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Matrix Multiplication

Problem

Input: A ∈ Fn×n , B ∈ Fn×n

Output: C = A× B ∈ Fn×n .

For example: [
1 2
2 0

]
×
[

-1 3
1 1

]
=

[
1 5
-2 6

]
How many operations does it take to multiply two n-by-n matrices?

• O(n3) by naively computing n2 dot products of rows of A and
columns of B .

• Ω(n2) because there are at n2 cells to output.

Question

What is the smallest ω ≤ 3 such that n-by-n matrix multiplication can
be done in time O(nω)?



Progress on ω

3 Naive
2.808 Strassen 1969
2.796 Pan 1978
2.78 Bini et al 1979
2.522 Schönhage 1981
2.496 Coppersmith & Winograd 1982
2.479 Strassen 1986
2.375477 Coppersmith & Winograd 1987
2.374 Stothers 2010
2.3728642 Williams 2011
2.3728639 Le Gall 2014
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Cohn-Umans Framework

In 2003, Cohn and Umans proposed an approach for improving the upper
bound on ω.

• Inspired by the Θ(n log n) FFT-based algorithm for multiplying two
degree n univariate polynomial, c.f., e.g., [CLRS 2009, Chap 30].

A× B = C becomes FFT−1(FFT(A) ∗ FFT(B)) = C

Idea determine a suitable group G to embed multiplication into the
group algebra C[G ] using sets X ,Y ,Z ⊆ G , with |X | = |Y | = |Z | = n.

A =
∑

i,j∈[n]

(x−1i yj )Ai,j , B =
∑

j ,k∈[n]

(y−1j zk )Bj ,k , C =
∑

i,k∈[n]

(x−1i zk )Ci,k

where triple product property holds: ∀x , x ′ ∈ X ,∀y , y ′ ∈ Y ,∀z , z ′ ∈ Z ,

x−1yy ′−1z = x ′−1z ′ iff x = x ′, y = y ′, z = z ′.

ω implied by G depends on |G | and aspects of its representation.
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Puzzles

Definition (Puzzle)

An (s, k)-puzzle is a subset P ⊆ Uk = {1, 2, 3}k with |P | = s.

Consider

P = {(3, 1, 3, 2), (1, 2, 3, 2), (1, 1, 1, 3),

(3, 2, 1, 3), (3, 3, 2, 3)}

• P is a (5,4)-puzzle.

• P has five rows.

• P has four columns.

P
3 1 3 2
1 2 3 2
1 1 1 3
3 2 1 3
3 3 2 3

Note that:

• The columns are ordered.

• The rows are unordered (as P is a set).



Uniquely Solvable Puzzles – Intuition

We’re interested in puzzles that are uniquely solvable.

• This puzzle is not uniquely solvable.

• Can be witnessed by three permutations:
π1 = (1)(2)(3)(4)(5)
π2 = (1)(2 3 5)(4)
π3 = (1)(2 5 3)(4)

• Since the resulting puzzles is not the same as the original puzzle
(even reordering rows), the puzzle is not uniquely solvable.
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Uniquely Solvable Puzzles – Formal

Definition (Uniquely Solvable Puzzle)

An (s, k)-puzzle P is uniquely solvable if ∀π1, π2, π3 ∈ SymP :

1 either π1 = π2 = π3, or

2 ∃r ∈ P ,∃i ∈ [k ] such that at least two of the following hold:

1 (π1(r))i = 1,
2 (π2(r))i = 2,
3 (π3(r))i = 3.

Basically, for every way of non-trivial way of reordering the 1-, 2-,
3-pieces according to π1, π2, π3, they cannot all fit together.

• This is a natural property that holds of “good” real-world puzzles:
• jigsaw puzzles (locally), and
• sudoku puzzles (globally).
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Strong Uniquely Solvable Puzzles

Definition (Strong Uniquely Solvable Puzzle)

An (s, k)-puzzle P is strong uniquely solvable if ∀π1, π2, π3 ∈ SymP :

1 either π1 = π2 = π3, or

2 ∃r ∈ P ,∃i ∈ [k ] such that exactly two of the following hold:

1 (π1(r))i = 1,
2 (π2(r))i = 2,
3 (π3(r))i = 3.

