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Talk plan

1. What I worked on before the program

2. What I learned and worked on at the program

3. What I worked on after the program
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Homomorphism and Isomorphism Problems

G
hom−→ H

G
iso≡ H
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Part I

LOGICO-COMBINATORIAL

RELAXATIONS
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Logico-Combinatorial Relaxations

G
hom−→ H ⇐⇒ G

E+−→ H =⇒ G
Ek
+−→ H

G
iso≡ H ⇐⇒ G

C≡ H =⇒ G
Ck

≡ H

E+ : existential-positive first-order logic, i.e., atoms,∧, ∃.
Ek
+ : k-variable fragment of E+

C : counting logic, i.e., atoms,¬,∧,∃≥1,∃≥2, . . .
Ck : k-variable fragment of C.
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Ehrenfeucht-Fräıssé-type k-pebble games

G H

Ek
+: existential-positive k-pebble game [KV95]

Ck: bijective k-pebble game [H96]
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Counterexamples to reverse implication for Ek+

An easy counterexample:

Kk+1

hom
6−→ Kk

Kk+1

Ek
+−→ Kk

A stronger counterexample from [A05]:

TSEITINk,odd

hom
6−→ 3-XOR

TSEITINk,odd
Ek
+−→ 3-XOR

where

3-XOR = template for parity equations, i.e., ({±1}, xyz = ±1)
TSEITINk,odd = certain system of parity eqns on the k2-wall
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The m-wall graph
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Tseitin system of parity equations

Construction of TSEITIN(G, σ):

G is an undirected graph.
σ : V (G)→ {±1} is a ±1 labelling of the nodes of G.

There is a variable at every edge.
There is an equation at every node:

X Y

Z

u =⇒ XY Z = σ(u)
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Counterexamples to reverse implication for Ck

A counterexample from [CFI95]:

CFI+k
iso
6≡ CFI−k

CFI+k
Ck

≡ CFI−k

A reinterpretation of CFI from [ABD07]:

TSEITIN×2k,even

iso
6≡ TSEITIN×2k,odd

TSEITIN×2k,even

Ck

≡ TSEITIN×2k,odd
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Part II

LINEAR AND SEMIDEFINITE

PROGRAMMING RELAXATIONS
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Part II

OR, BY DUALITY,

SHERALI-ADAMS AND

LASSERRE/SUMS-OF-SQUARES

REFUTATIONS
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Hom and Iso as systems of polynomial equations

Variables:

Xu,v : a variable for each u ∈ V (G) and v ∈ V (H)

Equations:∑
vXu,v − 1 = 0 for all u

∑
uXu,v − 1 = 0 for all v

Xu,vXu′,v′ = 0 for all (u, u′) ∈ E(G) and (v, v′) 6∈ E(H)

Xu,vXu′,v′ = 0 for all (u, u′) 6∈ E(G) and (v, v′) ∈ E(H)

Xu,vXu′,v′ = 0 for all u = u′ and v 6= v′

Xu,vXu′,v′ = 0 for all u 6= u′ and v = v′

X2
u,v −Xu,v = 0 for all u and v

13



Hom and Iso as systems of polynomial equations

Variables:

Xu,v : a variable for each u ∈ V (G) and v ∈ V (H)

Equations:∑
vXu,v − 1 = 0 for all u∑
uXu,v − 1 = 0 for all v

Xu,vXu′,v′ = 0 for all (u, u′) ∈ E(G) and (v, v′) 6∈ E(H)
Xu,vXu′,v′ = 0 for all (u, u′) 6∈ E(G) and (v, v′) ∈ E(H)
Xu,vXu′,v′ = 0 for all u = u′ and v 6= v′

Xu,vXu′,v′ = 0 for all u 6= u′ and v = v′

X2
u,v −Xu,v = 0 for all u and v

13



Nullstellensatz, Sherali-Adams, and Lasserre/SOS

Systems of polynomial equations over {0, 1}n:

X2
1 −X1 = 0, . . . , X2

n −Xn = 0
P1(X) = 0, . . ., Pm(X) = 0

Nullstellensatz refutation of degree k:

t∑
j=1

PijQj = −1

where Q1, . . . , Qt are arbitrary polynomials of total degree ≤ k.
and

Q0 =
∑
i

c2i
∏
i∈I

Xi

∏
i∈J

(1−Xi),

all of total degree ≤ k.
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Nullstellensatz, Sherali-Adams, and Lasserre/SOS

Systems of polynomial equations over {0, 1}n:

X2
1 −X1 = 0, . . . , X2

n −Xn = 0
P1(X) = 0, . . ., Pm(X) = 0

Lasserre/SOS refutation of degree k:

t∑
j=1

PijQj +Q0 = −1

where Q1, . . . , Qt are arbitrary polynomials
and

Q0 =
∑
i

Q2
0,i,

all of total degree ≤ k.
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Proof complexity relaxations

G
hom−→ H =⇒ G

SOSk−→ H =⇒ G
SAk

−→ H =⇒ G
NSk−→ H

G
iso≡ H =⇒ G

SOSk≡ H =⇒ G
SAk

≡ H =⇒ G
NSk≡ H
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Counterexamples to reverse implications?

