Computer-Aided Search for Matrix Multiplication Algorithms

Matthew Anderson Zongliang Ji Anthony Yang Xu

December 13, 2017
Simons Institute for the Theory of Computing

Matrix Multiplication

Problem

Input: $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times n}$
Output: $C=A \times B \in \mathbb{F}^{n \times n}$.
For example:

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right] \times\left[\begin{array}{cc}
-1 & 3 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 5 \\
-2 & 6
\end{array}\right]
$$

How many operations does it take to multiply two n-by- n matrices?

- $O\left(n^{3}\right)$ by naively computing n^{2} dot products of rows of A and columns of B.
- $\Omega\left(n^{2}\right)$ because there are at n^{2} cells to output.

Question

What is the smallest $\omega \leq 3$ such that n-by- n matrix multiplication can be done in time $O\left(n^{\omega}\right)$?

3
$\underline{2 .} 808$
2.796
$2.7 \underline{8}$
2.522
2.496
$2.4 \underline{7} 9$
2. 375477
$2.37 \underline{4}$
2.3728642
2.3728639

Naive
Strassen 1969
Pan 1978
Bini et al 1979
Schönhage 1981
Coppersmith \& Winograd 1982
Strassen 1986
Coppersmith \& Winograd 1987
Stothers 2010
Williams 2011
Le Gall 2014

Outline

- Introduction
- Cohn-Umans Framework
- Checking
- Search
- Lessons

In 2003, Cohn and Umans proposed an approach for improving the upper bound on ω.

- Inspired by the $\Theta(n \log n)$ FFT-based algorithm for multiplying two degree n univariate polynomial, c.f., e.g., [CLRS 2009, Chap 30].

$$
A \times B=C \text { becomes } \mathrm{FFT}^{-1}(\operatorname{FFT}(A) * \mathrm{FFT}(B))=C
$$

In 2003, Cohn and Umans proposed an approach for improving the upper bound on ω.

- Inspired by the $\Theta(n \log n)$ FFT-based algorithm for multiplying two degree n univariate polynomial, c.f., e.g., [CLRS 2009, Chap 30].

$$
A \times B=C \text { becomes } \mathrm{FFT}^{-1}(\operatorname{FFT}(A) * \mathrm{FFT}(B))=C
$$

Idea determine a suitable group G to embed multiplication into the group algebra $\mathbb{C}[G]$ using sets $X, Y, Z \subseteq G$, with $|X|=|Y|=|Z|=n$.

$$
\bar{A}=\sum_{i, j \in[n]}\left(x_{i}^{-1} y_{j}\right) A_{i, j}, \quad \bar{B}=\sum_{j, k \in[n]}\left(y_{j}^{-1} z_{k}\right) B_{j, k}, \quad \bar{C}=\sum_{i, k \in[n]}\left(x_{i}^{-1} z_{k}\right) C_{i, k}
$$

where triple product property holds: $\forall x, x^{\prime} \in X, \forall y, y^{\prime} \in Y, \forall z, z^{\prime} \in Z$,

$$
x^{-1} y y^{\prime-1} z=x^{\prime-1} z^{\prime} \text { iff } x=x^{\prime}, y=y^{\prime}, z=z^{\prime} .
$$

ω implied by G depends on $|G|$ and aspects of its representation.

Definition (Puzzle)

An (s, k)-puzzle is a subset $P \subseteq U_{k}=\{1,2,3\}^{k}$ with $|P|=s$.
Consider

$$
\begin{aligned}
P=\{ & (3,1,3,2),(1,2,3,2),(1,1,1,3), \\
& (3,2,1,3),(3,3,2,3)\}
\end{aligned}
$$

- P is a (5,4)-puzzle.
- P has five rows.

P			
3	1	3	2
1	2	3	2
1	1	1	3
3	2	1	3
3	3	2	3

- P has four columns.

Note that:

- The columns are ordered.
- The rows are unordered (as P is a set).

Uniquely Solvable Puzzles - Intuition

We're interested in puzzles that are uniquely solvable.

