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(CSP problem) (proof system)
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“Succinct” proofs in S of the fact that an instance of
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(CSP problem) (proof system)

2-SAT resolution

“Succinct” proofs in S of the fact that an instance of
P is unsatisfiable?

Every unsatisfiable instance has a small refutation.
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(CSP problem) (proof system)

3-SAT resolution

“Succinct” proofs in S of the fact that an instance of
P is unsatisfiable?

There exist unsatisfiable instances that require big refutations.
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(CSP problem) (proof system)
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“Succinct” proofs in S of the fact that an instance of
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(CSP problem) (proof system)

P

“Succinct” proofs in S of the fact that an instance of
P is unsatisfiable?

Standard CSP reductions.
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Constraint Satisfaction Problems

/-— template

B = (B;R1, Rz, ...,Ry,) - afixed finite relational structure

Problem: CSP(B)
Input: a finite relational structure A
Decide: Is there a homomorphism from A to B?
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Constraint Satisfaction Problems

template
/_

B = (B;R1, Rz, ...,Ry,) - afixed finite relational structure

Problem: CSP(B)
Input: a finite relational structure A
Decide: Is there a homomorphism from A to B?

A= (A;RMRY,...,RY)

h: A — B - homomorphism iff
(ai,...,a;) € R® = (h(ar),...,h(a,)) € R;
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Examples

B = ({0, 1}; Ry, Ro) - linear equations mod 2

Ri ={(x,y,2) € {0,1}’ [x+y+z=1 mod 2}
Ro = {(x,y,2) € {0,1} [x+y+z=0 mod 2}
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Examples

B =

A

({0, 1}; Ry, Ry) - linear equations mod 2

Ri ={(x,y,2) € {0,1}’ [x+y+z=1 mod 2}
Ro = {(x,y,2) € {0,1} [x+y+z=0 mod 2}

= ({a,b,c};R5(a,b,c),R(a,a,b), R (a, c,c))

a+b+c=0
at+a+b=1
at+c+c=1
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Examples

e B = ({0, 1,2};#) - three-colorability

o B = ({0,1};Ro,R1,R2,R3) - 3-SAT
Ry ={0,1}*\ {(1,1,0)}, etc...
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Resolution

C - a set of clauses (disjunctions of literals, e.g. pV gV r)

A resolution refutation of the set C is a sequence of clauses:
e from C or

@ obtained from previous formulas using the rule:

CVvp DVp
CVD \

o finishing with a contradiction L negation
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Example

C={q,qVp, pVr, 1}

qVp

N/ NS
\ /

L
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“Succinct” resolution refutations

A template B admits “succinct” resolution refutations:

Take any instance A of CSP(B) such that A /4 B.

1
E(A) satisfiable iff A — B (some fixed encoding for CSP(B))

!

E(A) has a “succinct” resolution refutation

“succinct” ~~ only clauses with at most k variables (Ptime algorithm)
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Polynomial Calculus

C={qi(x) =0,...,¢,(x) = 0} - a system of polynomial equations

A PC refutation of C is a sequence of polynomial equations:
e from C or

@ obtained from previous equations using the rules:

f(X)=0 g(x =0 fx) =0

af (x) + bg(x) =0 auf (x) =0
@ finishing with —1 =0
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“Succinct” PC refutations

A template B admits “succinct” PC refutations:

Take any instance A of CSP(B) such that A /4 B.

1
E(A) satisfiable iff A — B (some fixed encoding for CSP(B))

\l/ ..

E(A) has a “succinct” PC refutation

“succinct” ~~ degree at most d (Ptime - the Grobner basis algorithm)
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Sum-of-Squares

Positivstellensatz [Krivine’64, Stengle’74].

q1(x) =0,...,¢,(x) =0, p1(x) >0,...,pp(x) > Ounsat. in R

{:}\_/

=l

2 1i(X)qi(x) + 22 5i(X)pj (%) + s

) = —1, where s and s;’s are SOS
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Sum-of-Squares

Positivstellensatz [Krivine’64, Stengle’74].

q1(x) =0,...,¢,(x) =0, p1(x) >0,...,pp(x) > Ounsat. in R

{:}\_/

=l

2 1i(X)qi(x) + 22 5i(X)pj (%) + s

) = —1, where s and s;’s are SOS
Example.

qx,y) =y +x*+2=0, plx,y)=x—»+3>0
tq+sip+s=-—1

t=—6, s1=2, s=3+200+3)+6(x—¢)’
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“Succinct” SOS refutations

A template B admits “succinct” SOS refutations:

Take any instance A of CSP(B) such that A /4 B.

1
E(A) satisfiable iff A — B (some fixed encoding for CSP(B))

!

