
Concurrency and Probability:

Removing Confusion, Compositionally

Ugo Montanari
Dipartimento di Informatica, University of Pisa

Joint work with Roberto Bruni and Hernán Melgratti

Simons Institute for the Theory of Computing
Reunion Workshop for the Program on “Logical Structures in Computation”
Monday - Thursday December 11 - 14, 2017

Roadmap

!  Concurrency: a useful abstraction level
!  Equivalent computations may have different decision

points and different probabilities
!  Petri occurrence nets with confusion
!  Our result: compiling a net with confusion into one

without confusion
!  Additional causal links for transmitting negative

conditions
!  The resulting net is a net with persistence for handling OR

causality
!  Conclusion and future work

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 2	

Roadmap

!  Concurrency: a useful abstraction level
!  Equivalent computations may have different decision

points and different probabilities
!  Petri occurrence nets with confusion
!  Our result: compiling a net with confusion into one

without confusion
!  Additional causal links for transmitting negative

conditions
!  The resulting net is a net with persistence for handling OR

causality
!  Conclusion and future work

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 3	

Concurrency Theory, I

!  a useful widespread abstraction
!  for the design and use of a variety of systems

!  concurrent computations
!  equivalence classes of execution sequences
!  pairs of concurrent events can be executed in any order

!  sequences in the same class are indistinguishable
!  for the current purpose of interest

!  behavior independent on
!  time
!  speed of processors

!  causal dependencies between events
!  nondeterminism via mutual exclusion of events

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 4	

Roadmap

!  Concurrency: a useful abstraction level
!  Equivalent computations may have different decision

points and different probabilities
!  Petri occurrence nets with confusion
!  Our result: compiling a net with confusion into one

without confusion
!  Additional causal links for transmitting negative

conditions
!  The resulting net is a net with persistence for handling OR

causality
!  Conclusion and future work

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 5	

Concurrency Theory, II

!  inadequate when modeling explicit choice points
!  equivalent sequences behave very differently
!  alternatives can be created/deleted by concurrent events
!  => the confusion problem

!  hard when combined with probabilities
!  nondeterminism vs. probability/stochastic distributions
!  exponential distributions for process races
!  nondeterminism for distributed decisionsß
!  schedulers for optimal control

!  time can hardly be ruled out

concurrency is too coarse an abstraction?
Petri nets as a touchstone

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 6	

Roadmap

!  Concurrency: a useful abstraction level
!  Equivalent computations may have different decision

points and different probabilities
!  Petri occurrence nets with confusion
!  Our result: compiling a net with confusion into one

without confusion
!  Additional causal links for transmitting negative

conditions
!  The resulting net is a net with persistence for handling OR

causality
!  Conclusion and future work

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 7	

Confusion

!  ordinary automata
!  single point of decision:
!  probabilities attached to arcs leaving the same state

!  Petri nets
!  states and decisions are distributed:
!  what is a decision point?

!  easy for special nets
!  free-choice nets

!  presets of any two transitions either disjoint or equal,
!  confusion-free nets

!  no alternatives created/deleted by concurrent
transitions

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 8	

Occurrence Nets: An Example

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 9	

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Concurrency and Probability: Removing Confusion, Compositionally 1:3

•
✏✏ ##

1

a

✏✏

d
✏✏•

✏✏ ##

2

✏✏

3 6

b
✏✏

c

✏✏

4 5

a

✏✏

d

b c

(a) Asymmetric confusion

•
{{ ##

1

a

✏✏

d
✏✏

!!

✏✏ ##

3 •
✏✏{{ ##

2 6

}}

¬c

c

✏✏

b1
✏✏

b2

{{

5 4

a

}}

✏✏

d

✏✏

b1 c b2

(b) Removing confusion

•
✏✏ ##

1 C1

a

✏✏

d
✏✏

✏✏

3 6

•
✏✏ ##

2
C2C3

b
✏✏

c

✏✏

4 5

(c) S-cells

Fig. 1. A basic example: some nets (top) and their event structures (bo�om)

By a similar reasoning, confusion-free Petri nets (see Section 2.2) are also amenable for the re-
placement of nondeterminism by probabilistic choices. Confusion arises when the set of alternatives
to an enabled transition can be increased or decreased by the �ring of an independent transition.
Since in confusion-free nets the above does not happen, the set of alternatives can be equipped
with probability distributions [Varacca et al. 2006] and it can be shown that the ordinary notion
of process coexists with such probabilities, in the sense that they meet all the items in our list of
desiderata. Unfortunately, being confusion-free is not a structural property, because it depends on
the initial marking. Consequently, determining the loci of decisions where to assign a probability
distribution over the alternatives must be done by considering all the possible dynamic executions.

Citing [Katoen and Peled 2013], dealing with confusion, concurrency and probability all together
is challenging. This is because confusion may break schedule independence and sanity checks.
The simplest example of (asymmetric) confusion is the net in Fig. 1a. Apparently, transition b is
concurrent w.r.t. a and d , but the �ring of a enables c that is in con�ict with b, while the �ring of d
de�nitively disables c , i.e., schedule independence is violated. Morally, there are two versions of b:
one that is chosen in isolation and one that requires a choice between b and c (e.g. with probabilities
pb and pc = 1 � pb). However, from the concurrency point of view, there is a single process that
comprises both a and b (as concurrent events), whose overall probability is hard to determine. If
pa is the probability of choosing a over d , then the trace �1 = a;b has probability pa · pb , while
�2 = b;a has probability 1 ·pa = pa . This means that sanity check #1 fails for this process. Moreover,
there are two other processes: one that comprises b and d as concurrent events (both its traces
b;d and d ;b have probability pd = 1 � pa) and one that comprises a and c (with a a cause of c),
whose unique underlying trace a; c has probability pa · pd = pa · (1 � pb). From sanity check #2, we
expect the sum of probabilities of all processes to be 1: this is the case if the process with a and b is
assigned probability pa · pb , i.e. if the trace �2 is not admissible.
As a general guideline, if the �ring of a transition changes the set of alternatives available at

some other site of the net, then it means that such transition is best executed before the choice at
the other site happens, i.e., some causal dependency enforcing a suitable ordering of events must
be added. According to this intuition, the idea is to delay the execution of b until all its potential
alternatives have been enabled or disabled, so that the choice of �ring b can be unambiguously
equipped with di�erent probability distributions in each case. In this sense, b should never be

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Confusion
b is concurrent wrt. a and d

initially: b enabled  
possibly in conflict with c

the firing of a changes the
alternatives to b 
(c becomes executable)

also the firing of d changes
the possible alternatives to b 
(c never executable)

•  ON are unfoldings of
cyclic nets

•  places have at most one
input arc

•  multiple output arcs from
places represent choices

•  1-safe: at most one token
per place

•  nondeterministic behavior

Deterministic Processes

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 10	

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Concurrency and Probability: Removing Confusion, Compositionally 1:3

•
✏✏ ##

1

a

✏✏

d
✏✏•

✏✏ ##

2

✏✏

3 6

b
✏✏

c

✏✏

4 5

a

✏✏

d

b c

(a) Asymmetric confusion

•
{{ ##

1

a

✏✏

d
✏✏

!!

✏✏ ##

3 •
✏✏{{ ##

2 6

}}

¬c

c

✏✏

b1
✏✏

b2

{{

5 4

a

}}

✏✏

d

✏✏

b1 c b2

(b) Removing confusion

•
✏✏ ##

1 C1

a

✏✏

d
✏✏

✏✏

3 6

•
✏✏ ##

2
C2C3

b
✏✏

c

✏✏

4 5

(c) S-cells

Fig. 1. A basic example: some nets (top) and their event structures (bo�om)

By a similar reasoning, confusion-free Petri nets (see Section 2.2) are also amenable for the re-
placement of nondeterminism by probabilistic choices. Confusion arises when the set of alternatives
to an enabled transition can be increased or decreased by the �ring of an independent transition.
Since in confusion-free nets the above does not happen, the set of alternatives can be equipped
with probability distributions [Varacca et al. 2006] and it can be shown that the ordinary notion
of process coexists with such probabilities, in the sense that they meet all the items in our list of
desiderata. Unfortunately, being confusion-free is not a structural property, because it depends on
the initial marking. Consequently, determining the loci of decisions where to assign a probability
distribution over the alternatives must be done by considering all the possible dynamic executions.

Citing [Katoen and Peled 2013], dealing with confusion, concurrency and probability all together
is challenging. This is because confusion may break schedule independence and sanity checks.
The simplest example of (asymmetric) confusion is the net in Fig. 1a. Apparently, transition b is
concurrent w.r.t. a and d , but the �ring of a enables c that is in con�ict with b, while the �ring of d
de�nitively disables c , i.e., schedule independence is violated. Morally, there are two versions of b:
one that is chosen in isolation and one that requires a choice between b and c (e.g. with probabilities
pb and pc = 1 � pb). However, from the concurrency point of view, there is a single process that
comprises both a and b (as concurrent events), whose overall probability is hard to determine. If
pa is the probability of choosing a over d , then the trace �1 = a;b has probability pa · pb , while
�2 = b;a has probability 1 ·pa = pa . This means that sanity check #1 fails for this process. Moreover,
there are two other processes: one that comprises b and d as concurrent events (both its traces
b;d and d ;b have probability pd = 1 � pa) and one that comprises a and c (with a a cause of c),
whose unique underlying trace a; c has probability pa · pd = pa · (1 � pb). From sanity check #2, we
expect the sum of probabilities of all processes to be 1: this is the case if the process with a and b is
assigned probability pa · pb , i.e. if the trace �2 is not admissible.
As a general guideline, if the �ring of a transition changes the set of alternatives available at

some other site of the net, then it means that such transition is best executed before the choice at
the other site happens, i.e., some causal dependency enforcing a suitable ordering of events must
be added. According to this intuition, the idea is to delay the execution of b until all its potential
alternatives have been enabled or disabled, so that the choice of �ring b can be unambiguously
equipped with di�erent probability distributions in each case. In this sense, b should never be

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Confusion
b is concurrent wrt. a and d

initially: b enabled  
possibly in conflict with c

the firing of a changes the
alternatives to b 
(c becomes executable)

also the firing of d changes
the possible alternatives to b 
(c never executable)

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Concurrency and Probability: Removing Confusion, Compositionally 1:3

•
✏✏ ##

1

a

✏✏

d
✏✏•

✏✏ ##

2

✏✏

3 6

b
✏✏

c

✏✏

4 5

a

✏✏

d

b c

(a) Asymmetric confusion

•
{{ ##

1

a

✏✏

d
✏✏

!!

✏✏ ##

3 •
✏✏{{ ##

2 6

}}

¬c

c

✏✏

b1
✏✏

b2

{{

5 4

a

}}

✏✏

d

✏✏

b1 c b2

(b) Removing confusion

•
✏✏ ##

1 C1

a

✏✏

d
✏✏

✏✏

3 6

•
✏✏ ##

2
C2C3

b
✏✏

c

✏✏

4 5

(c) S-cells

Fig. 1. A basic example: some nets (top) and their event structures (bo�om)

By a similar reasoning, confusion-free Petri nets (see Section 2.2) are also amenable for the re-
placement of nondeterminism by probabilistic choices. Confusion arises when the set of alternatives
to an enabled transition can be increased or decreased by the �ring of an independent transition.
Since in confusion-free nets the above does not happen, the set of alternatives can be equipped
with probability distributions [Varacca et al. 2006] and it can be shown that the ordinary notion
of process coexists with such probabilities, in the sense that they meet all the items in our list of
desiderata. Unfortunately, being confusion-free is not a structural property, because it depends on
the initial marking. Consequently, determining the loci of decisions where to assign a probability
distribution over the alternatives must be done by considering all the possible dynamic executions.