No good intuition for the “exactly two” part, but a useful implication.

Lemma ([CKSU 05, Corollary 3.6])

For an integer m ≥ 3, if there is a strong uniquely solvable (s, k)-puzzle,

ω ≤ 3 logm

log(m − 1)
− 3 log s!

sk log(m − 1)
.
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Useful Strong Uniquely Solvable Puzzles

Lemma ([CKSU 05, Proposition 3.8])

There is an infinite family of SUSP that achieve ω < 2.48.

There are group-theoretic constructions derived from [Strassen 86] and
[Coppersmith-Winograd 87] that achieve the ω’s of those works.

Lemma ([BCCGU 16])

SUSP cannot show ω < 2 + ε, for some ε > 0.

• This was conditionally true if the Erdö-Szemeredi sunflower
conjecture held [Alon-Shpilka-Umans 2013].

• Recent progress on cap sets and arithmetic progressions made this
unconditional [Ellenberg 2016, Croot-Lev-Pach, 2016].
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Our Goals & Approach

Goal Find strong uniquely solvable puzzles (SUSP) that imply smaller ω.

Approach

• For fixed width k , the larger height s of a SUSP is, the smaller ω is
implied. We want to determine for small values of k , the maximum s
that can be achieved. Hopefully, this leads to an improvement in ω.

• Develop software platform to explore and experiment with SUSP.

• Algorithm Design
• Checking that a puzzle is a SUSP.
• Searching for large SUSP.

• Implementation
• Targeted mainly desktop but also HPC environments.

• We only need to find one sufficiently large puzzle to achieve a new
algorithm – worst-case performance isn’t a good metric!

Secondary Goal Develop a theory research program that undergraduates
can meaningfully participate in.
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Checking

Problem (SUSP-Check)

Input: A (s, k)-puzzle P .

Output: True iff P is a strong uniquely solvable puzzle.

It suffices to evaluate the following formula for a puzzle P :

∀π1, π2, π3 ∈ SymP .

π1 = π2 = π3

∨ ∃r ∈ P .∃i ∈ [k ].((π1(r))i = 1) + ((π2(r))i = 2) + ((π3(r))i = 3) = 2

• That a P is not a SUSP is be witnessed by permutations π1, π2, π3.

• SUSP-Check is in coNP.

• When we only want to verify uniquely solvability it is reducible to
graph automorphism.

• It is not clear whether SUSP-Check is coNP-hard.



Brute Force

∀π1, π2, π3 ∈ SymP .

π1 = π2 = π3

∨ ∃r ∈ P .∃i ∈ [k ].((π1(r))i = 1) + ((π2(r))i = 2) + ((π3(r))i = 3) = 2

• Brute force model checking takes O((s!)3 · poly(s, k)) time.

• Easy to implement.

• Run time makes it practically useless for puzzles with width k > 4.

• Served as a reference implementation for debugging.

• Good for getting students feet wet with relevant issues with
implementation and mathematical objects.

• It will be more convenient to think about checking the complement
formula.

∃π1, π2, π3 ∈ SymP .

π1, π2, π3 not all equal

∧ ∀r ∈ P .∀i ∈ [k ].((π1(r))i = 1) + ((π2(r))i = 2) + ((π3(r))i = 3) 6= 2



Pruning

∃π1, π2, π3 ∈ SymP .

π1, π2, π3 not all equal

∧ ∀r ∈ P .∀i ∈ [k ].((π1(r))i = 1) + ((π2(r))i = 2) + ((π3(r))i = 3) 6= 2

• Force π1 = 1 to get:

∃π2,π3 ∈ SymP .

1, π2, π3 not all equal

∧ ∀r ∈ P .∀i ∈ [k ].(ri = 1) + ((π2(r))i = 2) + ((π3(r))i = 3) 6= 2

• Results in an equivalent formula because the rows of a puzzle are
unordered.

• Removes a s! factor from runtime, achieving O((s!)2 · poly(s, k)).



Preprocessing

∃π2,π3 ∈ SymP .

