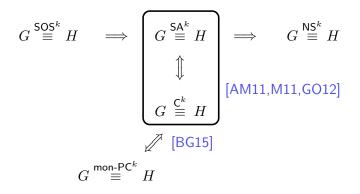
- CFI is hard for SA^k and hence NS^k [AM11]
- CFI is hard also for SOS^k [OWWZ13,SSC14].
- CFI is hard for PC^k [BG15].

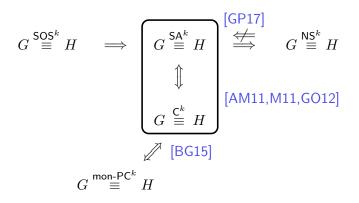
Proof complexity of graph iso (an incomplete survey)

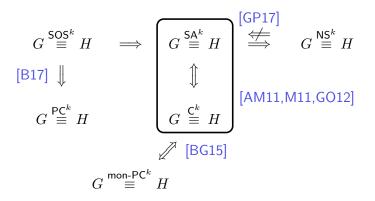
- CFI is hard for SA^k and hence NS^k [AM11]
- CFI is hard also for SOS^k [OWWZ13,SSC14].
- CFI is hard for PC^k [BG15].
- CFI is hard for resolution [T13] (follows also from [AM11]).

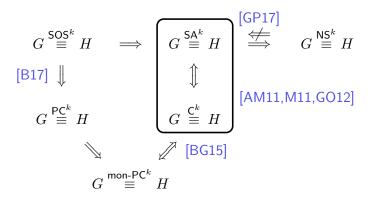
• ...

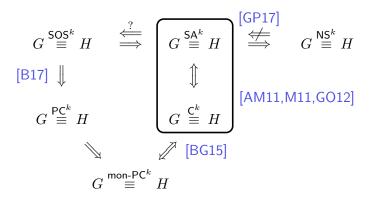
$$G \stackrel{\mathsf{SOS}^k}{\equiv} H \implies G \stackrel{\mathsf{SA}^k}{\equiv} H \implies G \stackrel{\mathsf{NS}^k}{\equiv} H$$











Proof complexity of graph iso (an incomplete survey)

- CFI is hard for SA^k and hence NS^k [AM11]
- CFI is hard also for SOS^k [OWWZ13,SSC14].
- CFI is hard for PC^k [BG15].
- CFI is hard for resolution [T13] (follows also from [AM11]).

• ...

Proof complexity of graph iso (an incomplete survey)

- CFI is hard for SA^k and hence NS^k [AM11]
- CFI is hard also for SOS^k [OWWZ13,SSC14].
- CFI is hard for PC^k [BG15].
- CFI is hard for resolution [T13] (follows also from [AM11]).

• ...

• CFI is hard for any proof system whose "proof existence problem" is expressible in C^k (implicitly stated in [GP17], and more explicitly stated in [GP17b]).

Proof complexity of graph iso (an incomplete survey)

- CFI is hard for SA^k and hence NS^k [AM11]
- CFI is hard also for SOS^k [OWWZ13,SSC14].
- CFI is hard for PC^k [BG15].
- CFI is hard for resolution [T13] (follows also from [AM11]).

• ...

• CFI is hard for any proof system whose "proof existence problem" is expressible in C^k (implicitly stated in [GP17], and more explicitly stated in [GP17b]).

- NS^k by [GP17],
- $\operatorname{mon-PC}^k$ by [GP17b],
- width-k and Horn resolution by [GP17b] (but see also [A02]),
- SA^k by [ADH15],
- PC^k and SOS^k ?

Part III

QUANTUM RELAXATIONS

An Important Example: Mermin-Peres Magic Square

Nine variables, six equations:

$$X_{11}X_{12}X_{13} = +1$$

$$X_{21}X_{22}X_{23} = +1$$

$$X_{31}X_{32}X_{33} = +1$$

$$X_{11}X_{21}X_{31} = +1$$

$$X_{12}X_{22}X_{32} = +1$$

$$X_{13}X_{23}X_{33} = -1$$

An Important Example: Mermin-Peres Magic Square

Nine variables, six equations:

$$X_{11}X_{12}X_{13} = +1 X_{21}X_{22}X_{23} = +1 X_{31}X_{32}X_{33} = +1 \parallel \parallel \parallel \parallel \\ \pm \pm \pm \parallel$$