Uniquely Solvable Puzzles - Intuition

We're interested in puzzles that are uniquely solvable.

3	2	3	2
1	1	3	2
1	2	1	3
3	1	1	3
1	3	2	1

- This puzzle is not uniquely solvable.

We're interested in puzzles that are uniquely solvable.

3	2	3	2

1	1	3	2

1	2	1	3

3	1	1	3

1	3	2	1

- This puzzle is not uniquely solvable.

We're interested in puzzles that are uniquely solvable.

3	2	3	2

1	1	3

\square

1	2	1

1	3	2

- This puzzle is not uniquely solvable.

We're interested in puzzles that are uniquely solvable.

3	2	3	2

\square

3		3

1	1	3	2

1	2	1	3

3	1	1	3

1	3	2	1

- This puzzle is not uniquely solvable.
- Can be witnessed by three permutations:

$$
\begin{aligned}
& \pi_{1}=(1)(2)(3)(4)(5) \\
& \pi_{2}=(1)(2355)(4) \\
& \pi_{3}=(1)\left(\begin{array}{ll}
2 & 5
\end{array}\right)(4)
\end{aligned}
$$

We're interested in puzzles that are uniquely solvable.

3	2	3	2

\square

3		3	

1	1	3	2

1	2	1	3

\square

- This puzzle is not uniquely solvable.
- Can be witnessed by three permutations:

$$
\begin{aligned}
& \pi_{1}=(1)(2)(3)(4)(5) \\
& \pi_{2}=(1)(235)(4) \\
& \pi_{3}=(1)(253)(4)
\end{aligned}
$$

Uniquely Solvable Puzzles - Intuition

We're interested in puzzles that are uniquely solvable.

- This puzzle is not uniquely solvable.
- Can be witnessed by three permutations:

$$
\begin{aligned}
& \pi_{1}=(1)(2)(3)(4)(5) \\
& \pi_{2}=(1)(2355)(4) \\
& \pi_{3}=(1)(2533)(4)
\end{aligned}
$$

- Since the resulting puzzles is not the same as the original puzzle (even reordering rows), the puzzle is not uniquely solvable.

Uniquely Solvable Puzzles - Formal

Definition (Uniquely Solvable Puzzle)

An (s, k)-puzzle P is uniquely solvable if $\forall \pi_{1}, \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P}$:
(1) either $\pi_{1}=\pi_{2}=\pi_{3}$, or

2 $\exists r \in P, \exists i \in[k]$ such that at least two of the following hold:
(1) $\left(\pi_{1}(r)\right)_{i}=1$,

2 $\left(\pi_{2}(r)\right)_{i}=2$,
$3\left(\pi_{3}(r)\right)_{i}=3$.
Basically, for every way of non-trivial way of reordering the 1-, 2-, 3 -pieces according to $\pi_{1}, \pi_{2}, \pi_{3}$, they cannot all fit together.

Uniquely Solvable Puzzles - Formal

Definition (Uniquely Solvable Puzzle)

An (s, k)-puzzle P is uniquely solvable if $\forall \pi_{1}, \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P}$:
(1) either $\pi_{1}=\pi_{2}=\pi_{3}$, or

2 $\exists r \in P, \exists i \in[k]$ such that at least two of the following hold:
$1\left(\pi_{1}(r)\right)_{i}=1$,
$2\left(\pi_{2}(r)\right)_{i}=2$,
$3\left(\pi_{3}(r)\right)_{i}=3$.
Basically, for every way of non-trivial way of reordering the 1-, 2-, 3 -pieces according to $\pi_{1}, \pi_{2}, \pi_{3}$, they cannot all fit together.

- This is a natural property that holds of "good" real-world puzzles:
- jigsaw puzzles (locally), and
- sudoku puzzles (globally).