E(A) has a “succinct” resolution refutation

“succinct” ~~ degree at most d (Ptime - Semidefinite programming)
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“Succinct” refutations

resolution solvable by Datalog
DNF-resolution

bounded-depth Frege

Polynomial Calculus bounded width

Sherali-Adams
Sum-of-Squares _/
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Reductions

P’ <csp P - “classical” reduction preserving the complexity of CSP

Theorem. If P’ <csp P then “succinct” refutations for P imply
“succinct” refutations for P’.
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Reductions

P’ <csp P - “classical” reduction preserving the complexity of CSP

Theorem. If P’ <csp P then “succinct” refutations for P imply
“succinct” refutations for P’.

solvable
by Datalog
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Reductions

P’ <csp P - “classical” reduction preserving the complexity of CSP

Theorem. If P’ <csp P then “succinct” refutations for P imply
“succinct” refutations for P’.

solvable
by Datalog

Theorem [Barto, Kozik]. For every P € C, there is a finite Abelian
group G such that 3LIN(G) <c¢sp P.
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Lower bounds

Theorem [generalising Ben-Sasson]. Exponential size lower bound

for 3LIN(G), for bounded-depth Frege.

Theorem [Buss, Grigoriev, Impagliazzo, Pitassi]. Linear PC degree
lower bound for 3LIN(G).

Theorem [Chan]. Linear SOS degree lower bound for 3LIN(G).
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“Succinct” refutations

Theorem. If P’ <csp P then “succinct” refutations for P imply
“succinct” refutations for P’.

DNF-resolution

bounded-depth Frege

Polynomial Calculus

Sherali-Adams

Sum-of-Squares

Polynomial Calculus over finite fields
Frege

bounded-degree Lovasz-Schrijver
Lovasz-Schrijver
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“Succinct” refutations

Theorem. If P’ <csp P then “succinct” refutations for P imply
“succinct” refutations for P’.

DNF-resolution

bounded-depth Fregx

Polynomial Calculus bounded width
Sherali-Adams

Sum-of-Squares _/

Polynomial Calculus over finite fields

Frege

bounded-degree Lovasz-Schrijver
Lovasz-Schrijver
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“Succinct” refutations

Theorem. If P’ <csp P then “succinct” refutations for P imply
“succinct” refutations for P’.

DNF-resolution

bounded-depth Fregx

Polynomial Calculus bounded width
Sherali-Adams

Sum-of-Squares _/

Polynomial Calculus over finite fields

Frege

bounded-degree Lovasz-Schrijver
Lovasz-Schrijver

Theorem [Jeavons et al.; Barto, Oprsal, Pinsker]. Class of CSP
templates closed under < gp has an algebraic characterisation.
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Majority

/_/-— identities

m(x,x,y) = m(x,y,x) = m(y,x,x) =x

B=({0,1};#) = ({0,1};{(0,1),(1,0)}) - two-colorability
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Majority

m(x,x,y) = m(x,y,x) = m(y,x,x) =x

B=({0,1};#) = ({0,1};{(0,1),(1,0)}) - two-colorability

0,1) € #
(0,1) € #
(1,0) € #
(0,1) € #



Majority

m(x,x,y) = m(x,y,x) = m(y,x,x) = x

B=({0,1};#) = ({0,1};{(0,1),(1,0)}) - two-colorability

0,1) € #
(0,1) € #
(1,0) € #
0,1) € #

Fact. Every CSP whose all relations are preserved by majority is
solvable in Ptime.
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Algebra

Theorem [Jeavons et al.; Barto, Oprsal, Pinsker]. Class of CSP
templates closed under <cgp has an algebraic characterisation.
There is a set of identities...

“m(x,x,y) = m(x,y,x) = m(y,x,x) = x”

such that B is in the class iff there are functions which:

o satisfy the identities

@ preserve the relations of B
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Algebra

Theorem [Jeavons et al.; Barto, Oprsal, Pinsker]. Class of CSP
templates closed under <cgp has an algebraic characterisation.
There is a set of identities...

“m(x,x,y) = m(x,y,x) = m(y,x,x) = x”

such that B is in the class iff there are functions which:

o satisfy the identities

@ preserve the relations of B

Theorem [Bulatov; Zhuk]. CSPs solvable in PTime are
characterised by f (v, x,y,z) = f(x,y,z,x).
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Algebraic characterisations

Classes of CSPs with succinct refutations in:

DNF-resolution

bounded-depth Frege\‘

Polynomial Calculus flx,x,y) = falx,x,x,y) (WNU)
Sherali-Adams [Kozik, Krokhin, Valeriote, Willard]
Sum-of-Squares __—¥

Polynomial Calculus over finite fields

Frege

bounded-degree Lovasz-Schrijver

Lovasz-Schrijver

have algebraic characterisations.
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Beyond bounded-width

Fact. Polynomial Calculus over finite fields has succinct refutations
beyond bounded-width.

Theorem. Frege, bounded-degree Lovdsz-Schrijver and
Lovasz-Schrijver have succinct refutations beyond bounded-width.
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Questions

Characterise CSPs which admit succinct refutations in:

Polynomial Calculus over finite fields
Frege

bounded-degree Lovész-Schrijver
Lovéasz-Schrijver
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(CSP problem) (proof system)

P

“Succinct” proofs in S of the fact that an instance of
P is unsatisfiable?

Standard CSP reductions.
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