Definability of Summation Problems for Abelian Groups and Semigroups.

Anuj Dawar
University of Cambridge
joint work with Farid Abu-Zaid, Erich Grädel and Wied Pakusa
LICS 2017
Logical Structures in Computation Reunion
Simons Institute, 12 December 2017

Logics for Polynomial Time

Long-standing open question in descriptive complexity theory: Is there a logic in which we can express exactly the polynomial-time properties of finite relational structures?

Some logics studied in this context:

- FP—fixed-point logic;
- FPC-fixed-point logic with counting;
- FPrk—fixed-point logic with rank operators;
- CPT—choiceless polynomial-time;
- CPT^{-}—choiceless polynomial-time without counting.

Map

A map of the logics:

All inclusions shown except the rightmost two are known to be proper.

Fixed-Point Logic

FP is an extension of first-order logic with inductive definitions
FP captures P on ordered finite structures.
(Immerman; Vardi)
On general finite structures, the expressive power of FP is weak. Indeed, it obeys a 0-1 law.
(Blass-Gurevich-Kozen)
A proof by Kolaitis-Vardi based on pebble games and extension axioms extends this to $L_{\infty \omega}^{\omega}$-infinitary logic with finitely many variables.

In particular, it follows that FP cannot express counting properties.

Asymptotic Probabilities

Let P be a class (or property) of τ-structures.
Let \mathcal{S}_{n} consist of τ-structures on the universe $[n]=\{1, \ldots, n\}$.

$$
\mu_{n}(P)=\frac{\left|P \cap \mathcal{S}_{n}\right|}{\left|\mathcal{S}_{n}\right|}
$$

is the proportion of n element structures with property P.

$$
\mu(P)=\lim _{n \rightarrow \infty} \mu_{n}(P)
$$

if defined, is the asymptotic probability of P.
If P is definable by a sentence of FP, then $\mu(P)$ is defined and in $\{0,1\}$.

Fixed-Point Logic with Counting

FPC is an extension of FP with a mechanism for counting

- variables ranging over numbers in addition to element variables;
- $\# x \varphi$ is a term denoting the number of elements that satisfy φ;
- quantification over number variables is bounded: $(\exists \mu<t) \varphi$.

Highly expressive: captures P over all proper minor-closed classes.
(Grohe).
There are classes of graphs in P that cannot be defined in FPC.
(Cai-Fürer-Immerman)

Extensions of FPC

Key examples of properties in P that we know are not definable in FPC include solving systems of linear equations over

- finite fields;
- finite rings;
- finite Abelian groups.
(Atserias-Bulatov-D.)

Extensions of FPC that have been studied include

- FPrk-fixed point logic with operators for the rank of a matrix over a finite field. (D.-Grohe-Holm-Laubner; Grädel-Pakusa).
- CPT-choiceless polynomial-time with counting. The polynomial-time restriction of Blass-Gurevich-Shelah abstract state machines.

For both of these it remains open to establish a separation from P .

Choiceless Polynomial Time

CPT can be understood as an extension of FPC with higher-order objects.
A CPT formula φ can be translated to an FPC formula φ^{\star} so that the evaluation of φ on a finite structure \mathbb{A} is equivalent to the evaluation of φ^{\star} on a finite extension of \mathbb{A} with higher-order objects which is:

- polynomial in the size of \mathbb{A};
- closed under automorphisms of \mathbb{A}.
CPT^{-}is a similar extension of FP .
NB: CPT^{-}obeys a 0-1 law

Challenge: Separating CPT from PTime

Establishing a separation of CPT from P is a major research goal.
In 2002, Blass, Gurevich, Shelah listed six open problems, of which the first four are:

1. Can CFI graphs be distinguished in CPT?
2. Can multipedes be ordered in CPT?
3. Can perfect matching on graphs be decided in CPT?
4. Can the determinant of a matrix over a finite field be defined in CPT?

CFI graphs

The construction of Cai, Fürer and Immerman gives for each ordered graph G, a pair of graphs \mathcal{G}_{0} and \mathcal{G}_{1} which are not isomorphic but, for sufficiently richly connected G, indistinguishable in FPC

1. Can a CPT program distinguish between the (unpadded) Cai, Fürer, Immerman graphs \mathcal{G}_{0} and \mathcal{G}_{1} ?

They were shown to be distinguished in CPT^{-}in (D., Richerby, Rossman 2008).

Multipedes

Multipedes were defined by Gurevich and Shelah to give a class of finite structures that was first-order definable, rigid but in which no order is definable in FPC.
2. Can isomorphism of multipedes with shoes be decided by a CPT program?

It is a consequence of results of (Abu Zaid, Grädel, Grohe, Pakusa 2014) that it can.