Strong Uniquely Solvable Puzzles

Definition (Strong Uniquely Solvable Puzzle)
An (s, k)-puzzle P is strong uniquely solvable if $\forall \pi_{1}, \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P}$:
1 either $\pi_{1}=\pi_{2}=\pi_{3}$, or
[2 $\exists r \in P, \exists i \in[k]$ such that exactly two of the following hold:
$1\left(\pi_{1}(r)\right)_{i}=1$,
2 $\left(\pi_{2}(r)\right)_{i}=2$,
3 $\left(\pi_{3}(r)\right)_{i}=3$.

Strong Uniquely Solvable Puzzles

Definition (Strong Uniquely Solvable Puzzle)

An (s, k)-puzzle P is strong uniquely solvable if $\forall \pi_{1}, \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P}$:
1 either $\pi_{1}=\pi_{2}=\pi_{3}$, or
$2 \exists r \in P, \exists i \in[k]$ such that exactly two of the following hold:
$1\left(\pi_{1}(r)\right)_{i}=1$,
2 $\left(\pi_{2}(r)\right)_{i}=2$,
$3\left(\pi_{3}(r)\right)_{i}=3$.
No good intuition for the "exactly two" part, but a useful implication.

Lemma ([CKSU 05, Corollary 3.6])

For an integer $m \geq 3$, if there is a strong uniquely solvable (s, k)-puzzle,

$$
\omega \leq \frac{3 \log m}{\log (m-1)}-\frac{3 \log s!}{s k \log (m-1)}
$$

Useful Strong Uniquely Solvable Puzzles

Lemma ([CKSU 05, Proposition 3.8])
There is an infinite family of SUSP that achieve $\omega<2.48$.

There are group-theoretic constructions derived from [Strassen 86] and [Coppersmith-Winograd 87] that achieve the ω 's of those works.

Useful Strong Uniquely Solvable Puzzles

Lemma ([CKSU 05, Proposition 3.8])

There is an infinite family of SUSP that achieve $\omega<2.48$.

There are group-theoretic constructions derived from [Strassen 86] and [Coppersmith-Winograd 87] that achieve the ω 's of those works.

Lemma ([BCCGU 16])

SUSP cannot show $\omega<2+\epsilon$, for some $\epsilon>0$.

- This was conditionally true if the Erdö-Szemeredi sunflower conjecture held [Alon-Shpilka-Umans 2013].
- Recent progress on cap sets and arithmetic progressions made this unconditional [Ellenberg 2016, Croot-Lev-Pach, 2016].

Our Goals \& Approach

Goal Find strong uniquely solvable puzzles (SUSP) that imply smaller ω.

Our Goals \& Approach

Goal Find strong uniquely solvable puzzles (SUSP) that imply smaller ω. Approach

- For fixed width k, the larger height s of a SUSP is, the smaller ω is implied. We want to determine for small values of k, the maximum s that can be achieved. Hopefully, this leads to an improvement in ω.
- Develop software platform to explore and experiment with SUSP.
- Algorithm Design
- Checking that a puzzle is a SUSP.
- Searching for large SUSP.
- Implementation
- Targeted mainly desktop but also HPC environments.
- We only need to find one sufficiently large puzzle to achieve a new algorithm - worst-case performance isn't a good metric!

Our Goals \& Approach

Goal Find strong uniquely solvable puzzles (SUSP) that imply smaller ω. Approach

- For fixed width k, the larger height s of a SUSP is, the smaller ω is implied. We want to determine for small values of k, the maximum s that can be achieved. Hopefully, this leads to an improvement in ω.
- Develop software platform to explore and experiment with SUSP.
- Algorithm Design
- Checking that a puzzle is a SUSP.
- Searching for large SUSP.
- Implementation
- Targeted mainly desktop but also HPC environments.
- We only need to find one sufficiently large puzzle to achieve a new algorithm - worst-case performance isn't a good metric!

Secondary Goal Develop a theory research program that undergraduates can meaningfully participate in.