π2, π3 not both 1

∧ ∀r ∈ P .∀i ∈ [k ].(ri = 1) + ((π2(r))i = 2) + ((π3(r))i = 3) 6= 2

• The innermost ∃ can be precomputed in O(s3k) time by creating a
Boolean relation TP ∈ P × P × P , where

(p, q , r) ∈ TP ⇔ ∀i ∈ [k ].(ri = 1)+((π2(r))i = 2)+((π3(r))i = 3) 6= 2.

• This simplifies the formula we are checking to:

∃π2, π3 ∈ SymP .π2, π3 not both 1 ∧ ∀r ∈ P .(r , π2(r), π3(r)) ∈ TP .

• This makes the dominant term of the running time independent of k
and is useful for the next step.



Reduction to 3D Matching

This results in the formula below which is true iff P is not a SUSP.

∃π2, π3 ∈ SymP .π2, π3 not both 1 ∧ ∀r ∈ P .(r , π2(r), π3(r)) ∈ TP .

This is an instance of a natural NP problem.

Problem (3D Matching)

Input: A 3-hypergraph G = 〈V ,E ⊆ V ×V ×V 〉.
Output: True iff ∃M ⊆ E with |M | = |V | and ∀e1 6= e2 ∈ M , for each
coordinate e1 and e2 are vertex disjoint.

We can reduce verifying P is not a SUSP to 3D matching.

• Consider GP = 〈P ,TP 〉.
• Observe that P is a not a SUSP iff GP has a 3D matching that isn’t

the identity matching, i.e., M = {(r1, r1, r1), . . . , (rs , rs , rs)}.
• That M isn’t identity matching is necessary, but not interesting so

we won’t talk about it anymore.



Dynamic Programming

We can determine 3D matchings using dynamic programming.

• Fix some ordering of P : r1, . . . , rs .

• Consider iteratively constructing a matching M of GP where in the
i th step you select an edge (ri , ∗, ∗) ∈ TP .

• After the i th step, the remaining edges that can be selected are

TX ,Y
P = TP ∩ ({ri+1, . . . , rs} × (P −Y )× (P − Z ))

where Y and Z are the vertices that have already be selected for the
second and third coordinate respectively and |Y | = |Z | = i .

• Call S (i ,X ,Y ) the subproblem of whether a 3D matching can be

completed on TX ,Y
P and i = |X | = |Y |.

• Observe that S (i ,X ,Y ) has a 3D matching iff there exists

(ri+1, p, q) ∈ TX ,Y
P and S (i + 1,X ∪ {a},Y ∪ {b}) has a 3D

matching.

This gives an O(22ss2) algorithm via dynamic programming.



Practical Running Time – Dynamic Programming

Average checking time versus puzzle height for 50,000 (*,8)-puzzles.s NOT_USP Unidirectional
1 0.00000032566
2 1296 0.00000077186
3 3945 0.00000654064
4 8039 0.00003352956
5 12893 0.0005900576
6 19169 0.0159470382
7 26474 0.4026800343
8 34818
9 42269
10 47148
11 49316
12 49875
13 49983
14 49998
15 50000
18 50000
19 50000
20 50000
21 50000
22 50000
23 50000
24 50000
25 50000
26 50000
27 50000
28 50000
29 50000
30 50000
31 50000
32 50000
33 50000
34 50000
35 50000
36 50000
37 50000
38 50000
39 50000



Dynamic Programming + Bidirectional Search

Perform two searches using dynamic programming:

• The first selects edges whose first coordinates are r1, r2, . . . , rbs/2c.

• The second selects edges whose first coordinates are
rs , rs−1, . . . , rbs/2c+1.

• The searches use the other’s memoization table in the last step.

This improves performance by about a squareroot.

• The worst-case running time becomes O(2ss2).

• The worst-case memory usage is O(2ss).

These are the best worst-case bounds we could bounds we could devise.