Proof of unsatisfiability (over \mathbb{R})

$\begin{aligned} X_{11}X_{12}X_{13}X_{21}X_{22}X_{23}X_{31}X_{32}X_{33} &= +1\\ X_{11}X_{21}X_{31}X_{12}X_{22}X_{32}X_{13}X_{23}X_{33} &= -1 \end{aligned}$

Proof of unsatisfiability (over \mathbb{R})

$$\begin{split} X_{11}X_{12}X_{13}X_{21}X_{22}X_{23}X_{31}X_{32}X_{33} = +1 \\ X_{11}X_{21}X_{31}X_{12}X_{22}X_{32}X_{13}X_{23}X_{33} = -1 \end{split}$$

Remark:

Relies heavily on the fact that product commutes.

Indeed ...

There is a solution in 4x4 complex matrices

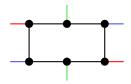
where X, Y, Z are the Pauli matrices:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

$\mathsf{MERMIN}\ \mathsf{SQUARE} = \mathsf{TSEITIN}(K_{3,3}, \, \mathsf{odd})$

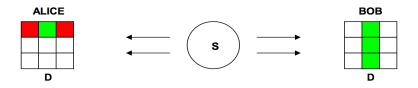
and

$K_{3,3} =$ twisted 6-wall



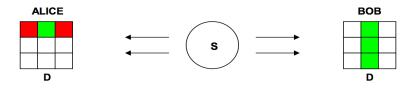
Where does this come from? Quantum entanglement

[Einstein-Podolsky-Rosen 1935], [Bell 1964], [Mermin 1990]



Where does this come from? Quantum entanglement

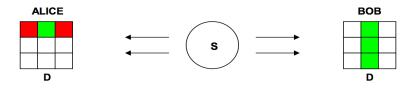
[Einstein-Podolsky-Rosen 1935], [Bell 1964], [Mermin 1990]



 $\hat{p}_{ij,ab} :=$ "empirical probability that ij lights as ab"

Where does this come from? Quantum entanglement

[Einstein-Podolsky-Rosen 1935], [Bell 1964], [Mermin 1990]



 $\hat{p}_{ij,ab} :=$ "empirical probability that ij lights as ab"

- ▶ Not explained by classical probability: $\hat{p}_{ij,ab} \neq \mu(ab|ij)$
- Explained by quantum entanglement: $\hat{p}_{ij,ab} = \langle \psi | P_{ij,ab} | \psi \rangle$.

Quantum homomorphisms and isomorphisms

Quantum homomorphisms defined in [MR12] Quantum isomorphisms defined in [AMRŠSV17] Both defined in terms of **non-local games**

Here we define them **algebraically** (equivalences are proved in the papers)

Quantum isomorphism

Variables:

 $X_{u,v}$: a variable for each $u \in V(G)$ and $v \in V(H)$

Equations:

$$\begin{array}{ll} \sum_{v} X_{u,v} - 1 = 0 & \quad \text{for all } u \\ \sum_{u} X_{u,v} - 1 = 0 & \quad \text{for all } v \\ X_{u,v} X_{u',v'} = 0 & \quad \text{for all } u, u', v, v' \text{ s.t. } \operatorname{atp}_{G}(u, u') \neq \operatorname{atp}_{G}(v, v') \\ X_{u,v}^{2} - X_{u,v} = 0 & \quad \text{for all } u \text{ and } v \end{array}$$

Subject to:

Each $X_{u,v}$ is a self-adjoint linear operator of a Hilbert space.