Citing [Katoen and Peled 2013], dealing with confusion, concurrency and probability all together
is challenging. This is because confusion may break schedule independence and sanity checks.
The simplest example of (asymmetric) confusion is the net in Fig. 1a. Apparently, transition b is
concurrent w.r.t. a and d , but the �ring of a enables c that is in con�ict with b, while the �ring of d
de�nitively disables c , i.e., schedule independence is violated. Morally, there are two versions of b:
one that is chosen in isolation and one that requires a choice between b and c (e.g. with probabilities
pb and pc = 1 � pb). However, from the concurrency point of view, there is a single process that
comprises both a and b (as concurrent events), whose overall probability is hard to determine. If
pa is the probability of choosing a over d , then the trace �1 = a;b has probability pa · pb , while
�2 = b;a has probability 1 ·pa = pa . This means that sanity check #1 fails for this process. Moreover,
there are two other processes: one that comprises b and d as concurrent events (both its traces
b;d and d ;b have probability pd = 1 � pa) and one that comprises a and c (with a a cause of c),
whose unique underlying trace a; c has probability pa · pd = pa · (1 � pb). From sanity check #2, we
expect the sum of probabilities of all processes to be 1: this is the case if the process with a and b is
assigned probability pa · pb , i.e. if the trace �2 is not admissible.
As a general guideline, if the �ring of a transition changes the set of alternatives available at

some other site of the net, then it means that such transition is best executed before the choice at
the other site happens, i.e., some causal dependency enforcing a suitable ordering of events must
be added. According to this intuition, the idea is to delay the execution of b until all its potential
alternatives have been enabled or disabled, so that the choice of �ring b can be unambiguously
equipped with di�erent probability distributions in each case. In this sense, b should never be

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Confusion
b is concurrent wrt. a and d

initially: b enabled  
possibly in conflict with c

the firing of a changes the
alternatives to b 
(c becomes executable)

also the firing of d changes
the possible alternatives to b 
(c never executable)

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Concurrency and Probability: Removing Confusion, Compositionally 1:3

•
✏✏ ##

1

a

✏✏

d
✏✏•

✏✏ ##

2

✏✏

3 6

b
✏✏

c

✏✏

4 5

a

✏✏

d

b c

(a) Asymmetric confusion

•
{{ ##

1

a

✏✏

d
✏✏

!!

✏✏ ##

3 •
✏✏{{ ##

2 6

}}

¬c

c

✏✏

b1
✏✏

b2

{{

5 4

a

}}

✏✏

d

✏✏

b1 c b2

(b) Removing confusion

•
✏✏ ##

1 C1

a

✏✏

d
✏✏

✏✏

3 6

•
✏✏ ##

2
C2C3

b
✏✏

c

✏✏

4 5

(c) S-cells

Fig. 1. A basic example: some nets (top) and their event structures (bo�om)

By a similar reasoning, confusion-free Petri nets (see Section 2.2) are also amenable for the re-
placement of nondeterminism by probabilistic choices. Confusion arises when the set of alternatives
to an enabled transition can be increased or decreased by the �ring of an independent transition.
Since in confusion-free nets the above does not happen, the set of alternatives can be equipped
with probability distributions [Varacca et al. 2006] and it can be shown that the ordinary notion
of process coexists with such probabilities, in the sense that they meet all the items in our list of
desiderata. Unfortunately, being confusion-free is not a structural property, because it depends on
the initial marking. Consequently, determining the loci of decisions where to assign a probability
distribution over the alternatives must be done by considering all the possible dynamic executions.

Citing [Katoen and Peled 2013], dealing with confusion, concurrency and probability all together
is challenging. This is because confusion may break schedule independence and sanity checks.
The simplest example of (asymmetric) confusion is the net in Fig. 1a. Apparently, transition b is
concurrent w.r.t. a and d , but the �ring of a enables c that is in con�ict with b, while the �ring of d
de�nitively disables c , i.e., schedule independence is violated. Morally, there are two versions of b:
one that is chosen in isolation and one that requires a choice between b and c (e.g. with probabilities
pb and pc = 1 � pb). However, from the concurrency point of view, there is a single process that
comprises both a and b (as concurrent events), whose overall probability is hard to determine. If
pa is the probability of choosing a over d , then the trace �1 = a;b has probability pa · pb , while
�2 = b;a has probability 1 ·pa = pa . This means that sanity check #1 fails for this process. Moreover,
there are two other processes: one that comprises b and d as concurrent events (both its traces
b;d and d ;b have probability pd = 1 � pa) and one that comprises a and c (with a a cause of c),
whose unique underlying trace a; c has probability pa · pd = pa · (1 � pb). From sanity check #2, we
expect the sum of probabilities of all processes to be 1: this is the case if the process with a and b is
assigned probability pa · pb , i.e. if the trace �2 is not admissible.
As a general guideline, if the �ring of a transition changes the set of alternatives available at

some other site of the net, then it means that such transition is best executed before the choice at
the other site happens, i.e., some causal dependency enforcing a suitable ordering of events must
be added. According to this intuition, the idea is to delay the execution of b until all its potential
alternatives have been enabled or disabled, so that the choice of �ring b can be unambiguously
equipped with di�erent probability distributions in each case. In this sense, b should never be

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Confusion
b is concurrent wrt. a and d

initially: b enabled  
possibly in conflict with c

the firing of a changes the
alternatives to b 
(c becomes executable)

also the firing of d changes
the possible alternatives to b 
(c never executable)

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Concurrency and Probability: Removing Confusion, Compositionally 1:3

•
✏✏ ##

1

a

✏✏

d
✏✏•

✏✏ ##

2

✏✏

3 6

b
✏✏

c

✏✏

4 5

a

✏✏

d

b c

(a) Asymmetric confusion

•
{{ ##

1

a

✏✏

d
✏✏

!!

✏✏ ##

3 •
✏✏{{ ##

2 6

}}

¬c

c

✏✏

b1
✏✏

b2

{{

5 4

a

}}

✏✏

d

✏✏

b1 c b2

(b) Removing confusion

•
✏✏ ##

1 C1

a

✏✏

d
✏✏

✏✏

3 6

•
✏✏ ##

2
C2C3

b
✏✏

c

✏✏

4 5

(c) S-cells

Fig. 1. A basic example: some nets (top) and their event structures (bo�om)

By a similar reasoning, confusion-free Petri nets (see Section 2.2) are also amenable for the re-
placement of nondeterminism by probabilistic choices. Confusion arises when the set of alternatives
to an enabled transition can be increased or decreased by the �ring of an independent transition.
Since in confusion-free nets the above does not happen, the set of alternatives can be equipped
with probability distributions [Varacca et al. 2006] and it can be shown that the ordinary notion
of process coexists with such probabilities, in the sense that they meet all the items in our list of
desiderata. Unfortunately, being confusion-free is not a structural property, because it depends on
the initial marking. Consequently, determining the loci of decisions where to assign a probability
distribution over the alternatives must be done by considering all the possible dynamic executions.

Citing [Katoen and Peled 2013], dealing with confusion, concurrency and probability all together
is challenging. This is because confusion may break schedule independence and sanity checks.
The simplest example of (asymmetric) confusion is the net in Fig. 1a. Apparently, transition b is
concurrent w.r.t. a and d , but the �ring of a enables c that is in con�ict with b, while the �ring of d
de�nitively disables c , i.e., schedule independence is violated. Morally, there are two versions of b:
one that is chosen in isolation and one that requires a choice between b and c (e.g. with probabilities
pb and pc = 1 � pb). However, from the concurrency point of view, there is a single process that
comprises both a and b (as concurrent events), whose overall probability is hard to determine. If
pa is the probability of choosing a over d , then the trace �1 = a;b has probability pa · pb , while
�2 = b;a has probability 1 ·pa = pa . This means that sanity check #1 fails for this process. Moreover,
there are two other processes: one that comprises b and d as concurrent events (both its traces
b;d and d ;b have probability pd = 1 � pa) and one that comprises a and c (with a a cause of c),
whose unique underlying trace a; c has probability pa · pd = pa · (1 � pb). From sanity check #2, we
expect the sum of probabilities of all processes to be 1: this is the case if the process with a and b is
assigned probability pa · pb , i.e. if the trace �2 is not admissible.
As a general guideline, if the �ring of a transition changes the set of alternatives available at

some other site of the net, then it means that such transition is best executed before the choice at
the other site happens, i.e., some causal dependency enforcing a suitable ordering of events must
be added. According to this intuition, the idea is to delay the execution of b until all its potential
alternatives have been enabled or disabled, so that the choice of �ring b can be unambiguously
equipped with di�erent probability distributions in each case. In this sense, b should never be

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Confusion
b is concurrent wrt. a and d

initially: b enabled  
possibly in conflict with c

the firing of a changes the
alternatives to b 
(c becomes executable)

also the firing of d changes
the possible alternatives to b 
(c never executable)

Confusion: An Example

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 11	

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Concurrency and Probability: Removing Confusion, Compositionally 1:3

•
✏✏ ##

1

a

✏✏

d
✏✏•

✏✏ ##

2

✏✏

3 6

b
✏✏

c

✏✏

4 5

a

✏✏

d

b c

(a) Asymmetric confusion

•
{{ ##

1

a

✏✏

d
✏✏

!!

✏✏ ##

3 •
✏✏{{ ##

2 6

}}

¬c

c

✏✏

b1
✏✏

b2

{{

5 4

a

}}

✏✏

d

✏✏

b1 c b2

(b) Removing confusion

•
✏✏ ##

1 C1

a

✏✏

d
✏✏

✏✏

3 6

•
✏✏ ##

2
C2C3

b
✏✏

c

✏✏

4 5

(c) S-cells

Fig. 1. A basic example: some nets (top) and their event structures (bo�om)

By a similar reasoning, confusion-free Petri nets (see Section 2.2) are also amenable for the re-
placement of nondeterminism by probabilistic choices. Confusion arises when the set of alternatives
to an enabled transition can be increased or decreased by the �ring of an independent transition.
Since in confusion-free nets the above does not happen, the set of alternatives can be equipped
with probability distributions [Varacca et al. 2006] and it can be shown that the ordinary notion
of process coexists with such probabilities, in the sense that they meet all the items in our list of
desiderata. Unfortunately, being confusion-free is not a structural property, because it depends on
the initial marking. Consequently, determining the loci of decisions where to assign a probability
distribution over the alternatives must be done by considering all the possible dynamic executions.