Practical Running Time – Bidirectional

Average checking time versus puzzle height for 50,000 (*,8)-puzzles.s NOT_USP Unidirectional Bidirectional
1 0.00000032566 0.00000068894
2 1296 0.00000077186 0.0000013242
3 3945 0.00000654064 0.00000192756
4 8039 0.00003352956 0.00000456044
5 12893 0.0005900576 0.00000883176
6 19169 0.0159470382 0.00002797274
7 26474 0.4026800343 0.00006823102
8 34818 0.00030256548
9 42269 0.00080887474
10 47148 0.00433249488
11 49316 0.01224122756
12 49875 0.09542087386
13 49983
14 49998
15 50000
18 50000
19 50000
20 50000
21 50000
22 50000
23 50000
24 50000
25 50000
26 50000
27 50000
28 50000
29 50000
30 50000
31 50000
32 50000
33 50000
34 50000
35 50000
36 50000
37 50000
38 50000
39 50000



Other Reductions

We tried reducing 3D matching to CNF satisfiability.

• Reduced satisfiability instance had 2s2 variables and O(s3) clauses.

• Used an open-source conflict-driven clause-learning SAT solver
MapleCOMSPS that won the general category of the 2016 SAT
Competition. Solver written in part by Jia Hui Liang, Vijay Ganesh,
and Chanseok Oh.
http://www.satcompetition.org

We tried reducing 3D matching to 0-1 integer programming.

• Reduced IP instance had s3 variables and O(s3) equations.

• Used a close-source optimization library Gurobi.
http://www.gurobi.com

http://www.satcompetition.org
http://www.gurobi.com


Practical Running Time – SAT / IP

Average checking time versus puzzle height for 50,000 (*,8)-puzzles.s NOT_USP Unidirectional Bidirectional SAT IP
1 0.00000032566 0.00000068894 0.0000034856 0.00004107038
2 1296 0.00000077186 0.0000013242 0.00001190092 0.0000516262
3 3945 0.00000654064 0.00000192756 0.00003405776 0.00025385656
4 8039 0.00003352956 0.00000456044 0.00005934202 0.0004239116
5 12893 0.0005900576 0.00000883176 0.00010483518 0.00064938892
6 19169 0.0159470382 0.00002797274 0.00015690358 0.00092236882
7 26474 0.4026800343 0.00006823102 0.0002604228 0.00142462134
8 34818 0.00030256548 0.00042884276 0.00217323968
9 42269 0.00080887474 0.00070101338 0.00336538064
10 47148 0.00433249488 0.00118158862 0.00530576054
11 49316 0.01224122756 0.00204944538 0.00779122596
12 49875 0.09542087386 0.00249456118 0.01046648582
13 49983 0.00355606 0.01278894116
14 49998 0.0048910193 0.01555719052
15 50000 0.00639291084 0.01838653848
18 50000 0.01107733274 0.0296717889
19 50000 0.0130875961 0.03452156942
20 50000 0.01473212306 0.03959748336
21 50000 0.0164445541 0.04538442366
22 50000 0.01782312396 0.05162786654
23 50000 0.01947642416 0.05838162106
24 50000 0.02132782356 0.06550227938
25 50000 0.02337874386 0.07416700324
26 50000 0.02491422764 0.08255818274
27 50000 0.0267148525 0.09171707412
28 50000 0.02747967872 0.1019000447
29 50000 0.02937068162 0.1129136649
30 50000 0.03064026258 0.1248444672
31 50000 0.0323934712 0.1376087865
32 50000 0.03444155116 0.1556955512
33 50000 0.03691478998 0.1691310261
34 50000 0.03725602336 0.1863068591
35 50000 0.03948332284 0.204890888
36 50000 0.04147064914 0.2254103575
37 50000 0.04286732134 0.2486452695
38 50000 0.04528999892 0.2719302689
39 50000 0.04711193418 0.2974917854



Implementation

Current implementation is hybrid of several algorithms.

• Brute force for very small instances, k ≤ 3.

• Bidirectional Dynamic programming for moderate instances k ≤ 6.

• SAT for large instances with k > 6 and s < 40.

• IP for all bigger instances.

We implemented a number of heuristics that are not always conclusive,
but frequently can determine the result early.

• Briefly trying to randomly or greedily generate 3D matchings.