Proof complexity of graph iso (an incomplete survey)

• CFI is hard for SAk and hence NSk [AM11]
• CFI is hard also for SOSk [OWWZ13,SSC14].
• CFI is hard for PCk [BG15].
• CFI is hard for resolution [T13] (follows also from [AM11]).
• ...

• CFI is hard for any proof system whose “proof existence
problem” is expressible in Ck (implicitly stated in [GP17], and more
explicitly stated in [GP17b]).

− NSk by [GP17],
− mon-PCk by [GP17b],
− width-k and Horn resolution by [GP17b] (but see also [A02]),
− SAk by [ADH15],
− ....
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Implication diagram

G
SOSk≡ H =⇒ G

SAk

≡ H =⇒ G
NSk≡ H

G
Ck

≡ H

⇐
⇒

[AM11,M11,GO12]

G
mon-PCk

≡ H

⇐⇒ [BG15]

6⇐=
[GP17]

⇐
=[B17]

G
PCk

≡ H

=⇒

?⇐=

19
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Part III

QUANTUM RELAXATIONS

21



An Important Example: Mermin-Peres Magic Square

Nine variables, six equations:

X11X12X13 = +1
X21X22X23 = +1
X31X32X33 = +1
X11X21X31 = +1
X12X22X32 = +1
X13X23X33 = −1
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An Important Example: Mermin-Peres Magic Square

Nine variables, six equations:

X11X12X13 = +1
X21X22X23 = +1
X31X32X33 = +1

=
+
1

=
+
1

=
−
1
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Proof of unsatisfiability (over R)

X11X12X13X21X22X23X31X32X33 = +1
X11X21X31X12X22X32X13X23X33 = −1

Remark:

Relies heavily on the fact that product commutes.
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Proof of unsatisfiability (over R)

X11X12X13X21X22X23X31X32X33 = +1
X11X21X31X12X22X32X13X23X33 = −1

Remark:

Relies heavily on the fact that product commutes.
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Indeed ...

There is a solution in 4x4 complex matrices

I ⊗ Z Z ⊗ I Z ⊗ Z = +I
X ⊗ I I ⊗X X ⊗X = +I
X ⊗ Z Z ⊗X Y ⊗ Y = +I

= = =

+I +I −I

where X,Y, Z are the Pauli matrices:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
.

25



Guess what ...

MERMIN SQUARE = TSEITIN(K3,3, odd)

and

K3,3 = twisted 6-wall

26



Where does this come from? Quantum entanglement

[Einstein-Podolsky-Rosen 1935], [Bell 1964], [Mermin 1990]

p̂ij,ab := “empirical probability that ij lights as ab”

I Not explained by classical probability: p̂ij,ab 6= µ(ab|ij)
I Explained by quantum entanglement: p̂ij,ab = 〈ψ|Pij,ab|ψ〉.
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Quantum homomorphisms and isomorphisms

Quantum homomorphisms defined in [MR12]
Quantum isomorphisms defined in [AMRŠSV17]

Both defined in terms of non-local games

Here we define them algebraically
(equivalences are proved in the papers)

28



Quantum isomorphism

Variables:

Xu,v : a variable for each u ∈ V (G) and v ∈ V (H)

Equations:

∑
vXu,v − 1 = 0 for all u∑
uXu,v − 1 = 0 for all v

Xu,vXu′,v′ = 0 for all u, u′, v, v′ s.t. atpG(u, u
′) 6= atpG(v, v

′)
X2

u,v −Xu,v = 0 for all u and v

Subject to:

Each Xu,v is a self-adjoint linear operator of a Hilbert space.

29



Quantum relaxation of isomorphism

G
iso≡ H =⇒ G

qiso
≡ H =⇒ G

C3

≡ H
[MRV17]?

⇐= 6⇐=

Fact [AMRŠSV17]:

CFI+k
qiso
≡ CFI−k but CFI+k

iso
6≡ CFI−k .

Proof.

I View CFI as TSEITIN in disguise (by [ABD07])

I Build the matrix solution from the one for Mermin’s square.

30
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CFI+k
qiso
≡ CFI−k but CFI+k

iso
6≡ CFI−k .

Proof.

I View CFI as TSEITIN in disguise (by [ABD07])

I Build the matrix solution from the one for Mermin’s square.

30



A fundamental-looking problem

Find a logic L for which

G
qiso
≡ H iff G

L≡ H
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A fundamental-looking problem
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G
qiso
≡ H iff G
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Part IV

QUANTUM SATISFIABILITY
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Schaefer’s framework for generalized satisfiability

Boolean domain: {±1} with +1 = false and and −1 = true;
Constraint language: a set A of relations R ⊆ {±1}r

relations ↔ predicates ↔ polynomial equations

characteristic function
R : {±1}r → {0, 1}

Fourier-Welsh transform
R(X1, . . . , Xr) = 0

Examples:

OR disjunctions of literals
LIN linear equations over Z2

1-IN-3 triples with one −1 and two +1 components
NAE triples with not-all-equal components
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Generalized Satisfiability Problems: SAT(A)

∃X1 · · ·Xn(C1 ∧ · · · ∧ Cm)

variables X1, . . . , Xn

range over {±1}
constraints C1, . . . , Cm each

of the form R(Y1, . . . , Yr) = 0

in A Xi’s or ±1

Examples:

3-SAT 1-IN-3-SAT
HORN-SAT NAE-SAT
LIN-SAT ...