Citing [Katoen and Peled 2013], dealing with confusion, concurrency and probability all together
is challenging. This is because confusion may break schedule independence and sanity checks.
The simplest example of (asymmetric) confusion is the net in Fig. 1a. Apparently, transition b is
concurrent w.r.t. a and d , but the �ring of a enables c that is in con�ict with b, while the �ring of d
de�nitively disables c , i.e., schedule independence is violated. Morally, there are two versions of b:
one that is chosen in isolation and one that requires a choice between b and c (e.g. with probabilities
pb and pc = 1 � pb). However, from the concurrency point of view, there is a single process that
comprises both a and b (as concurrent events), whose overall probability is hard to determine. If
pa is the probability of choosing a over d , then the trace �1 = a;b has probability pa · pb , while
�2 = b;a has probability 1 ·pa = pa . This means that sanity check #1 fails for this process. Moreover,
there are two other processes: one that comprises b and d as concurrent events (both its traces
b;d and d ;b have probability pd = 1 � pa) and one that comprises a and c (with a a cause of c),
whose unique underlying trace a; c has probability pa · pd = pa · (1 � pb). From sanity check #2, we
expect the sum of probabilities of all processes to be 1: this is the case if the process with a and b is
assigned probability pa · pb , i.e. if the trace �2 is not admissible.
As a general guideline, if the �ring of a transition changes the set of alternatives available at

some other site of the net, then it means that such transition is best executed before the choice at
the other site happens, i.e., some causal dependency enforcing a suitable ordering of events must
be added. According to this intuition, the idea is to delay the execution of b until all its potential
alternatives have been enabled or disabled, so that the choice of �ring b can be unambiguously
equipped with di�erent probability distributions in each case. In this sense, b should never be

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Confusion
b is concurrent wrt. a and d

initially: b enabled  
possibly in conflict with c

the firing of a changes the
alternatives to b 
(c becomes executable)

also the firing of d changes
the possible alternatives to b 
(c never executable)

•  a and b are concurrent
•  ab and ba are equivalent

•  but:

•  ab choses
•  a over d

•  c becomes executable
•  b over c

•  ba choses
•  no choice for b

•  a over d

•  ?! ba forbidden?

Confusion: The Solution

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 12	

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Concurrency and Probability: Removing Confusion, Compositionally 1:3

•
✏✏ ##

1

a

✏✏

d
✏✏•

✏✏ ##

2

✏✏

3 6

b
✏✏

c

✏✏

4 5

a

✏✏

d

b c

(a) Asymmetric confusion

•
{{ ##

1

a

✏✏

d
✏✏

!!

✏✏ ##

3 •
✏✏{{ ##

2 6

}}

¬c

c

✏✏

b1
✏✏

b2

{{

5 4

a

}}

✏✏

d

✏✏

b1 c b2

(b) Removing confusion

•
✏✏ ##

1 C1

a

✏✏

d
✏✏

✏✏

3 6

•
✏✏ ##

2
C2C3

b
✏✏

c

✏✏

4 5

(c) S-cells

Fig. 1. A basic example: some nets (top) and their event structures (bo�om)

By a similar reasoning, confusion-free Petri nets (see Section 2.2) are also amenable for the re-
placement of nondeterminism by probabilistic choices. Confusion arises when the set of alternatives
to an enabled transition can be increased or decreased by the �ring of an independent transition.
Since in confusion-free nets the above does not happen, the set of alternatives can be equipped
with probability distributions [Varacca et al. 2006] and it can be shown that the ordinary notion
of process coexists with such probabilities, in the sense that they meet all the items in our list of
desiderata. Unfortunately, being confusion-free is not a structural property, because it depends on
the initial marking. Consequently, determining the loci of decisions where to assign a probability
distribution over the alternatives must be done by considering all the possible dynamic executions.

Citing [Katoen and Peled 2013], dealing with confusion, concurrency and probability all together
is challenging. This is because confusion may break schedule independence and sanity checks.
The simplest example of (asymmetric) confusion is the net in Fig. 1a. Apparently, transition b is
concurrent w.r.t. a and d , but the �ring of a enables c that is in con�ict with b, while the �ring of d
de�nitively disables c , i.e., schedule independence is violated. Morally, there are two versions of b:
one that is chosen in isolation and one that requires a choice between b and c (e.g. with probabilities
pb and pc = 1 � pb). However, from the concurrency point of view, there is a single process that
comprises both a and b (as concurrent events), whose overall probability is hard to determine. If
pa is the probability of choosing a over d , then the trace �1 = a;b has probability pa · pb , while
�2 = b;a has probability 1 ·pa = pa . This means that sanity check #1 fails for this process. Moreover,
there are two other processes: one that comprises b and d as concurrent events (both its traces
b;d and d ;b have probability pd = 1 � pa) and one that comprises a and c (with a a cause of c),
whose unique underlying trace a; c has probability pa · pd = pa · (1 � pb). From sanity check #2, we
expect the sum of probabilities of all processes to be 1: this is the case if the process with a and b is
assigned probability pa · pb , i.e. if the trace �2 is not admissible.
As a general guideline, if the �ring of a transition changes the set of alternatives available at

some other site of the net, then it means that such transition is best executed before the choice at
the other site happens, i.e., some causal dependency enforcing a suitable ordering of events must
be added. According to this intuition, the idea is to delay the execution of b until all its potential
alternatives have been enabled or disabled, so that the choice of �ring b can be unambiguously
equipped with di�erent probability distributions in each case. In this sense, b should never be

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Solution: b a not feasible
b is not concurrent w.r.t. a
and d

the decision to fire b better
be postponed after a or d

Abbes & Benveniste Executions

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 13	

!  partially ordered branching
cells
!  transitive closure of transitions wrt.

!  causality, mutual exclusion
!  equivalence classes are BC

!  => decision points
!  new cells may appear

!  {a,d} ⊑ {b,c}
!  {b,c} cannot be executed
!  if a is chosen,

!  cell {b,c} is left
!  if d is chosen

!  a and c disappear
!  new cell {b} appears

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Concurrency and Probability: Removing Confusion, Compositionally 1:3

•
✏✏ ##

1

a

✏✏

d
✏✏•

✏✏ ##

2

✏✏

3 6

b
✏✏

c

✏✏

4 5

a

✏✏

d

b c

(a) Asymmetric confusion

•
{{ ##

1

a

✏✏

d
✏✏

!!

✏✏ ##

3 •
✏✏{{ ##

2 6

}}

¬c

c

✏✏

b1
✏✏

b2

{{

5 4

a

}}

✏✏

d

✏✏

b1 c b2

(b) Removing confusion

•
✏✏ ##

1 C1

a

✏✏

d
✏✏

✏✏

3 6

•
✏✏ ##

2
C2C3

b
✏✏

c

✏✏

4 5

(c) S-cells

Fig. 1. A basic example: some nets (top) and their event structures (bo�om)

By a similar reasoning, confusion-free Petri nets (see Section 2.2) are also amenable for the re-
placement of nondeterminism by probabilistic choices. Confusion arises when the set of alternatives
to an enabled transition can be increased or decreased by the �ring of an independent transition.
Since in confusion-free nets the above does not happen, the set of alternatives can be equipped
with probability distributions [Varacca et al. 2006] and it can be shown that the ordinary notion
of process coexists with such probabilities, in the sense that they meet all the items in our list of
desiderata. Unfortunately, being confusion-free is not a structural property, because it depends on
the initial marking. Consequently, determining the loci of decisions where to assign a probability
distribution over the alternatives must be done by considering all the possible dynamic executions.

Citing [Katoen and Peled 2013], dealing with confusion, concurrency and probability all together
is challenging. This is because confusion may break schedule independence and sanity checks.
The simplest example of (asymmetric) confusion is the net in Fig. 1a. Apparently, transition b is
concurrent w.r.t. a and d , but the �ring of a enables c that is in con�ict with b, while the �ring of d
de�nitively disables c , i.e., schedule independence is violated. Morally, there are two versions of b:
one that is chosen in isolation and one that requires a choice between b and c (e.g. with probabilities
pb and pc = 1 � pb). However, from the concurrency point of view, there is a single process that
comprises both a and b (as concurrent events), whose overall probability is hard to determine. If
pa is the probability of choosing a over d , then the trace �1 = a;b has probability pa · pb , while
�2 = b;a has probability 1 ·pa = pa . This means that sanity check #1 fails for this process. Moreover,
there are two other processes: one that comprises b and d as concurrent events (both its traces
b;d and d ;b have probability pd = 1 � pa) and one that comprises a and c (with a a cause of c),
whose unique underlying trace a; c has probability pa · pd = pa · (1 � pb). From sanity check #2, we
expect the sum of probabilities of all processes to be 1: this is the case if the process with a and b is
assigned probability pa · pb , i.e. if the trace �2 is not admissible.
As a general guideline, if the �ring of a transition changes the set of alternatives available at

some other site of the net, then it means that such transition is best executed before the choice at
the other site happens, i.e., some causal dependency enforcing a suitable ordering of events must
be added. According to this intuition, the idea is to delay the execution of b until all its potential
alternatives have been enabled or disabled, so that the choice of �ring b can be unambiguously
equipped with di�erent probability distributions in each case. In this sense, b should never be

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Confusion
b is concurrent wrt. a and d

initially: b enabled  
possibly in conflict with c

the firing of a changes the
alternatives to b 
(c becomes executable)

also the firing of d changes
the possible alternatives to b 
(c never executable)

Roadmap

!  Concurrency: a useful abstraction level
!  Equivalent computations may have different decision

points and different probabilities
!  Petri occurrence nets with confusion
!  Our result: compiling a net with confusion into one

without confusion
!  Additional causal links for transmitting negative

conditions
!  The resulting net is a net with persistence for handling OR

causality
!  Conclusion and future work

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 14	

Our Aim

!  pure probabilistic model: no nondeterminism, no
optimal scheduler

!  speed independence: no stochastic component
!  concurrent choices: they must be independent
!  complete concurrency: all and only the linearizations of

the partial ordering of causes are executable
!  concurrency is a correct abstraction: probability of a

concurrent deterministic computation is independent
from the order of execution

!  probabilities sum to 1: the sum of the probabilities
assigned to all deterministic processes is 1

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 15	

Our Contribution I

!  generic occurrence net => confusion-free net
!  modular construction in three phases

!  build structural branching cells (s-cells)
!  static, hierarchical, compositional vs. A&B dynamic

!  from s-cells to dynamic nets
!  certain transitions are dynamically generated

!  from dynamic nets to nets with persistence
!  certain places, when full, cannot become empty

!  recover A&B, but: they interpret, we compile

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 16	

Our Contribution II

Dynamic nets:
!  Asperti & Busi
!  certain transitions are dynamically generated

Nets with persistency
!  Crazzolara & Winskel

!  tokens in a persistent place
!  are indistinguishable one from the other (collective)
!  cannot be consumed
!  a token carries infinite weight

!  dynamics nets: a commodity
!  nets with persistency: a necessity

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 17	

Roadmap

!  Concurrency: a useful abstraction level
!  Equivalent computations may have different decision

points and different probabilities
!  Petri occurrence nets with confusion
!  Our result: compiling a net with confusion into one

without confusion
!  Additional causal links for transmitting negative

conditions
!  The resulting net is a net with persistence for handling OR

causality
!  Conclusion and future work

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 18	

Our Contribution III

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 19	

forbid unwanted transitions
!  additional causal links
!  places w. negative information
!  at the beginning b1 and b2 are

not enabled
!  {a,d} cell: if d is executed

!  ¬3 is activated
!  b1 is enabled via pb: no alternatives

!  if a is executed
!  b2 and c are both enabled (exclusively)
!  here b2 is an alternative to c

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Concurrency and Probability: Removing Confusion, Compositionally 1:3

•
✏✏ ##

1

a

✏✏

d
✏✏•

✏✏ ##

2

✏✏

3 6

b
✏✏

c

✏✏

4 5

a

✏✏

d

b c

(a) Asymmetric confusion

•
{{ ##

1

a

✏✏

d
✏✏

!!