Quantum relaxation of isomorphism

$$G \stackrel{\text{iso}}{\equiv} H \Longrightarrow G \stackrel{\text{qiso}}{\equiv} H \Longrightarrow G \stackrel{\text{C}^3}{\equiv} H$$
$$\stackrel{?}{\Leftarrow} \qquad \stackrel{[\mathsf{MRV17}]}{\Leftarrow} \qquad \stackrel{\mathsf{FRV17}}{\Leftarrow}$$

Quantum relaxation of isomorphism

Fact [AMRŠSV17]:

$$\mathsf{CFI}_k^+ \stackrel{\mathsf{qiso}}{\equiv} \mathsf{CFI}_k^- \quad \mathsf{but} \quad \mathsf{CFI}_k^+ \stackrel{\mathsf{lso}}{\neq} \mathsf{CFI}_k^-.$$

Quantum relaxation of isomorphism

$$G \stackrel{\text{iso}}{\equiv} H \Longrightarrow G \stackrel{\text{qiso}}{\equiv} H \Longrightarrow G \stackrel{\text{C}^3}{\equiv} H$$
$$\stackrel{?}{\Leftarrow} \qquad \stackrel{[\mathsf{MRV17}]}{\Leftarrow}$$

Fact [AMRŠSV17]:

$$\mathsf{CFI}_k^+ \stackrel{\mathsf{qiso}}{\equiv} \mathsf{CFI}_k^-$$
 but $\mathsf{CFI}_k^+ \stackrel{\mathsf{iso}}{\neq} \mathsf{CFI}_k^-$.

Proof.

- View CFI as TSEITIN in disguise (by [ABD07])
- Build the matrix solution from the one for Mermin's square.

A fundamental-looking problem

A fundamental-looking problem

Find a logic \mathcal{L} for which $G \stackrel{\text{qiso}}{\equiv} H$ iff $G \stackrel{\mathcal{L}}{\equiv} H$

Part IV

QUANTUM SATISFIABILITY

Boolean domain: $\{\pm 1\}$ with +1 = false and and -1 = true;

Boolean domain: $\{\pm 1\}$ with +1 = false and and -1 = true; Constraint language: a set A of relations $R \subseteq \{\pm 1\}^r$

Boolean domain: $\{\pm 1\}$ with +1 = false and and -1 = true; Constraint language: a set A of relations $R \subseteq \{\pm 1\}^r$

 $\mathsf{relations} \leftrightarrow \mathsf{predicates} \leftrightarrow \mathsf{polynomial} \ \mathsf{equations}$

Boolean domain: $\{\pm 1\}$ with +1 = false and and -1 = true; Constraint language: a set A of relations $R \subseteq \{\pm 1\}^r$

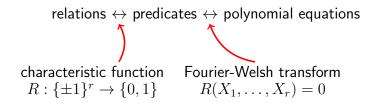
```
relations \leftrightarrow predicates \leftrightarrow polynomial equations

)

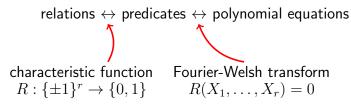
characteristic function

R: \{\pm 1\}^r \rightarrow \{0, 1\}
```

Boolean domain: $\{\pm 1\}$ with +1 = false and and -1 = true; Constraint language: a set A of relations $R \subseteq \{\pm 1\}^r$



Boolean domain: $\{\pm 1\}$ with +1 = false and and -1 = true; Constraint language: a set A of relations $R \subseteq \{\pm 1\}^r$

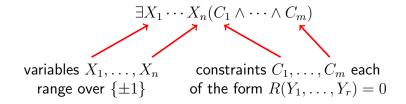


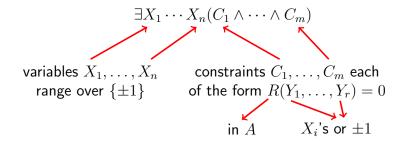
Examples:

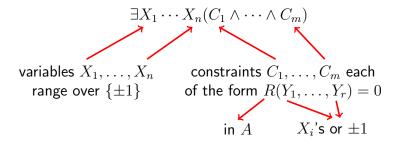
- OR disjunctions of literals
- LIN linear equations over \mathbb{Z}_2
- 1-IN-3 triples with one -1 and two +1 components
- NAE triples with not-all-equal components

 $\exists X_1 \cdots X_n (C_1 \wedge \cdots \wedge C_m)$

 $\exists X_1 \cdots X_n (C_1 \wedge \cdots \wedge C_m)$ variables X_1, \ldots, X_n range over $\{\pm 1\}$







Examples:

3-SAT HORN-SAT LIN-SAT

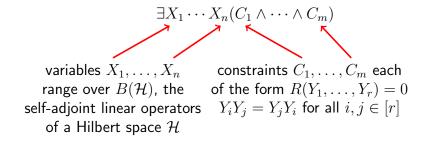
1-IN-3-SAT NAE-SAT

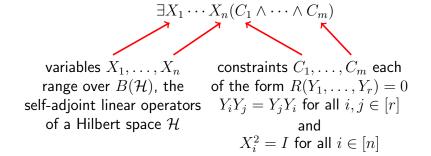
. . .