[Schaefer 1978]
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... via Operator Assignments [CM14]

∃X1 · · ·Xn(C1 ∧ · · · ∧ Cm)

variables X1, . . . , Xn

range over B(H), the
self-adjoint linear operators

of a Hilbert space H

constraints C1, . . . , Cm each
of the form R(Y1, . . . , Yr) = 0
YiYj = YjYi for all i, j ∈ [r]

and
X2

i = I for all i ∈ [n]

SAT(A) satisfiability over Boolean domain
SAT∗(A) satisfiability over some finite-dimensional H
SAT∗∗(A) satisfiability over some arbitrary H
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Gap Instances

X11X12X13 = +1
X21X22X23 = +1
X31X32X33 = −1

=
+
1

=
+
1

=
+
1

Mermin-Peres Magic Square

Unsatisfiable SAT-instance of LIN
Satisfiable SAT∗-instance of LIN

a SAT-vs-SAT∗ gap for LIN

gap of the first kind
gap of the second kind
gap of the third kind

SAT-vs-SAT∗

SAT-vs-SAT∗∗

SAT∗-vs-SAT∗∗

Gaps of first kind for LIN exist
Gaps of third kind for LIN exist

[Mermin 1990]

[Slofstra 2017]

Gaps of first kind for 2-SAT or HORN do not exist [Ji 2014]
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Classification

Theorem:
For every Boolean constraint language A,

1. either gaps of every kind for A exist,
2. or gaps of no kind for A exist.

Moreover:

gaps for A do not exist

iff
A is of one of the following types:

0-valid
1-valid
Horn
dual Horn
bijunctive

iff
LIN is not pp-definable from A
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Comparison with Schaefer’s dichotomy for tractability

Tractable Gaps exist

0-valid/1-valid YES NO
Horn/dual-Horn YES NO
bijunctive YES NO
linear YES YES
anythingelse NO YES

38



Primitive Positive Definitions

R(Y1, . . . , Yr) ≡ ∃Z1 · · · ∃Zs(C1 ∧ · · · ∧ Ct)

auxiliary

variables
constraints on

the Y ’s and Z’s

Example:

NAE(X,Y, Z) ≡ (X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ Z)
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Proof technique

Ingredient 1: gap preserving reductions

Lemma:
If A is pp-definable from B,
then gaps for B imply gaps for A.

Ingredient 2: Post’s Lattice of Boolean co-clones

Theorem [Post 1941]:
There are countably many Boolean constraint languages
up to pp-definability, and we know them.
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Post’s Lattice

R1 R0

BF

R2

M

M1 M0

M2

S20

S30

S0

S202

S302

S02

S201

S301

S01

S200

S300

S00

S21

S31

S1

S212

S312

S12

S211

S311

S11

S210

S310

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N
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More on Primitive Positive Definability

R(Y1, . . . , Yr) ≡ ∃Z1 · · · ∃Zs(C1 ∧ · · · ∧ Ct)

pp-def Zi’s range over B(C) (i.e., over {±1} by Z2
i = I)

pp∗-def Zi’s range over B(H), for some finite-dim H
pp∗∗-def Zi’s range over B(H), for some arbitrary H
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A Conservativity Theorem

Theorem:
For every two constraint languages A and B,
the following statements are equivalent.

1. every relation in A is pp-definable from B
2. every relation in A is pp∗-definable from B

Corollary: OR is not pp∗-definable from LIN
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Closure Operations via Operators

R is invariant under F : B(H1)× · · · ×B(Hs)→ B(H) if

R( A1,1 , · · · , A1,r ) = 0 and commute
...

. . .
...

R( As,1 , · · · , As,r ) = 0 and commute

R(F (A∗,1), · · · , F (A∗,r)) = 0 and commute

Lemma: If A is invariant under F : {±1}s → {±1}, then
every R ⊆ {±1}r pp∗-definable from A is invariant under

F ∗(X1, . . . , Xs) :=
∑
S⊆[s]

F̂ (S)
s⊗

i=1

X
S(i)
i
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Proof by Example
Operator composition doesn’t work:

X11X12X13 = +1
X21X22X23 = +1
X31X32X33 = +1

=
+
1

=
+
1

=
−
1 6= +1 (!)

Operator tensoring works:

(X11 ⊗X21 ⊗X31)(X12 ⊗X22 ⊗X32)(X13 ⊗X23 ⊗X33) =

(X11X12X13)⊗ (X21X22X23)⊗ (X31X32X33) =

(+I)⊗ (+I)⊗ (+I) =

+I
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Future Work

Question 1:

Are SAT∗(LIN) and QISO∗ decidable?

Question 2:

Is pp∗∗-definability = pp-definability also?

Question 3:

Find a logic L for which

G
qiso
≡ H iff G

L≡ H
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