Proof Complexity Meets Algebra joint work with Albert Atserias

Joanna Ochremiak

Université Paris Diderot - Paris 7
Logical Structures in Computation Reunion Workshop
Simons Institute, 13th December 2017

(CSP problem)

\mathcal{P}
 \mathcal{S}
 (proof system)

"Succinct" proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?
(CSP problem)

"Succinct" proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?

Every unsatisfiable instance has a small refutation.
(CSP problem)

"Succinct" proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?

There exist unsatisfiable instances that require big refutations.

(CSP problem)

\mathcal{P}
 \mathcal{S}
 (proof system)

"Succinct" proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?
(CSP problem)

"Succinct" proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?

Standard CSP reductions.

Constraint Satisfaction Problems

Problem: $\operatorname{CSP}(\mathbb{B})$

Input: a finite relational structure \mathbb{A}
Decide: Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

Constraint Satisfaction Problems

Problem: $\operatorname{CSP}(\mathbb{B})$

Input: a finite relational structure \mathbb{A}
Decide: Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

$$
\mathbb{A}=\left(A ; R_{1}^{\mathbb{A}}, R_{2}^{\mathbb{A}}, \ldots, R_{n}^{\mathbb{A}}\right)
$$

$h: A \rightarrow B$ - homomorphism iff
$\left(a_{1}, \ldots, a_{r}\right) \in R_{i}^{\mathbb{A}} \Rightarrow\left(h\left(a_{1}\right), \ldots, h\left(a_{r}\right)\right) \in R_{i}$

Examples

$$
\begin{aligned}
\mathbb{B}= & \left(\{0,1\} ; R_{1}, R_{0}\right) \text { - linear equations mod } 2 \\
& R_{1}=\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=1 \bmod 2\right\} \\
& R_{0}=\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=0 \bmod 2\right\}
\end{aligned}
$$

Examples

$$
\begin{aligned}
\mathbb{B}= & \left(\{0,1\} ; R_{1}, R_{0}\right) \text { - linear equations mod } 2 \\
& R_{1}=\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=1 \bmod 2\right\} \\
& R_{0}=\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=0 \bmod 2\right\} \\
\mathbb{A}= & \left(\{a, b, c\} ; R_{0}^{\mathbb{A}}(a, b, c), R_{1}^{\mathbb{A}}(a, a, b), R_{1}^{\mathbb{A}}(a, c, c)\right) \\
& a+b+c=0 \\
& a+a+b=1 \\
& a+c+c=1
\end{aligned}
$$

Examples

- $\mathbb{B}=(\{0,1,2\} ; \neq)$ - three-colorability
- $\mathbb{B}=\left(\{0,1\} ; R_{0}, R_{1}, R_{2}, R_{3}\right)$-3-SAT $R_{2}=\{0,1\}^{3} \backslash\{(1,1,0)\}$, etc...

Resolution

\mathcal{C} - a set of clauses (disjunctions of literals, e.g. $p \vee q \vee r$)
A resolution refutation of the set \mathcal{C} is a sequence of clauses:

- from \mathcal{C} or
- obtained from previous formulas using the rule:

$$
\frac{C \vee p \quad D \vee \bar{p}}{C \vee D}
$$

Example

$\mathcal{C}=\{q, \bar{q} \vee p, \bar{p} \vee r, \bar{r}\}$

"Succinct" resolution refutations

A template \mathbb{B} admits "succinct" resolution refutations:

Take any instance \mathbb{A} of $\operatorname{CSP}(\mathbb{B})$ such that $\mathbb{A} \nrightarrow \mathbb{B}$.
\downarrow
$E(\mathbb{A})$ satisfiable iff $\mathbb{A} \rightarrow \mathbb{B} \quad$ (some fixed encoding for $\operatorname{CSP}(\mathbb{B})$)
\downarrow

$$
E(\mathbb{A}) \text { has a "succinct" resolution refutation } \because
$$

"succinct" \rightsquigarrow only clauses with at most k variables (Ptime algorithm)

Polynomial Calculus

$\mathcal{C}=\left\{q_{1}(\bar{x})=0, \ldots, q_{n}(\bar{x})=0\right\}$ - a system of polynomial equations
A PC refutation of \mathcal{C} is a sequence of polynomial equations:

- from \mathcal{C} or
- obtained from previous equations using the rules:

$$
\begin{array}{ll}
\frac{f(\bar{x})=0}{a f(\bar{x})+b g(\bar{x})=0} & \frac{f(\bar{x})=0}{x_{k} f(\bar{x})=0}
\end{array}
$$