[Schaefer 1978]

 $\exists X_1 \cdots X_n (C_1 \wedge \cdots \wedge C_m)$

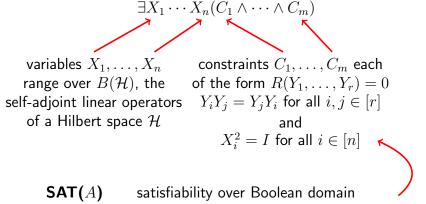
 $\exists X_1 \cdots X_n (C_1 \wedge \cdots \wedge C_m)$ variables X_1, \ldots, X_n range over $B(\mathcal{H})$, the self-adjoint linear operators of a Hilbert space \mathcal{H}





 $SAT^{*}(A)$

SAT**(*A*)



satisfiability over some finite-dimensional ${\cal H}$ satisfiability over some arbitrary ${\cal H}$

Gap Instances



Gap Instances

> SAT-vs-SAT* SAT-vs-SAT** SAT*-vs-SAT**

gap of the first kind gap of the second kind gap of the third kind

Gap Instances

SAT-vs-SAT*gap of the first kindSAT-vs-SAT**gap of the second kindSAT*-vs-SAT**gap of the third kind

Gaps of first kind for LIN exist[Mermin 1990]Gaps of third kind for LIN exist[Slofstra 2017]

Gaps of first kind for 2-SAT or HORN do not exist [Ji 2014]

Classification

Theorem:

For every Boolean constraint language A,

- 1. either gaps of every kind for A exist,
- 2. or gaps of no kind for A exist.

Classification

```
Theorem:
```

For every Boolean constraint language A,1. either gaps of every kind for A exist,2. or gaps of no kind for A exist.

```
Moreover:
```

```
gaps for A do not exist

iff

A is of one of the following types: 
\begin{bmatrix}
0-valid \\
1-valid \\
Horn \\
dual Horn \\
bijunctive
\end{bmatrix}
```

Classification

```
Theorem:
```

For every Boolean constraint language A,1. either gaps of every kind for A exist,2. or gaps of no kind for A exist.

```
Moreover:
```

```
gaps for A do not exist

iff

A is of one of the following types:

iff

LIN is not pp-definable from A

D-valid

1-valid

Horn

dual Horn

bijunctive
```

Comparison with Schaefer's dichotomy for tractability

	Tractable	Gaps exist
0-valid/1-valid	YES	NO
Horn/dual-Horn	YES	NO
bijunctive	YES	NO
linear	YES	YES
anythingelse	NO	YES

Primitive Positive Definitions

Primitive Positive Definitions

Example:

 $\mathsf{NAE}(X,Y,Z) \ \equiv \ (X \lor Y \lor Z) \land (\overline{X} \lor \overline{Y} \lor \overline{Z})$

Proof technique

Proof technique

Ingredient 1: gap preserving reductions

Lemma: If A is pp-definable from B, then gaps for B imply gaps for A.

Proof technique

Ingredient 1: gap preserving reductions

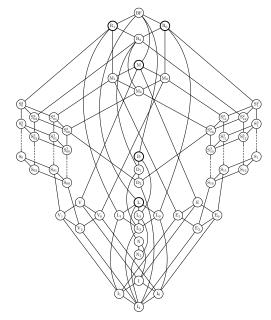
Lemma: If A is pp-definable from B, then gaps for B imply gaps for A.

Ingredient 2: Post's Lattice of Boolean co-clones

Theorem [Post 1941]:

There are countably many Boolean constraint languages up to pp-definability, **and we know them**.