✏✏ ##

3 •
✏✏{{ ##

2 6

}}

¬c

c

✏✏

b1
✏✏

b2

{{

5 4

a

}}

✏✏

d

✏✏

b1 c b2

(b) Removing confusion

•
✏✏ ##

1 C1

a

✏✏

d
✏✏

✏✏

3 6

•
✏✏ ##

2
C2C3

b
✏✏

c

✏✏

4 5

(c) S-cells

Fig. 1. A basic example: some nets (top) and their event structures (bo�om)

By a similar reasoning, confusion-free Petri nets (see Section 2.2) are also amenable for the re-
placement of nondeterminism by probabilistic choices. Confusion arises when the set of alternatives
to an enabled transition can be increased or decreased by the �ring of an independent transition.
Since in confusion-free nets the above does not happen, the set of alternatives can be equipped
with probability distributions [Varacca et al. 2006] and it can be shown that the ordinary notion
of process coexists with such probabilities, in the sense that they meet all the items in our list of
desiderata. Unfortunately, being confusion-free is not a structural property, because it depends on
the initial marking. Consequently, determining the loci of decisions where to assign a probability
distribution over the alternatives must be done by considering all the possible dynamic executions.

Citing [Katoen and Peled 2013], dealing with confusion, concurrency and probability all together
is challenging. This is because confusion may break schedule independence and sanity checks.
The simplest example of (asymmetric) confusion is the net in Fig. 1a. Apparently, transition b is
concurrent w.r.t. a and d , but the �ring of a enables c that is in con�ict with b, while the �ring of d
de�nitively disables c , i.e., schedule independence is violated. Morally, there are two versions of b:
one that is chosen in isolation and one that requires a choice between b and c (e.g. with probabilities
pb and pc = 1 � pb). However, from the concurrency point of view, there is a single process that
comprises both a and b (as concurrent events), whose overall probability is hard to determine. If
pa is the probability of choosing a over d , then the trace �1 = a;b has probability pa · pb , while
�2 = b;a has probability 1 ·pa = pa . This means that sanity check #1 fails for this process. Moreover,
there are two other processes: one that comprises b and d as concurrent events (both its traces
b;d and d ;b have probability pd = 1 � pa) and one that comprises a and c (with a a cause of c),
whose unique underlying trace a; c has probability pa · pd = pa · (1 � pb). From sanity check #2, we
expect the sum of probabilities of all processes to be 1: this is the case if the process with a and b is
assigned probability pa · pb , i.e. if the trace �2 is not admissible.
As a general guideline, if the �ring of a transition changes the set of alternatives available at

some other site of the net, then it means that such transition is best executed before the choice at
the other site happens, i.e., some causal dependency enforcing a suitable ordering of events must
be added. According to this intuition, the idea is to delay the execution of b until all its potential
alternatives have been enabled or disabled, so that the choice of �ring b can be unambiguously
equipped with di�erent probability distributions in each case. In this sense, b should never be

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Confusion
b is concurrent wrt. a and d

initially: b enabled  
possibly in conflict with c

the firing of a changes the
alternatives to b 
(c becomes executable)

also the firing of d changes
the possible alternatives to b 
(c never executable)

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

•
✏✏

''

1

✏✏

1

a

✏✏

��

✏✏

��

d

✏✏

��

3 6 3 6

(a) S-cell C1

✏✏

2

✏✏

3
•

}} ✏✏ !!

2

}} ✏✏

3

!!

%%

✏✏

// b

✏✏

b

vv

}}

c

✏✏

}}

5 4 5 4

(b) S-cell C2 and its sub s-cell C3

•
|| ""

1

d

||

✏✏

a

|| ""

✏✏

3 6
6

•
|| ✏✏ ""

2

|| ✏✏

3

✏✏

// //

pb
b
✏✏

b
zz

||

c

✏✏

||

5 4 5 4

(c) Flat net (pruned)

•
⌧⌧

1

a

⇥⇥ ⌧⌧

6
•
✏✏

2

��

3

b
��

��

5 4

(d) a � b

•
��

1

a

⇥⇥

��

6
•
��

2

✏✏

3

c

✏✏

��

5 4

(e) a � c

•
~~

1

d

~~

✏✏

✏✏

3 6 •
��

2

✏✏

// //

pb
b
✏✏

5 4

(f) d � b

Fig. 5. S-cells, confusion-free p-net and processes for the net in Fig. 1a

our approach the transition t is created when u disappears. Dynamic nets can then be �attened by
adding an enabling persistent place pt to any (dynamic) transition t .

A taste of the approach exempli�ed on the simplest case of asymmetric confusion is given next,
while the second example (with OR dependencies) will serve as a step-by-step, running example.

A Taste of the Approach. We sketch the main ideas over the net in Fig. 1a. In our approach, there
are two main s-cells: C1 associated with {a,d }, and C2 with {b, c}. There is also a nested s-cell C3
with {b} that arises from the decomposition of the subnet NC2 3. S-cells are shown in Fig. 1c. Their
dynamic nets are in Figs. 5a–5b, where auxiliary transitions are in grey and unlabeled. Places 1 and
2 (and their transitions) are irrelevant, because the places 1 and 2 are already marked. However,
our cells being static, we need to introduce auxiliary places in all cases. Note that in Fig. 5b there is
an arc between two transitions. This is because the target transition is dynamically created when
the other is executed (hence the dashed border). Also note that there are two transitions with the
same label b: one is associated with the s-cell C2, the other with the unique s-cell of NC2 3 and is
released when the place 3 becomes marked.

After the s-cells are assembled and �attened we get the p-net in Fig. 5c (where irrelevant nodes
are pruned). Initially, only a and d are enabled. If a is �red, we reach the marking {2, 3, 6} where
b : {2, 3} ! {4, 5} and c : {2, 3} ! {4, 5} are enabled (and in con�ict). If d is �red, we reach the
marking {2, 3, 6} where only the auxiliary transition can be �red, enabling b : {2, pb } ! 4. The net
is confusion-free, as every con�ict involves transitions with the same preset. For example, as the
places 3 and 3 (and thus pb) are never marked in a same run, the transitions b : {2, 3} ! {4, 5} and
b : {2, pb } ! 4 will never compete for the token in 2.

Last, Figs. 5d–5f show the maximal processes of the net in Fig. 5c. It is evident that b can be
executed neither before a nor before d (and the trace b;a is not legal and not executable).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

•
✏✏

''

1

✏✏

1

a

✏✏

��

✏✏

��

d

✏✏

��

3 6 3 6

(a) S-cell C1

✏✏

2

✏✏

3
•

}} ✏✏ !!

2

}} ✏✏

3

!!

%%

✏✏

// b

✏✏

b

vv

}}

c

✏✏

}}

5 4 5 4

(b) S-cell C2 and its sub s-cell C3

•
|| ""

1

d

||

✏✏

a

|| ""

✏✏

3 6
6

•
|| ✏✏ ""

2

|| ✏✏

3

✏✏

// //

pb
b
✏✏

b
zz

||

c

✏✏

||

5 4 5 4

(c) Flat net (pruned)

•
⌧⌧

1

a

⇥⇥ ⌧⌧

6
•
✏✏

2

��

3

b
��

��

5 4

(d) a � b

•
��

1

a

⇥⇥

��

6
•
��

2

✏✏

3

c

✏✏

��

5 4

(e) a � c

•
~~

1

d

~~

✏✏

✏✏

3 6 •
��

2

✏✏

// //

pb
b
✏✏

5 4

(f) d � b

Fig. 5. S-cells, confusion-free p-net and processes for the net in Fig. 1a

our approach the transition t is created when u disappears. Dynamic nets can then be �attened by
adding an enabling persistent place pt to any (dynamic) transition t .

A taste of the approach exempli�ed on the simplest case of asymmetric confusion is given next,
while the second example (with OR dependencies) will serve as a step-by-step, running example.

A Taste of the Approach. We sketch the main ideas over the net in Fig. 1a. In our approach, there
are two main s-cells: C1 associated with {a,d }, and C2 with {b, c}. There is also a nested s-cell C3
with {b} that arises from the decomposition of the subnet NC2 3. S-cells are shown in Fig. 1c. Their
dynamic nets are in Figs. 5a–5b, where auxiliary transitions are in grey and unlabeled. Places 1 and
2 (and their transitions) are irrelevant, because the places 1 and 2 are already marked. However,
our cells being static, we need to introduce auxiliary places in all cases. Note that in Fig. 5b there is
an arc between two transitions. This is because the target transition is dynamically created when
the other is executed (hence the dashed border). Also note that there are two transitions with the
same label b: one is associated with the s-cell C2, the other with the unique s-cell of NC2 3 and is
released when the place 3 becomes marked.

After the s-cells are assembled and �attened we get the p-net in Fig. 5c (where irrelevant nodes
are pruned). Initially, only a and d are enabled. If a is �red, we reach the marking {2, 3, 6} where
b : {2, 3} ! {4, 5} and c : {2, 3} ! {4, 5} are enabled (and in con�ict). If d is �red, we reach the
marking {2, 3, 6} where only the auxiliary transition can be �red, enabling b : {2, pb } ! 4. The net
is confusion-free, as every con�ict involves transitions with the same preset. For example, as the
places 3 and 3 (and thus pb) are never marked in a same run, the transitions b : {2, 3} ! {4, 5} and
b : {2, pb } ! 4 will never compete for the token in 2.

Last, Figs. 5d–5f show the maximal processes of the net in Fig. 5c. It is evident that b can be
executed neither before a nor before d (and the trace b;a is not legal and not executable).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Example: processes

1 2

The Deterministic Processes

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 20	

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

•
✏✏

''

1

✏✏

1

a

✏✏

��

✏✏

��

d

✏✏

��

3 6 3 6

(a) S-cell C1

✏✏

2

✏✏

3
•

}} ✏✏ !!

2

}} ✏✏

3

!!

%%

✏✏

// b

✏✏

b

vv

}}

c

✏✏

}}

5 4 5 4

(b) S-cell C2 and its sub s-cell C3

•
|| ""

1

d

||

✏✏

a

|| ""

✏✏

3 6
6

•
|| ✏✏ ""

2

|| ✏✏

3

✏✏

// //

pb
b
✏✏

b
zz

||

c

✏✏

||

5 4 5 4

(c) Flat net (pruned)

•
⌧⌧

1

a

⇥⇥ ⌧⌧

6
•
✏✏

2

��

3

b
��

��

5 4

(d) a � b

•
��

1

a

⇥⇥

��

6
•
��

2

✏✏

3

c

✏✏

��

5 4

(e) a � c

•
~~

1

d

~~

✏✏

✏✏

3 6 •
��

2

✏✏

// //

pb
b
✏✏

5 4

(f) d � b

Fig. 5. S-cells, confusion-free p-net and processes for the net in Fig. 1a

our approach the transition t is created when u disappears. Dynamic nets can then be �attened by
adding an enabling persistent place pt to any (dynamic) transition t .

