Definability of Summation Problems for Abelian Groups and Semigroups.

Anuj Dawar

University of Cambridge

joint work with Farid Abu-Zaid, Erich Grädel and Wied Pakusa LICS 2017

> Logical Structures in Computation Reunion Simons Institute, 12 December 2017

Logics for Polynomial Time

Long-standing open question in *descriptive complexity theory*:

Is there a logic in which we can express exactly the polynomial-time properties of finite relational structures?

Some logics studied in this context:

- FP—fixed-point logic;
- FPC—fixed-point logic with counting;
- FPrk—fixed-point logic with *rank* operators;
- CPT—choiceless polynomial-time;
- CPT⁻—choiceless polynomial-time *without counting*.

Map

A map of the logics:

All inclusions shown except the rightmost two are known to be proper.

Fixed-Point Logic

FP is an extension of first-order logic with *inductive definitions* FP captures P on *ordered* finite structures. (Immerman; Vardi)

On general finite structures, the expressive power of FP is weak. Indeed, it obeys a 0–1 law. (Blass-Gurevich-Kozen)

A proof by Kolaitis-Vardi based on *pebble games* and *extension axioms* extends this to $L^{\omega}_{\infty\omega}$ —infinitary logic with finitely many variables.

In particular, it follows that FP cannot express *counting* properties.

Asymptotic Probabilities

Let *P* be a class (or *property*) of τ -structures.

Let S_n consist of τ -structures on the universe $[n] = \{1, \ldots, n\}$.

$$\mu_n(P) = \frac{|P \cap \mathcal{S}_n|}{|\mathcal{S}_n|}$$

is the proportion of n element structures with property P.

 $\mu(P) = \lim_{n \to \infty} \mu_n(P)$

if defined, is the *asymptotic probability* of *P*.

If P is definable by a sentence of FP, then $\mu(P)$ is defined and in $\{0,1\}$.

Fixed-Point Logic with Counting

FPC is an extension of FP with a mechanism for *counting*

- variables ranging over *numbers* in addition to element variables;
- $\#x\varphi$ is a *term* denoting the *number* of elements that satisfy φ ;
- quantification over number variables is *bounded*: $(\exists \mu < t) \varphi$.

Highly expressive: captures P over all proper minor-closed classes.

(Grohe).

There are classes of graphs in ${\rm P}$ that cannot be defined in FPC. (Cai-Fürer-Immerman)

Extensions of FPC

Key examples of properties in P that we know are *not* definable in FPC include solving systems of linear equations over

- finite fields;
- finite rings;
- finite Abelian groups.

(Atserias-Bulatov-D.)

Extensions of FPC that have been studied include

- FPrk-fixed point logic with operators for the *rank of a matrix* over a *finite field*. (D.-Grohe-Holm-Laubner; Grädel-Pakusa).
- CPT-choiceless polynomial-time with counting. The polynomial-time restriction of **Blass-Gurevich-Shelah** *abstract state machines*.

For both of these it remains open to establish a separation from P.

Choiceless Polynomial Time

CPT can be understood as an extension of FPC with *higher-order objects*.

A CPT formula φ can be translated to an FPC formula φ^* so that the evaluation of φ on a finite structure A is equivalent to the evaluation of φ^* on a finite extension of A with higher-order objects which is:

- *polynomial* in the size of A;
- closed under *automorphisms* of \mathbb{A} .

CPT⁻ is a similar extension of FP.

NB: CPT⁻ obeys a 0-1 law

(Shelah).

Challenge: Separating CPT from PTime

Establishing a separation of CPT from P is a major research goal.

In 2002, Blass, Gurevich, Shelah listed *six* open problems, of which the first four are:

- 1. Can *CFI* graphs be distinguished in CPT?
- 2. Can *multipedes* be ordered in CPT?
- 3. Can *perfect matching* on graphs be decided in CPT?
- 4. Can the *determinant* of a matrix over a finite field be defined in CPT?

CFI graphs

The construction of **Cai**, **Fürer and Immerman** gives for each *ordered* graph *G*, a pair of graphs \mathcal{G}_0 and \mathcal{G}_1 which are *not isomorphic* but, for sufficiently richly connected *G*, *indistinguishable* in FPC

1. Can a CPT program distinguish between the (unpadded) Cai, Fürer, Immerman graphs \mathcal{G}_0 and \mathcal{G}_1 ?

They were shown to be distinguished in CPT⁻ in (D., Richerby, Rossman 2008).

Multipedes

Multipedes were defined by **Gurevich and Shelah** to give a class of finite structures that was *first-order definable*, *rigid* but in which no order is definable in FPC.

2. Can isomorphism of multipedes with shoes be decided by a CPT program?

It is a consequence of results of (Abu Zaid, Grädel, Grohe, Pakusa 2014) that it can.