Outline

- Introduction
- Cohn-Umans Framework
- Checking
- Search
- Lessons

Checking

Problem (SUSP-Check)

Input: $A(s, k)$-puzzle P.
Output: True iff P is a strong uniquely solvable puzzle.
It suffices to evaluate the following formula for a puzzle P :

$$
\begin{aligned}
& \forall \pi_{1}, \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P} \\
& \quad \pi_{1}=\pi_{2}=\pi_{3} \\
& \quad \vee \exists r \in P \cdot \exists i \in[k] \cdot\left(\left(\pi_{1}(r)\right)_{i}=1\right)+\left(\left(\pi_{2}(r)\right)_{i}=2\right)+\left(\left(\pi_{3}(r)\right)_{i}=3\right)=2
\end{aligned}
$$

- That a P is not a SUSP is be witnessed by permutations $\pi_{1}, \pi_{2}, \pi_{3}$.
- SUSP-Check is in coNP.
- When we only want to verify uniquely solvability it is reducible to graph automorphism.
- It is not clear whether SUSP-Check is coNP-hard.

$$
\begin{aligned}
& \forall \pi_{1}, \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P} \\
& \quad \pi_{1}=\pi_{2}=\pi_{3} \\
& \quad \vee \exists r \in P . \exists i \in[k] .\left(\left(\pi_{1}(r)\right)_{i}=1\right)+\left(\left(\pi_{2}(r)\right)_{i}=2\right)+\left(\left(\pi_{3}(r)\right)_{i}=3\right)=2
\end{aligned}
$$

- Brute force model checking takes $O\left((s!)^{3} \cdot \operatorname{poly}(s, k)\right)$ time.
- Easy to implement.
- Run time makes it practically useless for puzzles with width $k>4$.
- Served as a reference implementation for debugging.
- Good for getting students feet wet with relevant issues with implementation and mathematical objects.
- It will be more convenient to think about checking the complement formula.
$\exists \pi_{1}, \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P}$. $\pi_{1}, \pi_{2}, \pi_{3}$ not all equal
$\wedge \forall r \in P . \forall i \in[k] .\left(\left(\pi_{1}(r)\right)_{i}=1\right)+\left(\left(\pi_{2}(r)\right)_{i}=2\right)+\left(\left(\pi_{3}(r)\right)_{i}=3\right) \neq 2$

$$
\exists \pi_{1}, \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P}
$$

$$
\pi_{1}, \pi_{2}, \pi_{3} \text { not all equal }
$$

$$
\wedge \forall r \in P . \forall i \in[k] .\left(\left(\pi_{1}(r)\right)_{i}=1\right)+\left(\left(\pi_{2}(r)\right)_{i}=2\right)+\left(\left(\pi_{3}(r)\right)_{i}=3\right) \neq 2
$$

- Force $\pi_{1}=1$ to get:
$\exists \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P}$.

$$
\begin{aligned}
& 1, \pi_{2}, \pi_{3} \text { not all equal } \\
& \wedge \forall r \in P . \forall i \in[k] .\left(r_{i}=1\right)+\left(\left(\pi_{2}(r)\right)_{i}=2\right)+\left(\left(\pi_{3}(r)\right)_{i}=3\right) \neq 2
\end{aligned}
$$

- Results in an equivalent formula because the rows of a puzzle are unordered.
- Removes a s ! factor from runtime, achieving $O\left((s!)^{2} \cdot \operatorname{poly}(s, k)\right)$.

$$
\exists \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P}
$$

π_{2}, π_{3} not both 1
$\wedge \forall r \in P . \forall i \in[k] .\left(r_{i}=1\right)+\left(\left(\pi_{2}(r)\right)_{i}=2\right)+\left(\left(\pi_{3}(r)\right)_{i}=3\right) \neq 2$

- The innermost \exists can be precomputed in $O\left(s^{3} k\right)$ time by creating a Boolean relation $T_{P} \in P \times P \times P$, where

$$
(p, q, r) \in T_{P} \Leftrightarrow \forall i \in[k] .\left(r_{i}=1\right)+\left(\left(\pi_{2}(r)\right)_{i}=2\right)+\left(\left(\pi_{3}(r)\right)_{i}=3\right) \neq 2
$$

- This simplifies the formula we are checking to:
$\exists \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P} \cdot \pi_{2}, \pi_{3}$ not both $1 \wedge \forall r \in P .\left(r, \pi_{2}(r), \pi_{3}(r)\right) \in T_{P}$.
- This makes the dominant term of the running time independent of k and is useful for the next step.