A taste of the approach exempli�ed on the simplest case of asymmetric confusion is given next,
while the second example (with OR dependencies) will serve as a step-by-step, running example.

A Taste of the Approach. We sketch the main ideas over the net in Fig. 1a. In our approach, there
are two main s-cells: C1 associated with {a,d }, and C2 with {b, c}. There is also a nested s-cell C3
with {b} that arises from the decomposition of the subnet NC2 3. S-cells are shown in Fig. 1c. Their
dynamic nets are in Figs. 5a–5b, where auxiliary transitions are in grey and unlabeled. Places 1 and
2 (and their transitions) are irrelevant, because the places 1 and 2 are already marked. However,
our cells being static, we need to introduce auxiliary places in all cases. Note that in Fig. 5b there is
an arc between two transitions. This is because the target transition is dynamically created when
the other is executed (hence the dashed border). Also note that there are two transitions with the
same label b: one is associated with the s-cell C2, the other with the unique s-cell of NC2 3 and is
released when the place 3 becomes marked.

After the s-cells are assembled and �attened we get the p-net in Fig. 5c (where irrelevant nodes
are pruned). Initially, only a and d are enabled. If a is �red, we reach the marking {2, 3, 6} where
b : {2, 3} ! {4, 5} and c : {2, 3} ! {4, 5} are enabled (and in con�ict). If d is �red, we reach the
marking {2, 3, 6} where only the auxiliary transition can be �red, enabling b : {2, pb } ! 4. The net
is confusion-free, as every con�ict involves transitions with the same preset. For example, as the
places 3 and 3 (and thus pb) are never marked in a same run, the transitions b : {2, 3} ! {4, 5} and
b : {2, pb } ! 4 will never compete for the token in 2.

Last, Figs. 5d–5f show the maximal processes of the net in Fig. 5c. It is evident that b can be
executed neither before a nor before d (and the trace b;a is not legal and not executable).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

•
✏✏

''

1

✏✏

1

a

✏✏

��

✏✏

��

d

✏✏

��

3 6 3 6

(a) S-cell C1

✏✏

2

✏✏

3
•

}} ✏✏ !!

2

}} ✏✏

3

!!

%%

✏✏

// b

✏✏

b

vv

}}

c

✏✏

}}

5 4 5 4

(b) S-cell C2 and its sub s-cell C3

•
|| ""

1

d

||

✏✏

a

|| ""

✏✏

3 6
6

•
|| ✏✏ ""

2

|| ✏✏

3

✏✏

// //

pb
b
✏✏

b
zz

||

c

✏✏

||

5 4 5 4

(c) Flat net (pruned)

•
⌧⌧

1

a

⇥⇥ ⌧⌧

6
•
✏✏

2

��

3

b
��

��

5 4

(d) a � b

•
��

1

a

⇥⇥

��

6
•
��

2

✏✏

3

c

✏✏

��

5 4

(e) a � c

•
~~

1

d

~~

✏✏

✏✏

3 6 •
��

2

✏✏

// //

pb
b
✏✏

5 4

(f) d � b

Fig. 5. S-cells, confusion-free p-net and processes for the net in Fig. 1a

our approach the transition t is created when u disappears. Dynamic nets can then be �attened by
adding an enabling persistent place pt to any (dynamic) transition t .

A taste of the approach exempli�ed on the simplest case of asymmetric confusion is given next,
while the second example (with OR dependencies) will serve as a step-by-step, running example.

A Taste of the Approach. We sketch the main ideas over the net in Fig. 1a. In our approach, there
are two main s-cells: C1 associated with {a,d }, and C2 with {b, c}. There is also a nested s-cell C3
with {b} that arises from the decomposition of the subnet NC2 3. S-cells are shown in Fig. 1c. Their
dynamic nets are in Figs. 5a–5b, where auxiliary transitions are in grey and unlabeled. Places 1 and
2 (and their transitions) are irrelevant, because the places 1 and 2 are already marked. However,
our cells being static, we need to introduce auxiliary places in all cases. Note that in Fig. 5b there is
an arc between two transitions. This is because the target transition is dynamically created when
the other is executed (hence the dashed border). Also note that there are two transitions with the
same label b: one is associated with the s-cell C2, the other with the unique s-cell of NC2 3 and is
released when the place 3 becomes marked.

After the s-cells are assembled and �attened we get the p-net in Fig. 5c (where irrelevant nodes
are pruned). Initially, only a and d are enabled. If a is �red, we reach the marking {2, 3, 6} where
b : {2, 3} ! {4, 5} and c : {2, 3} ! {4, 5} are enabled (and in con�ict). If d is �red, we reach the
marking {2, 3, 6} where only the auxiliary transition can be �red, enabling b : {2, pb } ! 4. The net
is confusion-free, as every con�ict involves transitions with the same preset. For example, as the
places 3 and 3 (and thus pb) are never marked in a same run, the transitions b : {2, 3} ! {4, 5} and
b : {2, pb } ! 4 will never compete for the token in 2.

Last, Figs. 5d–5f show the maximal processes of the net in Fig. 5c. It is evident that b can be
executed neither before a nor before d (and the trace b;a is not legal and not executable).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Example: processes

Probability I

!  assign arbitrary probability distributions to decision arcs
outgoing the same non persistent places

!  transitions
!  auxiliary: probability 1
!  ordinary: product of probabilities on incoming arcs

!  normalized w.r.t. all alternatives in the same s-cell
!  probability of a process: product of its transition

probabilities

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 21	

Example I

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 22	

Example: probability99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Concurrency and Probability: Removing Confusion, Compositionally 1:3

•
✏✏ ##

1

a

✏✏

d
✏✏•

✏✏ ##

2

✏✏

3 6

b
✏✏

c

✏✏

4 5

a

✏✏

d

b c

(a) Asymmetric confusion

•
{{ ##

1

a

✏✏

d
✏✏

!!

✏✏ ##

3 •
✏✏{{ ##

2 6

}}

¬c

c

✏✏

b1
✏✏

b2

{{

5 4

a

}}

✏✏

d

✏✏

b1 c b2

(b) Removing confusion

•
✏✏ ##

1 C1

a

✏✏

d
✏✏

✏✏

3 6

•
✏✏ ##

2
C2C3

b
✏✏

c

✏✏

4 5

(c) S-cells

Fig. 1. A basic example: some nets (top) and their event structures (bo�om)

By a similar reasoning, confusion-free Petri nets (see Section 2.2) are also amenable for the re-
placement of nondeterminism by probabilistic choices. Confusion arises when the set of alternatives
to an enabled transition can be increased or decreased by the �ring of an independent transition.
Since in confusion-free nets the above does not happen, the set of alternatives can be equipped
with probability distributions [Varacca et al. 2006] and it can be shown that the ordinary notion
of process coexists with such probabilities, in the sense that they meet all the items in our list of
desiderata. Unfortunately, being confusion-free is not a structural property, because it depends on
the initial marking. Consequently, determining the loci of decisions where to assign a probability
distribution over the alternatives must be done by considering all the possible dynamic executions.

Citing [Katoen and Peled 2013], dealing with confusion, concurrency and probability all together
is challenging. This is because confusion may break schedule independence and sanity checks.
The simplest example of (asymmetric) confusion is the net in Fig. 1a. Apparently, transition b is
concurrent w.r.t. a and d , but the �ring of a enables c that is in con�ict with b, while the �ring of d
de�nitively disables c , i.e., schedule independence is violated. Morally, there are two versions of b:
one that is chosen in isolation and one that requires a choice between b and c (e.g. with probabilities
pb and pc = 1 � pb). However, from the concurrency point of view, there is a single process that
comprises both a and b (as concurrent events), whose overall probability is hard to determine. If
pa is the probability of choosing a over d , then the trace �1 = a;b has probability pa · pb , while
�2 = b;a has probability 1 ·pa = pa . This means that sanity check #1 fails for this process. Moreover,
there are two other processes: one that comprises b and d as concurrent events (both its traces
b;d and d ;b have probability pd = 1 � pa) and one that comprises a and c (with a a cause of c),
whose unique underlying trace a; c has probability pa · pd = pa · (1 � pb). From sanity check #2, we
expect the sum of probabilities of all processes to be 1: this is the case if the process with a and b is
assigned probability pa · pb , i.e. if the trace �2 is not admissible.
As a general guideline, if the �ring of a transition changes the set of alternatives available at

some other site of the net, then it means that such transition is best executed before the choice at
the other site happens, i.e., some causal dependency enforcing a suitable ordering of events must
be added. According to this intuition, the idea is to delay the execution of b until all its potential
alternatives have been enabled or disabled, so that the choice of �ring b can be unambiguously
equipped with di�erent probability distributions in each case. In this sense, b should never be

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

•
✏✏

''

1

✏✏

1

a

✏✏

��

✏✏

��

d

✏✏

��

3 6 3 6

(a) S-cell C1

✏✏

2

✏✏

3
•

}} ✏✏ !!

2

}} ✏✏

3

!!

%%

✏✏

// b

✏✏

b

vv

}}

c

✏✏

}}

5 4 5 4

(b) S-cell C2 and its sub s-cell C3

•
|| ""

1

d

||

✏✏

a

|| ""

✏✏

3 6
6

•
|| ✏✏ ""

2

|| ✏✏

3

✏✏

// //

pb
b
✏✏

b
zz

||

c

✏✏

||

5 4 5 4

(c) Flat net (pruned)

•
⌧⌧

1

a

⇥⇥ ⌧⌧

6
•
✏✏

2

��

3

b
��

��

5 4

(d) a � b

•
��

1

a

⇥⇥

��

6
•
��

2

✏✏

3

c

✏✏

��

5 4

(e) a � c

•
~~

1

d

~~

✏✏

✏✏

3 6 •
��

2

✏✏

// //

pb
b
✏✏

5 4

(f) d � b

Fig. 5. S-cells, confusion-free p-net and processes for the net in Fig. 1a

our approach the transition t is created when u disappears. Dynamic nets can then be �attened by
adding an enabling persistent place pt to any (dynamic) transition t .

A taste of the approach exempli�ed on the simplest case of asymmetric confusion is given next,
while the second example (with OR dependencies) will serve as a step-by-step, running example.

A Taste of the Approach. We sketch the main ideas over the net in Fig. 1a. In our approach, there
are two main s-cells: C1 associated with {a,d }, and C2 with {b, c}. There is also a nested s-cell C3
with {b} that arises from the decomposition of the subnet NC2 3. S-cells are shown in Fig. 1c. Their
dynamic nets are in Figs. 5a–5b, where auxiliary transitions are in grey and unlabeled. Places 1 and
2 (and their transitions) are irrelevant, because the places 1 and 2 are already marked. However,
our cells being static, we need to introduce auxiliary places in all cases. Note that in Fig. 5b there is
an arc between two transitions. This is because the target transition is dynamically created when
the other is executed (hence the dashed border). Also note that there are two transitions with the
same label b: one is associated with the s-cell C2, the other with the unique s-cell of NC2 3 and is
released when the place 3 becomes marked.