• Verifying that all pairs of rows or triples of rows form a SUSP.

• Testing whether the puzzle is uniquely solvable using the graph
isomorphism library Nauty:
http://users.cecs.anu.edu.au/~bdm/nauty/

• Simplifying the 3D matching instance using properties of the puzzle,
e.g., using that a column only contains two of {1, 2, 3}.

http://users.cecs.anu.edu.au/~bdm/nauty/


Practical Running Time – Final

Average checking time versus puzzle height for 50,000 (*,8)-puzzles.s NOT_USP Check Unidirectional Bidirectional SAT IP
1 0.00000076316 0.00000032566 0.00000068894 0.0000034856 0.00004107038
2 1296 0.00000131838 0.00000077186 0.0000013242 0.00001190092 0.0000516262
3 3945 0.00000417586 0.00000654064 0.00000192756 0.00003405776 0.00025385656
4 8039 0.00001264062 0.00003352956 0.00000456044 0.00005934202 0.0004239116
5 12893 0.00002077322 0.0005900576 0.00000883176 0.00010483518 0.00064938892
6 19169 0.00004416694 0.0159470382 0.00002797274 0.00015690358 0.00092236882
7 26474 0.00009003706 0.4026800343 0.00006823102 0.0002604228 0.00142462134
8 34818 0.00012345058 0.00030256548 0.00042884276 0.00217323968
9 42269 0.0002398575 0.00080887474 0.00070101338 0.00336538064
10 47148 0.00076547272 0.00433249488 0.00118158862 0.00530576054
11 49316 0.00059951242 0.01224122756 0.00204944538 0.00779122596
12 49875 0.00047213458 0.09542087386 0.00249456118 0.01046648582
13 49983 0.00033781772 0.00355606 0.01278894116
14 49998 0.00025516248 0.0048910193 0.01555719052
15 50000 0.00018101168 0.00639291084 0.01838653848
18 50000 0.00006619808 0.01107733274 0.0296717889
19 50000 0.00006714572 0.0130875961 0.03452156942
20 50000 0.0000474235 0.01473212306 0.03959748336
21 50000 0.00004593742 0.0164445541 0.04538442366
22 50000 0.00004346734 0.01782312396 0.05162786654
23 50000 0.00004239252 0.01947642416 0.05838162106
24 50000 0.00004075638 0.02132782356 0.06550227938
25 50000 0.00003769814 0.02337874386 0.07416700324
26 50000 0.00003690086 0.02491422764 0.08255818274
27 50000 0.00003689236 0.0267148525 0.09171707412
28 50000 0.00003669544 0.02747967872 0.1019000447
29 50000 0.00003688476 0.02937068162 0.1129136649
30 50000 0.00003645226 0.03064026258 0.1248444672
31 50000 0.00003639472 0.0323934712 0.1376087865
32 50000 0.00003650914 0.03444155116 0.1556955512
33 50000 0.00003595228 0.03691478998 0.1691310261
34 50000 0.00003610766 0.03725602336 0.1863068591
35 50000 0.00003586944 0.03948332284 0.204890888
36 50000 0.00003593088 0.04147064914 0.2254103575
37 50000 0.00003595104 0.04286732134 0.2486452695
38 50000 0.00003601246 0.04528999892 0.2719302689
39 50000 0.0000358811 0.04711193418 0.2974917854



Practical Running Time – Final

Average checking time versus puzzle height for 50,000 (*,8)-puzzles.s Strong USPs NOT_USP Check Unidirectional Bidirectional SAT IP
1 50000 0.00000076316 0.00000032566 0.00000068894 0.0000034856 0.00004107038
2 48704 1296 0.00000131838 0.00000077186 0.0000013242 0.00001190092 0.0000516262
3 46055 3945 0.00000417586 0.00000654064 0.00000192756 0.00003405776 0.00025385656
4 41961 8039 0.00001264062 0.00003352956 0.00000456044 0.00005934202 0.0004239116
5 37107 12893 0.00002077322 0.0005900576 0.00000883176 0.00010483518 0.00064938892
6 30831 19169 0.00004416694 0.0159470382 0.00002797274 0.00015690358 0.00092236882
7 23526 26474 0.00009003706 0.4026800343 0.00006823102 0.0002604228 0.00142462134
8 15182 34818 0.00012345058 0.00030256548 0.00042884276 0.00217323968
9 7731 42269 0.0002398575 0.00080887474 0.00070101338 0.00336538064