Post's Lattice



More on Primitive Positive Definability

$$R(Y_1,\ldots,Y_r) \equiv \exists Z_1 \cdots \exists Z_s (C_1 \wedge \cdots \wedge C_t)$$

pp-def Z_i 's range over $B(\mathbb{C})$ (i.e., over $\{\pm 1\}$ by $Z_i^2 = I$) **pp*-def** Z_i 's range over $B(\mathcal{H})$, for some finite-dim \mathcal{H} **pp**-def** Z_i 's range over $B(\mathcal{H})$, for some arbitrary \mathcal{H}

A Conservativity Theorem

Theorem:

For every two constraint languages A and B, the following statements are equivalent.

- 1. every relation in A is pp-definable from B
- 2. every relation in A is pp*-definable from B

A Conservativity Theorem

Theorem:

For every two constraint languages A and B, the following statements are equivalent.

- 1. every relation in A is pp-definable from B
- 2. every relation in A is pp*-definable from B

Corollary: OR is not pp*-definable from LIN

Closure Operations via Operators

R is invariant under $F: B(\mathcal{H}_1) \times \cdots \times B(\mathcal{H}_s) \to B(\mathcal{H})$ if

$$R(\begin{array}{ccc}A_{1,1}&,\cdots,&A_{1,r}\end{array}) = 0 \text{ and commute}\\ \vdots&\ddots&\vdots\\ R(\begin{array}{ccc}A_{s,1}&,\cdots,&A_{s,r}\end{array}) = 0 \text{ and commute}\\ \hline R(F(\mathbf{A}_{*,1}),\cdots,F(\mathbf{A}_{*,r})) = 0 \text{ and commute}\\ \hline \end{array}$$

Closure Operations via Operators

R is invariant under $F: B(\mathcal{H}_1) \times \cdots \times B(\mathcal{H}_s) \to B(\mathcal{H})$ if

$$\begin{split} R(\begin{array}{cc} A_{1,1} &, \cdots, & A_{1,r} \end{array}) &= 0 \text{ and commute} \\ \vdots & \ddots & \vdots \\ R(\begin{array}{cc} A_{s,1} &, \cdots, & A_{s,r} \end{array}) &= 0 \text{ and commute} \\ \hline R(F(\mathbf{A}_{*,1}), \cdots, F(\mathbf{A}_{*,r})) &= 0 \text{ and commute} \end{split}$$

Lemma: If A is invariant under $F : \{\pm 1\}^s \to \{\pm 1\}$, then every $R \subseteq \{\pm 1\}^r$ pp*-definable from A is invariant under $F^*(X_1, \dots, X_s) := \sum_{S \subseteq [s]} \widehat{F}(S) \bigotimes_{i=1}^s X_i^{S(i)}$

Proof by Example

Operator composition doesn't work:

$$\begin{array}{l} X_{11} X_{12} X_{13} = +1 \\ X_{21} X_{22} X_{23} = +1 \\ X_{31} X_{32} X_{33} = +1 \\ \parallel \quad \parallel \quad \parallel \quad \parallel \\ + \quad + \quad \perp \quad \neq +1 \ (!$$

Proof by Example

Operator composition doesn't work:

$$\begin{array}{l} X_{11} X_{12} X_{13} = +1 \\ X_{21} X_{22} X_{23} = +1 \\ X_{31} X_{32} X_{33} = +1 \\ \parallel \quad \parallel \quad \parallel \quad \parallel \\ + \quad + \quad \perp \quad \neq +1 \end{array}$$

Operator tensoring works:

$$\begin{aligned} &(X_{11} \otimes X_{21} \otimes X_{31})(X_{12} \otimes X_{22} \otimes X_{32})(X_{13} \otimes X_{23} \otimes X_{33}) = \\ &(X_{11}X_{12}X_{13}) \otimes (X_{21}X_{22}X_{23}) \otimes (X_{31}X_{32}X_{33}) = \\ &(+I) \otimes (+I) \otimes (+I) = \\ &+I \end{aligned}$$

Future Work

Question 1:

Are SAT*(LIN) and QISO* decidable?

Question 2:

Is pp**-definability = pp-definability also?

Question 3:

Find a logic
$$\mathcal{L}$$
 for which
 $G \stackrel{qiso}{\equiv} H$ iff $G \stackrel{\mathcal{L}}{\equiv} H$

Acknowledgments

Simons Institute, ERC-2014-CoG 648276 (AUTAR) EU.