After the s-cells are assembled and �attened we get the p-net in Fig. 5c (where irrelevant nodes
are pruned). Initially, only a and d are enabled. If a is �red, we reach the marking {2, 3, 6} where
b : {2, 3} ! {4, 5} and c : {2, 3} ! {4, 5} are enabled (and in con�ict). If d is �red, we reach the
marking {2, 3, 6} where only the auxiliary transition can be �red, enabling b : {2, pb } ! 4. The net
is confusion-free, as every con�ict involves transitions with the same preset. For example, as the
places 3 and 3 (and thus pb) are never marked in a same run, the transitions b : {2, 3} ! {4, 5} and
b : {2, pb } ! 4 will never compete for the token in 2.

Last, Figs. 5d–5f show the maximal processes of the net in Fig. 5c. It is evident that b can be
executed neither before a nor before d (and the trace b;a is not legal and not executable).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

3 2

3

1

2

1

2

1

2

1

2

1 1

1

1

3

2

3

Example II

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 23	

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

•
✏✏

''

1

✏✏

1

a

✏✏

��

✏✏

��

d

✏✏

��

3 6 3 6

(a) S-cell C1

✏✏

2

✏✏

3
•

}} ✏✏ !!

2

}} ✏✏

3

!!

%%

✏✏

// b

✏✏

b

vv

}}

c

✏✏

}}

5 4 5 4

(b) S-cell C2 and its sub s-cell C3

•
|| ""

1

d

||

✏✏

a

|| ""

✏✏

3 6
6

•
|| ✏✏ ""

2

|| ✏✏

3

✏✏

// //

pb
b
✏✏

b
zz

||

c

✏✏

||

5 4 5 4

(c) Flat net (pruned)

•
⌧⌧

1

a

⇥⇥ ⌧⌧

6
•
✏✏

2

��

3

b
��

��

5 4

(d) a � b

•
��

1

a

⇥⇥

��

6
•
��

2

✏✏

3

c

✏✏

��

5 4

(e) a � c

•
~~

1

d

~~

✏✏

✏✏

3 6 •
��

2

✏✏

// //

pb
b
✏✏

5 4

(f) d � b

Fig. 5. S-cells, confusion-free p-net and processes for the net in Fig. 1a

our approach the transition t is created when u disappears. Dynamic nets can then be �attened by
adding an enabling persistent place pt to any (dynamic) transition t .

A taste of the approach exempli�ed on the simplest case of asymmetric confusion is given next,
while the second example (with OR dependencies) will serve as a step-by-step, running example.

A Taste of the Approach. We sketch the main ideas over the net in Fig. 1a. In our approach, there
are two main s-cells: C1 associated with {a,d }, and C2 with {b, c}. There is also a nested s-cell C3
with {b} that arises from the decomposition of the subnet NC2 3. S-cells are shown in Fig. 1c. Their
dynamic nets are in Figs. 5a–5b, where auxiliary transitions are in grey and unlabeled. Places 1 and
2 (and their transitions) are irrelevant, because the places 1 and 2 are already marked. However,
our cells being static, we need to introduce auxiliary places in all cases. Note that in Fig. 5b there is
an arc between two transitions. This is because the target transition is dynamically created when
the other is executed (hence the dashed border). Also note that there are two transitions with the
same label b: one is associated with the s-cell C2, the other with the unique s-cell of NC2 3 and is
released when the place 3 becomes marked.

After the s-cells are assembled and �attened we get the p-net in Fig. 5c (where irrelevant nodes
are pruned). Initially, only a and d are enabled. If a is �red, we reach the marking {2, 3, 6} where
b : {2, 3} ! {4, 5} and c : {2, 3} ! {4, 5} are enabled (and in con�ict). If d is �red, we reach the
marking {2, 3, 6} where only the auxiliary transition can be �red, enabling b : {2, pb } ! 4. The net
is confusion-free, as every con�ict involves transitions with the same preset. For example, as the
places 3 and 3 (and thus pb) are never marked in a same run, the transitions b : {2, 3} ! {4, 5} and
b : {2, pb } ! 4 will never compete for the token in 2.

Last, Figs. 5d–5f show the maximal processes of the net in Fig. 5c. It is evident that b can be
executed neither before a nor before d (and the trace b;a is not legal and not executable).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Example: processes

1

2

1

2

11

3

2

3

1

2

1

1

6
1

3

1

2

Roadmap

!  Concurrency: a useful abstraction level
!  Equivalent computations may have different decision

points and different probabilities
!  Petri occurrence nets with confusion
!  Our result: compiling a net with confusion into one

without confusion
!  Additional causal links for transmitting negative

conditions
!  The resulting net is a net with persistence for handling OR

causality
!  Conclusion and future work

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 24	

OR-Dependencies I

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 25	

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

e

✏✏

f

✏✏•
✏✏ ##

2

✏✏

3 6

uu

✏✏

8 9

b
✏✏

c

✏✏

�

✏✏

4 5 10

a

✏✏

d e

ww

✏✏

f

b c �

(a) Confusion with OR-causes

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

##

e

✏✏

f

✏✏

uu

✏✏ ##

3 6
77

ww

ZZ

⇢⇢

¬c

ww

✏✏⌅⌅

8 9

•
✏✏ ##

++

2

b
✏✏

c

✏✏

b�

ss

##

�

✏✏

4 5 10

(b) An a�empt

Fig. 2. Running example

executed before a, because c can still be enabled. However, if d �res then c is discarded and b can
be executed.
As a practical situation, imagine that a and d are the choices of your partner to either come to

town (a) or go to the sea (d) and that you can go to the theatre alone (b), which is always an option,
or go together with him/her (d), which is possible only when he/she is in town and accepts the
invitation. Of course you better postpone the decision until you know if your partner is in town
or not. This behaviour is faithfully represented, e.g., by the confusion-free net in Fig. 1b, where
the two variants of b are made explicit (and named b1 and b2) and the new place ¬c represents the
information that c will never be enabled. Now, from the concurrency point of view, there is a single
process that comprises both a and b1 (with a a cause of b1), whose overall probability is the product
of the probability of choosing a instead of d by the probability of choosing b1 over c . The other two
processes comprise, respectively, d and b2 (with d a cause of b2) and a and c (with a a cause of c).
As the net is confusion-free (although not free-choice) all criteria in the list of desiderata are met.

The general situation is much more complicated, because: i) there can be several ways to disable
the same transition; ii) resolving a choice may require to execute more transitions at once. To see
this, consider the net in Fig. 2a: i) c is discarded as soon as d or f �re; and ii) if both a and e �re we
can choose to execute c alone or both b and �.

For example we can imagine that this time three persons are involved: Alice would like to play
tennis with Carol, but they need Bob as a referee. Alice is already at the tennis court: she would
like to play (c) but she can also practice alone (b); Bob and Carol can choose to go to the tennis
court (a and e , respectively) or to stay home (d and f , respectively); if at the tennis court, Carol can
also decide to practice alone (�).

Likewise the previous example, in this second, more general, scenario we may expect to obtain a
net like the one in Fig. 2b. Again, there is one place ¬c to represent the disabling of c . This way a
probability distribution can drive the choice between c and (the joint execution of) b�, whereas as
soon as a token appears in ¬c then b and � (if enabled) can �re concurrently.
A few things are worth to remark: i) the information stored in ¬c can be used multiple times

(from b and from �), hence tokens should be read but not consumed from it (whence the double
headed arcs from ¬c to b and �, called self-loops); ii) multiple tokens can appear in the place ¬c (by
�ring both concurrent events d and f). These facts have severe repercussions on the concurrent
semantics of the net. Suppose d ; f ;b;� �re in this order: is the �ring of b causally dependent

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Example: OR-dependencies

OR-Dependencies III

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 26	

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

e

✏✏

f

✏✏•
✏✏ ##

2

✏✏

3 6

uu

✏✏

8 9

b
✏✏

c

✏✏

�

✏✏

4 5 10

a

✏✏

d e

ww

✏✏

f

b c �

(a) Confusion with OR-causes

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

##

e

✏✏

f

✏✏

uu

✏✏ ##

3 6
77

ww

ZZ

⇢⇢

¬c

ww

✏✏⌅⌅

8 9

•
✏✏ ##

++

2

b
✏✏

c

✏✏

b�

ss

##

�

✏✏

4 5 10

(b) An a�empt

Fig. 2. Running example

executed before a, because c can still be enabled. However, if d �res then c is discarded and b can
be executed.
As a practical situation, imagine that a and d are the choices of your partner to either come to

town (a) or go to the sea (d) and that you can go to the theatre alone (b), which is always an option,
or go together with him/her (d), which is possible only when he/she is in town and accepts the
invitation. Of course you better postpone the decision until you know if your partner is in town
or not. This behaviour is faithfully represented, e.g., by the confusion-free net in Fig. 1b, where
the two variants of b are made explicit (and named b1 and b2) and the new place ¬c represents the
information that c will never be enabled. Now, from the concurrency point of view, there is a single
process that comprises both a and b1 (with a a cause of b1), whose overall probability is the product
of the probability of choosing a instead of d by the probability of choosing b1 over c . The other two
processes comprise, respectively, d and b2 (with d a cause of b2) and a and c (with a a cause of c).
As the net is confusion-free (although not free-choice) all criteria in the list of desiderata are met.

The general situation is much more complicated, because: i) there can be several ways to disable
the same transition; ii) resolving a choice may require to execute more transitions at once. To see
this, consider the net in Fig. 2a: i) c is discarded as soon as d or f �re; and ii) if both a and e �re we
can choose to execute c alone or both b and �.

For example we can imagine that this time three persons are involved: Alice would like to play
tennis with Carol, but they need Bob as a referee. Alice is already at the tennis court: she would
like to play (c) but she can also practice alone (b); Bob and Carol can choose to go to the tennis
court (a and e , respectively) or to stay home (d and f , respectively); if at the tennis court, Carol can
also decide to practice alone (�).

Likewise the previous example, in this second, more general, scenario we may expect to obtain a
net like the one in Fig. 2b. Again, there is one place ¬c to represent the disabling of c . This way a
probability distribution can drive the choice between c and (the joint execution of) b�, whereas as
soon as a token appears in ¬c then b and � (if enabled) can �re concurrently.
A few things are worth to remark: i) the information stored in ¬c can be used multiple times

(from b and from �), hence tokens should be read but not consumed from it (whence the double
headed arcs from ¬c to b and �, called self-loops); ii) multiple tokens can appear in the place ¬c (by
�ring both concurrent events d and f). These facts have severe repercussions on the concurrent
semantics of the net. Suppose d ; f ;b;� �re in this order: is the �ring of b causally dependent

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Concurrency and Probability: Removing Confusion, Compositionally 1:5

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

##

e

✏✏

f

✏✏

uu

✏✏ ##

3 6 ¬c

ww

✏✏⌅⌅

8 9

•
✏✏ ##

++

2

b
✏✏

c

✏✏

b�

ss

##

�

✏✏

4 5 10

(a) An a�empt with read arcs

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

##

e

✏✏

f

✏✏

uu

✏✏ ##

3 6

ww

⇢⇢

¬c

ww

✏✏⌅⌅

8 9

•
✏✏ ##

++

2

b
✏✏

c

✏✏

b�

ss

##

�

✏✏

4 5 10

(b) A solution with persistent places

Fig. 3. Running example continued

on that of d or that of f (or on both)? Moreover, is the �ring of � causally dependent on b (due
to the self-loop b has on ¬c)? This last question can be solved if self-loops are replaced by read
arcs [Montanari and Rossi 1995] (see Fig. 3a), so that the �ring of b does not alter the content of
¬c and thus no causal dependency can arise between b and �. Nevertheless, if process semantics
or event semantics is considered, then we should explode all possible combinations of causal
dependencies, thus introducing a new, undesired kind of nondeterminism. In reality, we should not
expect any causal dependency between b and �, while both have OR dependencies on d and f .