Reduction to 3D Matching

This results in the formula below which is true iff P is not a SUSP.

$$
\exists \pi_{2}, \pi_{3} \in \operatorname{Sym}_{P} \cdot \pi_{2}, \pi_{3} \text { not both } 1 \wedge \forall r \in P .\left(r, \pi_{2}(r), \pi_{3}(r)\right) \in T_{P}
$$

This is an instance of a natural NP problem.

Problem (3D Matching)

Input: A 3-hypergraph $G=\langle V, E \subseteq V \times V \times V\rangle$.
Output: True iff $\exists M \subseteq E$ with $|M|=|V|$ and $\forall e_{1} \neq e_{2} \in M$, for each coordinate e_{1} and e_{2} are vertex disjoint.

We can reduce verifying P is not a SUSP to 3D matching.

- Consider $G_{P}=\left\langle P, T_{P}\right\rangle$.
- Observe that P is a not a SUSP iff G_{P} has a 3D matching that isn't the identity matching, i.e., $M=\left\{\left(r_{1}, r_{1}, r_{1}\right), \ldots,\left(r_{s}, r_{s}, r_{s}\right)\right\}$.
- That M isn't identity matching is necessary, but not interesting so we won't talk about it anymore.

Dynamic Programming

We can determine 3D matchings using dynamic programming.

- Fix some ordering of $P: r_{1}, \ldots, r_{s}$.
- Consider iteratively constructing a matching M of G_{P} where in the $i^{\text {th }}$ step you select an edge $\left(r_{i}, *, *\right) \in T_{P}$.
- After the $i^{\text {th }}$ step, the remaining edges that can be selected are

$$
T_{P}^{X, Y}=T_{P} \cap\left(\left\{r_{i+1}, \ldots, r_{s}\right\} \times(P-Y) \times(P-Z)\right)
$$

where Y and Z are the vertices that have already be selected for the second and third coordinate respectively and $|Y|=|Z|=i$.

- Call $S(i, X, Y)$ the subproblem of whether a 3D matching can be completed on $T_{P}^{X, Y}$ and $i=|X|=|Y|$.
- Observe that $S(i, X, Y)$ has a 3D matching iff there exists $\left(r_{i+1}, p, q\right) \in T_{P}^{X, Y}$ and $S(i+1, X \cup\{a\}, Y \cup\{b\})$ has a 3D matching.
This gives an $O\left(2^{2 s} s^{2}\right)$ algorithm via dynamic programming.

Practical Running Time - Dynamic Programming

Average checking time versus puzzle height for $50,000\left({ }^{*}, 8\right)$-puzzles.

Dynamic Programming + Bidirectional Search

Perform two searches using dynamic programming:

- The first selects edges whose first coordinates are $r_{1}, r_{2}, \ldots, r_{\lfloor s / 2\rfloor}$.
- The second selects edges whose first coordinates are

$$
r_{s}, r_{s-1}, \ldots, r_{\lfloor s / 2\rfloor+1}
$$

- The searches use the other's memoization table in the last step.

This improves performance by about a squareroot.

- The worst-case running time becomes $O\left(2^{s} s^{2}\right)$.
- The worst-case memory usage is $O\left(2^{s} s\right)$.

These are the best worst-case bounds we could bounds we could devise.

Practical Running Time - Bidirectional

Average checking time versus puzzle height for 50,000 (*,8)-puzzles.

Puzzle height

- Unidirectional - Bidirectional

Other Reductions

We tried reducing 3D matching to CNF satisfiability.