Matching

A perfect matching in a graph G is a subset M of its edges such that every vertex of G is incident on exactly one vertex of M.
Blass, Gurevich and Shelah showed that deciding the existence of perfect matchings for bipartite graphs is in FPC but not in CPT^{-}.
3. Can a CPT program decide whether a given graph (not necessarily bipartite) admits a complete matching?

It is shown in (Anderson, D., Holm 2015) that the existence of perfect matchings in general graphs is in FPC.

Determinants

4. Can a CPT program compute, up to sign, the determinant of an $I \times J$ matrix over a finite field (where $|I|=|J|$)?

Rossman showed that determinants could be computed in CPT by implementing a version of Csanky's algorithm.
Holm improved this to FPC.

Abelian Subset Sum

Blass, Gurevich 2005 introduce a new challenge problem for CPT.
Given a commutative semigroup S in the form of the multiplication table and given $X \subseteq S$ and an element $y \in S$, is y the sum of all elements of X ?

This is attributed to Rossman with the quote:
"This is the most basic problem I can think of that appears difficult for CPT but is obviously polynomial time. I don't even know the answer when S is an abelian group, or even a direct product of cyclic groups $\mathbb{Z}_{2}{ }^{\prime \prime}$

Results

ASS: Given a commutative semigroup S in the form of the multiplication table and given $X \subseteq S$ and an element $y \in S$, is y the sum of all elements of X ?

1. ASS on finite commutative semigroups is in FPC.
2. ASS, on abelian groups or even direct products of cyclic groups \mathbb{Z}_{2} is not in FP or CPT^{-}.
3. A first-order reduction from ASS on abelian groups to solvability of linear equation systems over finite rings.

ASS for semigroups in FPC

- Abelian semigroup $(S,+), X \subseteq S$

$$
\Sigma^{k}(g)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in X^{k}: x_{i} \neq x_{j}(i \neq j), \sum_{i} x_{i}=g\right\}
$$

- $\Sigma^{k}(g) \neq \emptyset \quad \Longleftrightarrow \quad g$ is a k-sum of elements from X
- $\sum X=g \quad \Longleftrightarrow \quad \Sigma^{n}(g) \neq \emptyset \quad$ (where $n=|X|$)

Idea: Inductively $(1 \leq k \leq n)$ define the sets $\Sigma^{k}(g)$; however:

- Constructing the sets $\Sigma^{k}(g)$ explicitly not possible; and
- Maintaining " $\Sigma^{k}(g) \neq \emptyset$ " not sufficient

Solution: Use counting mechanism of FPC to maintain $\left|\Sigma^{k}(g)\right|$.

ASS for semigroups not in CPT^{-}

CPT ${ }^{-}$cannot express modular counting
(Blass, Gurevich, Shelah' 99)
Given a set T and some $n \geq 2$.

- Fix some $\star \notin T$
- Define the commutative semigroup $S[T]$ over $T \cup\{\star\}$, by setting

$$
x+y=\star
$$

- Consider $G=S[T] \times \mathbb{Z}_{n}$ with subset $X=T \times\{1\}$
- Then $\sum X=(\star, i) \Longleftrightarrow|T| \equiv i \bmod n$

Question: What happens if we restrict to Abelian groups?

Not Even for Groups

Consider expansions of n-fold product of \mathbb{Z}_{p} by set X (for some fixed prime p)

$$
S(n)=\left\{\left(\mathbb{Z}_{p}^{n},+, X\right): 0 \in X\right\}
$$

$\mu_{n}(\psi)$ - the probability that a randomly chosen $G \in S(n)$ satisfies ψ
Theorem
For every sentence ψ of FP: $\lim _{n \rightarrow \infty} \mu_{n}(\psi) \in\{0,1\}$
This can be shown by defining suitable extension axioms for this class of structures.
ASS is not FP-definable, as modular counting reduces to it.
Remark: This can be generalized to prove undefinability in CPT^{-}using Shelah's techniques for the 0-1 law

New Challenge Problems

In ASS, the semigroup is given explicitly by its multiplication table.
Such problems can be more challenging if the algebraic structure is given succinctly.

An interesting such problem (though not a subset sum problem) is given by permutation group membership.

Permutation Group Membership

Given a collection $\rho_{1}, \ldots, \rho_{m} \in \operatorname{Sym}(n)$ of permutations of the set [n]. (say, as a structure with universe $[n] \uplus[m]$, and a ternary relation $\rho_{i}(j)=k$ for $i \in[m]$ and $j, k \in[n]$)
and a permutation $\sigma \in \operatorname{Sym}(n)$.

$$
\text { Is } \sigma \text { in }\left\langle\rho_{1}, \ldots, \rho_{m}\right\rangle \text { ? }
$$

This problem is in P (by the Schreier-Sims algorithm) and known to be not in FPC.
Is it in CPT?
Either answer would have interesting consequences.