To account for OR dependencies, we exploit the notion of persistence: tokens in a persistent place
have in�nite weight and are collective. Once a token reaches a persistent place, it cannot be removed
and if two tokens reach the same persistent place they are indistinguishable. Such networks are
not new: they are a variant of ordinary P/T nets and have been studied in [Crazzolara and Winskel
2005]. In the example, we can declare ¬c to be a persistent place and replace self-loops/read arcs on
¬c with ordinary outgoing arcs (see Fig. 3b). Nicely we are able to introduce a process semantics
for nets with persistent places that satis�es complete concurrency.

Related Works. Confusion, as well as the interplay between concurrency and con�ict, has been
studied since longtime [Rozenberg and Engelfriet 1998]. Moreover, recent emphasis on probabilistic
models of computation has made the confusion problem more relevant. A number of probabilistic
versions of Petri nets have been proposed [Dugan et al. 1984; Emzivat et al. 2016; Marsan et al. 1984;
Molloy 1985]. Most of them replace nondeterminism with probability only in part, and furthermore
introduce time dependent stochastic distributions, thus giving up the time and speed independence
feature typical of proper concurrent models (our �rst item in the list). Confusion-free probabilistic
models have been studied in [Varacca et al. 2006], but this class, which subsumes free-choice nets,
is usually considered quite restrictive.

Distributability of decisions has been studied, e.g., in [Katoen and Peled 2013; van Glabbeek et al.
2013], but while the results in [van Glabbeek et al. 2013] apply to some restricted classes of nets,
the approach in [Katoen and Peled 2013] requires nets to be decorated with agents and produces
distributed models with both nondeterminism and probability, where concurrency is dependent
from the scheduling of agents (i.e., it misses items 2–4 of our list).

A substantial advance in the study of concurrent, probabilistic models has been contributed by
Abbes and Benveniste (AB) [Abbes and Benveniste 2005, 2006, 2008]. They consider prime event
structures and suggest an elaborate construction which o�ers, for every maximal con�guration,
certain decompositions as alternating sequences of branching cells and maximal stopping pre�xes.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Example: OR-dependencies

read arcs:
the token is

read but
not consumed

OR-Dependencies IV

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 27	

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

e

✏✏

f

✏✏•
✏✏ ##

2

✏✏

3 6

uu

✏✏

8 9

b
✏✏

c

✏✏

�

✏✏

4 5 10

a

✏✏

d e

ww

✏✏

f

b c �

(a) Confusion with OR-causes

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

##

e

✏✏

f

✏✏

uu

✏✏ ##

3 6
77

ww

ZZ

⇢⇢

¬c

ww

✏✏⌅⌅

8 9

•
✏✏ ##

++

2

b
✏✏

c

✏✏

b�

ss

##

�

✏✏

4 5 10

(b) An a�empt

Fig. 2. Running example

executed before a, because c can still be enabled. However, if d �res then c is discarded and b can
be executed.
As a practical situation, imagine that a and d are the choices of your partner to either come to

town (a) or go to the sea (d) and that you can go to the theatre alone (b), which is always an option,
or go together with him/her (d), which is possible only when he/she is in town and accepts the
invitation. Of course you better postpone the decision until you know if your partner is in town
or not. This behaviour is faithfully represented, e.g., by the confusion-free net in Fig. 1b, where
the two variants of b are made explicit (and named b1 and b2) and the new place ¬c represents the
information that c will never be enabled. Now, from the concurrency point of view, there is a single
process that comprises both a and b1 (with a a cause of b1), whose overall probability is the product
of the probability of choosing a instead of d by the probability of choosing b1 over c . The other two
processes comprise, respectively, d and b2 (with d a cause of b2) and a and c (with a a cause of c).
As the net is confusion-free (although not free-choice) all criteria in the list of desiderata are met.

The general situation is much more complicated, because: i) there can be several ways to disable
the same transition; ii) resolving a choice may require to execute more transitions at once. To see
this, consider the net in Fig. 2a: i) c is discarded as soon as d or f �re; and ii) if both a and e �re we
can choose to execute c alone or both b and �.

For example we can imagine that this time three persons are involved: Alice would like to play
tennis with Carol, but they need Bob as a referee. Alice is already at the tennis court: she would
like to play (c) but she can also practice alone (b); Bob and Carol can choose to go to the tennis
court (a and e , respectively) or to stay home (d and f , respectively); if at the tennis court, Carol can
also decide to practice alone (�).

Likewise the previous example, in this second, more general, scenario we may expect to obtain a
net like the one in Fig. 2b. Again, there is one place ¬c to represent the disabling of c . This way a
probability distribution can drive the choice between c and (the joint execution of) b�, whereas as
soon as a token appears in ¬c then b and � (if enabled) can �re concurrently.
A few things are worth to remark: i) the information stored in ¬c can be used multiple times

(from b and from �), hence tokens should be read but not consumed from it (whence the double
headed arcs from ¬c to b and �, called self-loops); ii) multiple tokens can appear in the place ¬c (by
�ring both concurrent events d and f). These facts have severe repercussions on the concurrent
semantics of the net. Suppose d ; f ;b;� �re in this order: is the �ring of b causally dependent

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Concurrency and Probability: Removing Confusion, Compositionally 1:5

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

##

e

✏✏

f

✏✏

uu

✏✏ ##

3 6 ¬c

ww

✏✏⌅⌅

8 9

•
✏✏ ##

++

2

b
✏✏

c

✏✏

b�

ss

##

�

✏✏

4 5 10

(a) An a�empt with read arcs

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

##

e

✏✏

f

✏✏

uu

✏✏ ##

3 6

ww

⇢⇢

¬c

ww

✏✏⌅⌅

8 9

•
✏✏ ##

++

2

b
✏✏

c

✏✏

b�

ss

##

�

✏✏

4 5 10

(b) A solution with persistent places

Fig. 3. Running example continued

on that of d or that of f (or on both)? Moreover, is the �ring of � causally dependent on b (due
to the self-loop b has on ¬c)? This last question can be solved if self-loops are replaced by read
arcs [Montanari and Rossi 1995] (see Fig. 3a), so that the �ring of b does not alter the content of
¬c and thus no causal dependency can arise between b and �. Nevertheless, if process semantics
or event semantics is considered, then we should explode all possible combinations of causal
dependencies, thus introducing a new, undesired kind of nondeterminism. In reality, we should not
expect any causal dependency between b and �, while both have OR dependencies on d and f .

To account for OR dependencies, we exploit the notion of persistence: tokens in a persistent place
have in�nite weight and are collective. Once a token reaches a persistent place, it cannot be removed
and if two tokens reach the same persistent place they are indistinguishable. Such networks are
not new: they are a variant of ordinary P/T nets and have been studied in [Crazzolara and Winskel
2005]. In the example, we can declare ¬c to be a persistent place and replace self-loops/read arcs on
¬c with ordinary outgoing arcs (see Fig. 3b). Nicely we are able to introduce a process semantics
for nets with persistent places that satis�es complete concurrency.

Related Works. Confusion, as well as the interplay between concurrency and con�ict, has been
studied since longtime [Rozenberg and Engelfriet 1998]. Moreover, recent emphasis on probabilistic
models of computation has made the confusion problem more relevant. A number of probabilistic
versions of Petri nets have been proposed [Dugan et al. 1984; Emzivat et al. 2016; Marsan et al. 1984;
Molloy 1985]. Most of them replace nondeterminism with probability only in part, and furthermore
introduce time dependent stochastic distributions, thus giving up the time and speed independence
feature typical of proper concurrent models (our �rst item in the list). Confusion-free probabilistic
models have been studied in [Varacca et al. 2006], but this class, which subsumes free-choice nets,
is usually considered quite restrictive.

Distributability of decisions has been studied, e.g., in [Katoen and Peled 2013; van Glabbeek et al.
2013], but while the results in [van Glabbeek et al. 2013] apply to some restricted classes of nets,
the approach in [Katoen and Peled 2013] requires nets to be decorated with agents and produces
distributed models with both nondeterminism and probability, where concurrency is dependent
from the scheduling of agents (i.e., it misses items 2–4 of our list).

A substantial advance in the study of concurrent, probabilistic models has been contributed by
Abbes and Benveniste (AB) [Abbes and Benveniste 2005, 2006, 2008]. They consider prime event
structures and suggest an elaborate construction which o�ers, for every maximal con�guration,
certain decompositions as alternating sequences of branching cells and maximal stopping pre�xes.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Example: OR-dependencies

multiple
incoming arcs:

c discarded
after the firing

of d or f

OR-Dependencies V

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 28	

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

e

✏✏

f

✏✏•
✏✏ ##

2

✏✏

3 6

uu

✏✏

8 9

b
✏✏

c

✏✏

�

✏✏

4 5 10

a

✏✏

d e

ww

✏✏

f

b c �

(a) Confusion with OR-causes

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

##

e

✏✏

f

✏✏

uu

✏✏ ##

3 6
77

ww

ZZ

⇢⇢

¬c

ww

✏✏⌅⌅

8 9

•
✏✏ ##

++

2

b
✏✏

c

✏✏

b�

ss

##

�

✏✏

4 5 10

(b) An a�empt

Fig. 2. Running example

executed before a, because c can still be enabled. However, if d �res then c is discarded and b can
be executed.
As a practical situation, imagine that a and d are the choices of your partner to either come to

town (a) or go to the sea (d) and that you can go to the theatre alone (b), which is always an option,
or go together with him/her (d), which is possible only when he/she is in town and accepts the
invitation. Of course you better postpone the decision until you know if your partner is in town
or not. This behaviour is faithfully represented, e.g., by the confusion-free net in Fig. 1b, where
the two variants of b are made explicit (and named b1 and b2) and the new place ¬c represents the
information that c will never be enabled. Now, from the concurrency point of view, there is a single
process that comprises both a and b1 (with a a cause of b1), whose overall probability is the product
of the probability of choosing a instead of d by the probability of choosing b1 over c . The other two
processes comprise, respectively, d and b2 (with d a cause of b2) and a and c (with a a cause of c).
As the net is confusion-free (although not free-choice) all criteria in the list of desiderata are met.

The general situation is much more complicated, because: i) there can be several ways to disable
the same transition; ii) resolving a choice may require to execute more transitions at once. To see
this, consider the net in Fig. 2a: i) c is discarded as soon as d or f �re; and ii) if both a and e �re we
can choose to execute c alone or both b and �.

For example we can imagine that this time three persons are involved: Alice would like to play
tennis with Carol, but they need Bob as a referee. Alice is already at the tennis court: she would
like to play (c) but she can also practice alone (b); Bob and Carol can choose to go to the tennis
court (a and e , respectively) or to stay home (d and f , respectively); if at the tennis court, Carol can
also decide to practice alone (�).