- Reduced satisfiability instance had $2 s^{2}$ variables and $O\left(s^{3}\right)$ clauses.
- Used an open-source conflict-driven clause-learning SAT solver MapleCOMSPS that won the general category of the 2016 SAT Competition. Solver written in part by Jia Hui Liang, Vijay Ganesh, and Chanseok Oh. http://www.satcompetition.org

We tried reducing 3D matching to 0-1 integer programming.

- Reduced IP instance had s^{3} variables and $O\left(s^{3}\right)$ equations.
- Used a close-source optimization library Gurobi. http://www.gurobi.com

Practical Running Time - SAT / IP

Average checking time versus puzzle height for 50,000 (*,8)-puzzles.

Puzzle height

- Unidirectional - Bidirectional - SAT - IP

Implementation

Current implementation is hybrid of several algorithms.

- Brute force for very small instances, $k \leq 3$.
- Bidirectional Dynamic programming for moderate instances $k \leq 6$.
- SAT for large instances with $k>6$ and $s<40$.
- IP for all bigger instances.

We implemented a number of heuristics that are not always conclusive, but frequently can determine the result early.

- Briefly trying to randomly or greedily generate 3D matchings.
- Verifying that all pairs of rows or triples of rows form a SUSP.
- Testing whether the puzzle is uniquely solvable using the graph isomorphism library Nauty:

```
http://users.cecs.anu.edu.au/~bdm/nauty/
```

- Simplifying the 3D matching instance using properties of the puzzle, e.g., using that a column only contains two of $\{1,2,3\}$.

Practical Running Time - Final

Average checking time versus puzzle height for $50,000\left({ }^{*}, 8\right)$-puzzles.

Puzzle height

- Check - Unidirectional - Bidirectional - SAT -IP

Average checking time versus puzzle height for 50,000 (*,8)-puzzles.

Outline

- Introduction
- Cohn-Umans Framework
- Checking
- Search
- Lessons

Search

Problem (SUSP-Search)

Input: $k \in \mathbb{N}$
Output: The maximum $s \in \mathbb{N}$ such that there exists a (s, k)-puzzle that is a strong uniquely solvable puzzle.

- Considered constructive approaches to solving this problem that use SUSP-Check as a subroutine.
- (s, k)-puzzles have $s k$ entries and there are $3^{s k}$ such puzzles.
- Even eliminating symmetries, searching the full space for $k>4$ is infeasible.
- Density of SUSPs quickly approaches 0 .
- Our approaches are ad hoc and use domain knowledge for heuristics.
- SUSP do not form a matroid, augmentation property fails.

Tree Search

Lemma

If P is a SUSP and $P^{\prime} \subseteq P$, then P^{\prime} is a SUSP.

- This lemma allows us to construct SUSP from the bottom up.

Lemma

If P is a $S U S P$ and $P^{\prime} \subseteq P$, then P^{\prime} is a SUSP.

- This lemma allows us to construct SUSP from the bottom up.
- BFS allowed us to explore the set of all SUSP for $k \leq 5$.
- Implement a sequential desktop version and a parallel version to run on Union's ≈ 900-node HPC cluster.
- Parallel version used MPI and Map-Reduce to maintain the search frontier and support faster verification via lookup.
- Searching $k=5$ originally required the cluster, but improvements to the verification algorithm made it unnecessary.
- Searching $k=6$ would have exceeded cluster's 32TB memory.

Lemma

If P is a SUSP and $P^{\prime} \subseteq P$, then P^{\prime} is a SUSP.

- This lemma allows us to construct SUSP from the bottom up.
- BFS allowed us to explore the set of all SUSP for $k \leq 5$.
- Implement a sequential desktop version and a parallel version to run on Union's ≈ 900-node HPC cluster.
- Parallel version used MPI and Map-Reduce to maintain the search frontier and support faster verification via lookup.
- Searching $k=5$ originally required the cluster, but improvements to the verification algorithm made it unnecessary.
- Searching $k=6$ would have exceeded cluster's 32TB memory.
- For $k \geq 6$ we implemented "greedy" algorithms for a variety of metrics:
- \# of (single, pairs, triples of) rows P could be extended by.
- Density of the graph G_{p}.
- \# of columns of P which only have two entries from $\{1,2,3\}$.
- Size of interval spanned by the rows of P in lexicographic order.