10 2852 47148 0.00076547272 0.00433249488 0.00118158862 0.00530576054
11 684 49316 0.00059951242 0.01224122756 0.00204944538 0.00779122596
12 125 49875 0.00047213458 0.09542087386 0.00249456118 0.01046648582
13 17 49983 0.00033781772 0.00355606 0.01278894116
14 2 49998 0.00025516248 0.0048910193 0.01555719052
15 0 50000 0.00018101168 0.00639291084 0.01838653848
18 0 50000 0.00006619808 0.01107733274 0.0296717889
19 0 50000 0.00006714572 0.0130875961 0.03452156942
20 0 50000 0.0000474235 0.01473212306 0.03959748336
21 0 50000 0.00004593742 0.0164445541 0.04538442366
22 0 50000 0.00004346734 0.01782312396 0.05162786654
23 0 50000 0.00004239252 0.01947642416 0.05838162106
24 0 50000 0.00004075638 0.02132782356 0.06550227938
25 0 50000 0.00003769814 0.02337874386 0.07416700324
26 0 50000 0.00003690086 0.02491422764 0.08255818274
27 0 50000 0.00003689236 0.0267148525 0.09171707412
28 0 50000 0.00003669544 0.02747967872 0.1019000447
29 0 50000 0.00003688476 0.02937068162 0.1129136649
30 0 50000 0.00003645226 0.03064026258 0.1248444672
31 0 50000 0.00003639472 0.0323934712 0.1376087865
32 0 50000 0.00003650914 0.03444155116 0.1556955512
33 0 50000 0.00003595228 0.03691478998 0.1691310261
34 0 50000 0.00003610766 0.03725602336 0.1863068591
35 0 50000 0.00003586944 0.03948332284 0.204890888
36 0 50000 0.00003593088 0.04147064914 0.2254103575
37 0 50000 0.00003595104 0.04286732134 0.2486452695
38 0 50000 0.00003601246 0.04528999892 0.2719302689
39 0 50000 0.0000358811 0.04711193418 0.2974917854
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Search

Problem (SUSP-Search)

Input: k ∈ N
Output: The maximum s ∈ N such that there exists a (s, k)-puzzle that
is a strong uniquely solvable puzzle.

• Considered constructive approaches to solving this problem that use
SUSP-Check as a subroutine.

• (s, k)-puzzles have sk entries and there are 3sk such puzzles.

• Even eliminating symmetries, searching the full space for k > 4 is
infeasible.

• Density of SUSPs quickly approaches 0.

• Our approaches are ad hoc and use domain knowledge for heuristics.

• SUSP do not form a matroid, augmentation property fails.



Tree Search

Lemma

If P is a SUSP and P ′ ⊆ P , then P ′ is a SUSP.

• This lemma allows us to construct SUSP from the bottom up.

• BFS allowed us to explore the set of all SUSP for k ≤ 5.
• Implement a sequential desktop version and a parallel version to run

on Union’s ≈900-node HPC cluster.
• Parallel version used MPI and Map-Reduce to maintain the search

frontier and support faster verification via lookup.
• Searching k = 5 originally required the cluster, but improvements to

the verification algorithm made it unnecessary.
• Searching k = 6 would have exceeded cluster’s 32TB memory.

• For k ≥ 6 we implemented “greedy” algorithms for a variety of
metrics:

• # of (single, pairs, triples of) rows P could be extended by.
• Density of the graph Gp .
• # of columns of P which only have two entries from {1, 2, 3}.
• Size of interval spanned by the rows of P in lexicographic order.
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Tree Search

Lemma

If P is a SUSP and P ′ ⊆ P , then P ′ is a SUSP.

• This lemma allows us to construct SUSP from the bottom up.