Likewise the previous example, in this second, more general, scenario we may expect to obtain a
net like the one in Fig. 2b. Again, there is one place ¬c to represent the disabling of c . This way a
probability distribution can drive the choice between c and (the joint execution of) b�, whereas as
soon as a token appears in ¬c then b and � (if enabled) can �re concurrently.
A few things are worth to remark: i) the information stored in ¬c can be used multiple times

(from b and from �), hence tokens should be read but not consumed from it (whence the double
headed arcs from ¬c to b and �, called self-loops); ii) multiple tokens can appear in the place ¬c (by
�ring both concurrent events d and f). These facts have severe repercussions on the concurrent
semantics of the net. Suppose d ; f ;b;� �re in this order: is the �ring of b causally dependent

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Concurrency and Probability: Removing Confusion, Compositionally 1:5

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

##

e

✏✏

f

✏✏

uu

✏✏ ##

3 6 ¬c

ww

✏✏⌅⌅

8 9

•
✏✏ ##

++

2

b
✏✏

c

✏✏

b�

ss

##

�

✏✏

4 5 10

(a) An a�empt with read arcs

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

##

e

✏✏

f

✏✏

uu

✏✏ ##

3 6

ww

⇢⇢

¬c

ww

✏✏⌅⌅

8 9

•
✏✏ ##

++

2

b
✏✏

c

✏✏

b�

ss

##

�

✏✏

4 5 10

(b) A solution with persistent places

Fig. 3. Running example continued

on that of d or that of f (or on both)? Moreover, is the �ring of � causally dependent on b (due
to the self-loop b has on ¬c)? This last question can be solved if self-loops are replaced by read
arcs [Montanari and Rossi 1995] (see Fig. 3a), so that the �ring of b does not alter the content of
¬c and thus no causal dependency can arise between b and �. Nevertheless, if process semantics
or event semantics is considered, then we should explode all possible combinations of causal
dependencies, thus introducing a new, undesired kind of nondeterminism. In reality, we should not
expect any causal dependency between b and �, while both have OR dependencies on d and f .

To account for OR dependencies, we exploit the notion of persistence: tokens in a persistent place
have in�nite weight and are collective. Once a token reaches a persistent place, it cannot be removed
and if two tokens reach the same persistent place they are indistinguishable. Such networks are
not new: they are a variant of ordinary P/T nets and have been studied in [Crazzolara and Winskel
2005]. In the example, we can declare ¬c to be a persistent place and replace self-loops/read arcs on
¬c with ordinary outgoing arcs (see Fig. 3b). Nicely we are able to introduce a process semantics
for nets with persistent places that satis�es complete concurrency.

Related Works. Confusion, as well as the interplay between concurrency and con�ict, has been
studied since longtime [Rozenberg and Engelfriet 1998]. Moreover, recent emphasis on probabilistic
models of computation has made the confusion problem more relevant. A number of probabilistic
versions of Petri nets have been proposed [Dugan et al. 1984; Emzivat et al. 2016; Marsan et al. 1984;
Molloy 1985]. Most of them replace nondeterminism with probability only in part, and furthermore
introduce time dependent stochastic distributions, thus giving up the time and speed independence
feature typical of proper concurrent models (our �rst item in the list). Confusion-free probabilistic
models have been studied in [Varacca et al. 2006], but this class, which subsumes free-choice nets,
is usually considered quite restrictive.

Distributability of decisions has been studied, e.g., in [Katoen and Peled 2013; van Glabbeek et al.
2013], but while the results in [van Glabbeek et al. 2013] apply to some restricted classes of nets,
the approach in [Katoen and Peled 2013] requires nets to be decorated with agents and produces
distributed models with both nondeterminism and probability, where concurrency is dependent
from the scheduling of agents (i.e., it misses items 2–4 of our list).

A substantial advance in the study of concurrent, probabilistic models has been contributed by
Abbes and Benveniste (AB) [Abbes and Benveniste 2005, 2006, 2008]. They consider prime event
structures and suggest an elaborate construction which o�ers, for every maximal con�guration,
certain decompositions as alternating sequences of branching cells and maximal stopping pre�xes.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Problem: OR-dependencies

in a process
b depends

either on d or f

OR-Dependencies VI

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 29	

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

•
✏✏

ptd
•

��

1
•
��

7
•
✏✏

ptf

td
⇤⇤

��

tf
��

��

6

✏✏

3

✏✏

⌘⌘

8
9

t3

��

��

!!

✏✏

t8

✏✏

����

ptg •

2
✏✏

ptb
⇠⇠

pt08

tb
✏✏

t 08
⇤⇤

5 4 10

Fig. 11. A process for LJN KM (running example)

Ordinary deterministic processes satisfy complete concurrency: each process determines a partial
ordering of its transitions, such that the executable sequences of transitions are exactly the lin-
earizations of the partial order. More formally, after executing any �ring sequence � of the process,
a transition t is enabled if and only if all its predecessors in the partial order (namely its causes)
already appear in � . In the present setting a similar property holds.

De�nition 5.2 (Legal �ring sequence). A sequence of transitions t1; · · · ; tn of a persistent process
is legal if for all k 2 [1,n] we have thatVk�1

i=1 ti implies �(tk).

It is immediate to notice that if the set of persistent places is empty (P = ;), then the notion of
persistent process is the ordinary one, �(x) is just the conjunction of the causes of x and a sequence
is legal i� it is a linearization of the process. In this sense, persistent processes are a conservative
extension of ordinary ones.

T������ 5.3 (C������� C����������). Let � = t1; · · · ; tn with n � 0 be a, possibly empty,
�ring sequence of a persistent process, and t a transition not in � . The following conditions are all
equivalent: (i) t is enabled after � ; (ii) there is a collection of causes of t which appears in � ; (iii)

Vn
i=1 ti

implies �(t).

C�������� 5.4. Given a persistent process, a sequence is legal i� it is a �ring sequence.

Example 5.5. Fig. 11 shows a process for the net LJN KM of our running example (see N in Fig. 2a
and JN K in Fig. 9). The process accounts for the �ring of the transitions d , f , b in N . Despite they
look as concurrent events in N , the persistent place ptb introduces some causal dependencies. In
fact, we have: �(td) = �(tf) = true, �(t3) = td , �(t8) = tf and �(tb) = (t3 ^ td) _ (t8 ^ tf), thus tb
can be �red only after either td or tf (or both). ⇤

6 PROBABILISTIC NETS
Building on the results from previous sections, we can now outline our methodology to assign
probabilities to the concurrent runs of a Petri net, also in the presence of confusion. Given a net
N , we apply s-cell decomposition from Section 3.1, and then we assign probability distributions
to the transactions available in each cell C (and recursively to the s-cell decomposition of NC):
let PC : {� | � : C} ! [0, 1] denote the probability distribution function of the s-cell C (such
that
P

� :C PC (�) = 1). Such probability distributions are de�ned purely locally and transferred

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

e

✏✏

f

✏✏•
✏✏ ##

2

✏✏

3 6

uu

✏✏

8 9

b
✏✏

c

✏✏

�

✏✏

4 5 10

a

✏✏

d e

ww

✏✏

f

b c �

(a) Confusion with OR-causes

•
✏✏ ##

1 •
✏✏ ##

7

a

✏✏

d
✏✏

##

e

✏✏

f

✏✏

uu

✏✏ ##

3 6
77

ww

ZZ

⇢⇢

¬c

ww

✏✏⌅⌅

8 9

•
✏✏ ##

++

2

b
✏✏

c

✏✏

b�

ss

##

�

✏✏

4 5 10

(b) An a�empt

Fig. 2. Running example

executed before a, because c can still be enabled. However, if d �res then c is discarded and b can
be executed.
As a practical situation, imagine that a and d are the choices of your partner to either come to

town (a) or go to the sea (d) and that you can go to the theatre alone (b), which is always an option,
or go together with him/her (d), which is possible only when he/she is in town and accepts the
invitation. Of course you better postpone the decision until you know if your partner is in town
or not. This behaviour is faithfully represented, e.g., by the confusion-free net in Fig. 1b, where
the two variants of b are made explicit (and named b1 and b2) and the new place ¬c represents the
information that c will never be enabled. Now, from the concurrency point of view, there is a single
process that comprises both a and b1 (with a a cause of b1), whose overall probability is the product
of the probability of choosing a instead of d by the probability of choosing b1 over c . The other two
processes comprise, respectively, d and b2 (with d a cause of b2) and a and c (with a a cause of c).
As the net is confusion-free (although not free-choice) all criteria in the list of desiderata are met.

The general situation is much more complicated, because: i) there can be several ways to disable
the same transition; ii) resolving a choice may require to execute more transitions at once. To see
this, consider the net in Fig. 2a: i) c is discarded as soon as d or f �re; and ii) if both a and e �re we
can choose to execute c alone or both b and �.

For example we can imagine that this time three persons are involved: Alice would like to play
tennis with Carol, but they need Bob as a referee. Alice is already at the tennis court: she would
like to play (c) but she can also practice alone (b); Bob and Carol can choose to go to the tennis
court (a and e , respectively) or to stay home (d and f , respectively); if at the tennis court, Carol can
also decide to practice alone (�).

Likewise the previous example, in this second, more general, scenario we may expect to obtain a
net like the one in Fig. 2b. Again, there is one place ¬c to represent the disabling of c . This way a
probability distribution can drive the choice between c and (the joint execution of) b�, whereas as
soon as a token appears in ¬c then b and � (if enabled) can �re concurrently.
A few things are worth to remark: i) the information stored in ¬c can be used multiple times

(from b and from �), hence tokens should be read but not consumed from it (whence the double
headed arcs from ¬c to b and �, called self-loops); ii) multiple tokens can appear in the place ¬c (by
�ring both concurrent events d and f). These facts have severe repercussions on the concurrent
semantics of the net. Suppose d ; f ;b;� �re in this order: is the �ring of b causally dependent

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Example: a persistent process

concurrency exibited
by the persistent net:

e.g. after tf, td and tb
can be executed
concurrently

Roadmap

!  Concurrency: a useful abstraction level
!  Equivalent computations may have different decision

points and different probabilities
!  Petri occurrence nets with confusion
!  Our result: compiling a net with confusion into one

without confusion
!  Additional causal links for transmitting negative

conditions
!  The resulting net is a net with persistence for handling OR

causality
!  Conclusion and future work

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 30	

Conclusion and Future Work I

Our results
!  compile an ordinary occurrence net in a statically defined,

confusion-free, persistent net exhibiting true concurrency

Future work
!  extending the construction to cyclic, non-occurrence

nets
!  exploiting concurrency in transactions
!  complexity analysis
!  event structures and domains

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 31	

Event Structures and Domains for Persistent Nets

!  Results in LICS 2017 by Baldan, Corradini and Gadducci about

coreflection/equivalence of graph transformations with fusions
!  They apply not only to graph fusions but also to fusions of past

histories for persistent places of persistent nets
!  Functorial relations: nets ⬌ event structures ⬌ domains are

fully extended
!  unfolding persistent nets is a coreflection

!  there is a coreflection between nonprime (OR) connected event
structures and persistent occurrence nets

!  configurations are executions in a weak prime domain

!  there is an equivalence between weak prime domains and
connected ES

Ugo	 Montanari	 -‐	 Reunion	 Workshop	 on	 “Logical	 Structures	 in	 Computa;on”	 December	 13,	 2017	 32	