Combining SUSP

We've noticed the following behavior of SUSPs under set concatenation:

Observation (Experimental)

Let P_{1} and P_{2} be "distinct" strong uniquely solvable puzzles, then

$$
P_{1} \circ P_{2}=\left\{r_{1} \circ r_{2} \mid r_{1} \in P_{1}, r_{2} \in P_{2}\right\}
$$

is a strong uniquely solvable puzzle.

- Here "distinct" means that P_{1} and P_{2} each decompose into the concatenation of pairwise non-equivalent indecomposible SUSPs.
- Useful for constructing larger puzzles from smaller ones.
- No loss in implied ω.

Strong USP Found - Examples

$(1,1):$
1

(2,2):

1	3
2	1

$(3,3)$:

1	1	1
3	2	1
3	3	2

$(5,4):$

3	1	3	2
1	2	3	2
1	1	1	3
3	2	1	3
3	3	2	3

$(8,5):$

3	3	3	1	1
1	1	2	2	1
2	1	3	3	2
3	2	2	2	3
2	1	2	1	3
2	2	3	1	2
3	2	3	2	1
3	1	2	1	1

$(14,6)$:

2	3	3	1	1	1
2	1	1	2	1	1
3	3	1	2	1	1
3	2	2	2	1	1
2	3	1	1	2	1
2	2	3	1	2	1
3	3	1	3	2	1
3	2	3	3	2	1
2	1	1	3	1	2
2	3	1	3	2	2
3	1	1	1	1	3
3	3	2	3	1	3
3	3	2	1	2	3
2	2	3	2	2	3

Strong USP Found - Trends and Comparison

	[CKSU05]		This work		
Width	Height	ω^{*}	Height	ω^{*}	Search Algo
1	≤ 1		$1=$	3.000	BFS
2	≤ 3		$2=$	2.670	BFS
3	$3 \ldots 6$	2.642	$3=$	2.642	BFS
4	≤ 12		$5=$	2.585	BFS
5	≤ 24		$8=$	2.562	BFS
6	$10 \ldots 45$	2.615	$14 \leq$	2.521	Greedy
7	≤ 86		$21 \leq$	2.531	Greedy
8	≤ 162		$30 \leq$	2.547	Greedy
9	$36 \ldots 307$	2.592	$42 \leq$	2.563	Concat
10	≤ 581		$64 \leq$	2.562	Concat
11	≤ 1098		$112 \leq$	2.540	Concat
12	$136 \ldots 2075$	2.573	$196 \leq$	2.521	Concat

- ω^{*} is the approximate ω in the limit of composing puzzles of these dimensions via direct product.
- [CKSU05]'s construction asymptotically implies $\omega<2.48$.

Outline

- Introduction
- Cohn-Umans Framework
- Checking
- Search
- Lessons

Lessons

- Practical performance \neq worse-case performance.
- Problem transformation is effective in theory and in practice.
- It's easy to experimentally invalidate specific hypotheses.
- It's hard to find patterns in mountains of data.
- It's hard to turn patterns from data into proofs.
- Domain knowledge is useful for pruning.
- Communication is expensive in HPC.

Conjecture

There is a construction that takes SUSPs of size $\left(s_{1}, k_{1}\right)$ and $\left(s_{2}, k_{2}\right)$ and produces a $\left(s_{1}+s_{2}, \max \left(k_{1}, k_{2}\right)+1\right)$-puzzle that is a SUSP.

- Would imply $\omega<2.445$.
- Consistent with the SUSP we found for $k=1 \ldots 7$.

Search

- The current bottleneck.
- Try iterated local search.
- Try repair from concatenated puzzles.
- Try to derive better upper bounds.

Check

- Look for reductions with $o\left(s^{3}\right)$ size - no more 3D matching.
- Verify P is SUSP by multiplying random matrices using P.