• BFS allowed us to explore the set of all SUSP for k ≤ 5.
• Implement a sequential desktop version and a parallel version to run

on Union’s ≈900-node HPC cluster.
• Parallel version used MPI and Map-Reduce to maintain the search

frontier and support faster verification via lookup.
• Searching k = 5 originally required the cluster, but improvements to

the verification algorithm made it unnecessary.
• Searching k = 6 would have exceeded cluster’s 32TB memory.

• For k ≥ 6 we implemented “greedy” algorithms for a variety of
metrics:

• # of (single, pairs, triples of) rows P could be extended by.
• Density of the graph Gp .
• # of columns of P which only have two entries from {1, 2, 3}.
• Size of interval spanned by the rows of P in lexicographic order.



Combining SUSP

We’ve noticed the following behavior of SUSPs under set concatenation:

Observation (Experimental)

Let P1 and P2 be “distinct” strong uniquely solvable puzzles, then

P1 ◦ P2 = {r1 ◦ r2 | r1 ∈ P1, r2 ∈ P2}

is a strong uniquely solvable puzzle.

• Here “distinct” means that P1 and P2 each decompose into the
concatenation of pairwise non-equivalent indecomposible SUSPs.

• Useful for constructing larger puzzles from smaller ones.

• No loss in implied ω.



Strong USP Found – Examples

(1,1):

1

(2,2):

1 3
2 1

(3,3):

1 1 1
3 2 1
3 3 2

(5,4):

3 1 3 2
1 2 3 2
1 1 1 3
3 2 1 3
3 3 2 3

(8,5):

3 3 3 1 1
1 1 2 2 1
2 1 3 3 2
3 2 2 2 3
2 1 2 1 3
2 2 3 1 2
3 2 3 2 1
3 1 2 1 1

(14,6):

2 3 3 1 1 1
2 1 1 2 1 1
3 3 1 2 1 1
3 2 2 2 1 1
2 3 1 1 2 1
2 2 3 1 2 1
3 3 1 3 2 1
3 2 3 3 2 1
2 1 1 3 1 2
2 3 1 3 2 2
3 1 1 1 1 3
3 3 2 3 1 3
3 3 2 1 2 3
2 2 3 2 2 3



Strong USP Found – Trends and Comparison

[CKSU05] This work
Width Height ω∗ Height ω∗ Search Algo

1 ≤ 1 1 = 3.000 BFS
2 ≤ 3 2 = 2.670 BFS
3 3 . . . 6 2.642 3 = 2.642 BFS
4 ≤ 12 5 = 2.585 BFS
5 ≤ 24 8 = 2.562 BFS
6 10 . . . 45 2.615 14 ≤ 2.521 Greedy
7 ≤ 86 21 ≤ 2.531 Greedy
8 ≤ 162 30 ≤ 2.547 Greedy
9 36 . . . 307 2.592 42 ≤ 2.563 Concat

10 ≤ 581 64 ≤ 2.562 Concat
11 ≤ 1098 112 ≤ 2.540 Concat
12 136 . . . 2075 2.573 196 ≤ 2.521 Concat

• ω∗ is the approximate ω in the limit of composing puzzles of these
dimensions via direct product.

• [CKSU05]’s construction asymptotically implies ω < 2.48.
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Lessons

• Practical performance 6= worse-case performance.

• Problem transformation is effective in theory and in practice.

• It’s easy to experimentally invalidate specific hypotheses.

• It’s hard to find patterns in mountains of data.

• It’s hard to turn patterns from data into proofs.

• Domain knowledge is useful for pruning.

• Communication is expensive in HPC.



Future Work / Conjectures

Conjecture

There is a construction that takes SUSPs of size (s1, k1) and (s2, k2) and
produces a (s1 + s2,max(k1, k2) + 1)-puzzle that is a SUSP.

• Would imply ω < 2.445.

• Consistent with the SUSP we found for k = 1 . . . 7.

Search

• The current bottleneck.

• Try iterated local search.

• Try repair from concatenated puzzles.

• Try to derive better upper bounds.

Check

• Look for reductions with o(s3) size – no more 3D matching.

• Verify P is SUSP by multiplying random matrices using P .
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