Matching

A *perfect matching* in a graph G is a subset M of its edges such that every vertex of G is incident on *exactly one* vertex of M.

Blass, Gurevich and Shelah showed that deciding the existence of perfect matchings for *bipartite* graphs is in FPC but not in CPT⁻.

3. Can a CPT program decide whether a given graph (not necessarily bipartite) admits a complete matching?

It is shown in (Anderson, D., Holm 2015) that the existence of perfect matchings in general graphs is in FPC.

Determinants

4. Can a CPT program compute, up to sign, the determinant of an $I \times J$ matrix over a finite field (where |I| = |J|)?

Rossman showed that determinants could be computed in CPT by implementing a version of Csanky's algorithm.

Holm improved this to FPC.

Abelian Subset Sum

Blass, Gurevich 2005 introduce a new challenge problem for CPT.

Given a commutative semigroup S in the form of the multiplication table and given $X \subseteq S$ and an element $y \in S$, is y the sum of all elements of X?

This is attributed to **Rossman** with the quote:

"This is the most basic problem I can think of that appears difficult for CPT but is obviously polynomial time. I don't even know the answer when S is an abelian group, or even a direct product of cyclic groups \mathbb{Z}_2 "

Results

ASS: Given a *commutative semigroup* S in the form of the multiplication table and given $X \subseteq S$ and an element $y \in S$, is y the sum of all elements of X?

- 1. ASS on finite commutative semigroups is in FPC.
- ASS, on *abelian groups* or even direct products of cyclic groups Z₂ is not in FP or CPT[−].
- 3. A *first-order reduction* from ASS on *abelian groups* to solvability of linear equation systems over *finite rings*.

ASS for semigroups in FPC

• Abelian semigroup $(S, +), X \subseteq S$

$$\Sigma^{k}(g) = \left\{ (x_1, \ldots, x_k) \in X^k : x_i \neq x_j (i \neq j), \sum_i x_i = g \right\}$$

- $\Sigma^k(g) \neq \emptyset \iff g$ is a k-sum of elements from X
- $\sum X = g \iff \Sigma^n(g) \neq \emptyset$ (where n = |X|)

Idea: Inductively $(1 \le k \le n)$ define the sets $\Sigma^k(g)$; *however:*

- Constructing the sets $\Sigma^{k}(g)$ explicitly *not possible*; and
- Maintaining " $\Sigma^k(g) \neq \emptyset$ " not sufficient

Solution: Use counting mechanism of FPC to maintain $|\Sigma^k(g)|$.

ASS for semigroups not in CPT⁻

CPT⁻ cannot express *modular counting* (Blass, Gurevich, Shelah' 99)

Given a set *T* and some $n \ge 2$.

- Fix some $\star \notin T$
- Define the *commutative semigroup* S[T] over $T \cup \{\star\}$, by setting

 $x + y = \star$

- Consider $G = S[T] \times \mathbb{Z}_n$ with subset $X = T \times \{1\}$
- Then $\sum X = (\star, i) \iff |T| \equiv i \mod n$

Question: What happens if we restrict to Abelian groups?

Not Even for Groups

Consider expansions of *n*-fold product of \mathbb{Z}_p by set X (for some fixed prime p) $\sum_{n=1}^{\infty} p(x_n^{(n)} + x_n^{(n)}) = 0 \in X$

 $S(n) = \{(\mathbb{Z}_p^n, +, X) : 0 \in X\}$

 $\mu_n(\psi)$ — the probability that a randomly chosen $G \in S(n)$ satisfies ψ

Theorem

For every sentence ψ of FP: $\lim_{n\to\infty} \mu_n(\psi) \in \{0,1\}$

This can be shown by defining suitable *extension axioms* for this class of structures.

ASS is not FP-definable, as *modular counting* reduces to it.

Remark: This can be generalized to prove *undefinability* in CPT⁻ using Shelah's techniques for the 0-1 law

New Challenge Problems

In ASS, the semigroup is given *explicitly* by its multiplication table.

Such problems can be more challenging if the algebraic structure is given *succinctly*.

An interesting such problem (though not a subset sum problem) is given by *permutation group membership*.

Permutation Group Membership

Given a collection $\rho_1, \ldots, \rho_m \in \text{Sym}(n)$ of permutations of the set [n]. (say, as a structure with universe $[n] \uplus [m]$, and a ternary relation $\rho_i(j) = k$ for $i \in [m]$ and $j, k \in [n]$)

and a permutation $\sigma \in \text{Sym}(n)$.

Is σ in $\langle \rho_1, \ldots, \rho_m \rangle$?

This problem is in P (by the *Schreier-Sims* algorithm) and known to be *not* in FPC.

Is it in CPT?

Either answer would have interesting consequences.