- finishing with $-1=0$

"Succinct" PC refutations

A template \mathbb{B} admits "succinct" PC refutations:

Take any instance \mathbb{A} of $\operatorname{CSP}(\mathbb{B})$ such that $\mathbb{A} \nrightarrow \mathbb{B}$. \downarrow
$E(\mathbb{A})$ satisfiable iff $\mathbb{A} \rightarrow \mathbb{B} \quad$ (some fixed encoding for $\operatorname{CSP}(\mathbb{B})$) \downarrow

$$
E(\mathbb{A}) \text { has a "succinct" PC refutation } \because
$$

"succinct" \rightsquigarrow degree at most d (Ptime - the Gröbner basis algorithm)

Sum-of-Squares

Positivstellensatz [Krivine'64, Stengle'74].

$$
\begin{aligned}
& q_{1}(\bar{x})=0, \ldots, q_{n}(\bar{x})=0, p_{1}(\bar{x}) \geq 0, \ldots, p_{m}(\bar{x}) \geq 0 \text { unsat. in } \mathbb{R} \\
& \mathbb{\Downarrow} \\
& \sum t_{i}(\bar{x}) q_{i}(\bar{x})+\sum s_{j}(\bar{x}) p_{j}(\bar{x})+s(\bar{x})=-1, \text { where } s \text { and } s_{j} \text { 's are SOS }
\end{aligned}
$$

Sum-of-Squares

Positivstellensatz [Krivine'64, Stengle'74].

$$
\begin{aligned}
& q_{1}(\bar{x})=0, \ldots, q_{n}(\bar{x})=0, \quad p_{1}(\bar{x}) \geq 0, \ldots, p_{m}(\bar{x}) \geq 0 \text { unsat. in } \mathbb{R} \\
& \mathbb{\Downarrow} \\
& \sum t_{i}(\bar{x}) q_{i}(\bar{x})+\sum s_{j}(\bar{x}) p_{j}(\bar{x})+s(\bar{x})=-1, \text { where } s \text { and } s_{j} \text { 's are SOS }
\end{aligned}
$$

Example.
$q(x, y)=y+x^{2}+2=0, \quad p(x, y)=x-y^{2}+3 \geq 0$
$t q+s_{1} p+s=-1$
$t=-6, \quad s_{1}=2, \quad s=\frac{1}{3}+2\left(y+\frac{3}{2}\right)^{2}+6\left(x-\frac{1}{6}\right)^{2}$

"Succinct" SOS refutations

A template \mathbb{B} admits "succinct" SOS refutations:

Take any instance \mathbb{A} of $\operatorname{CSP}(\mathbb{B})$ such that $\mathbb{A} \nrightarrow \mathbb{B}$.
\downarrow
$E(\mathbb{A})$ satisfiable iff $\mathbb{A} \rightarrow \mathbb{B} \quad$ (some fixed encoding for $\operatorname{CSP}(\mathbb{B})$) \downarrow

$$
E(\mathbb{A}) \text { has a "succinct" resolution refutation } \because
$$

"succinct" \rightsquigarrow degree at most d (Ptime - Semidefinite programming)

"Succinct" refutations

resolution
DNF-resolution bounded-depth Frege
Polynomial Calculus
Sherali-Adams
Sum-of-Squares

solvable by Datalog

bounded width

Reductions

$\mathcal{P}^{\prime} \leq{ }_{C S P} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP
Theorem. If $\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply
"succinct" refutations for \mathcal{P}^{\prime}.

Reductions

$\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP
Theorem. If $\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}^{\prime}.

Reductions

$\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP
Theorem. If $\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}^{\prime}.
solvable by Datalog

Theorem [Barto, Kozik]. For every $\mathcal{P} \in \mathcal{C}$, there is a finite Abelian group G such that $3 \operatorname{LIN}(G) \leq_{C S P} \mathcal{P}$.

Lower bounds

Theorem [generalising Ben-Sasson]. Exponential size lower bound for $3 \operatorname{LIN}(G)$, for bounded-depth Frege.

Theorem [Buss, Grigoriev, Impagliazzo, Pitassi]. Linear PC degree lower bound for $3 \operatorname{LIN}(G)$.

Theorem [Chan]. Linear SOS degree lower bound for $3 \operatorname{LIN}(G)$.

"Succinct" refutations

Theorem. If $\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}^{\prime}.

DNF-resolution
bounded-depth Frege
Polynomial Calculus
Sherali-Adams
Sum-of-Squares
Polynomial Calculus over finite fields
Frege
bounded-degree Lovász-Schrijver
Lovász-Schrijver

"Succinct" refutations

Theorem. If $\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}^{\prime}.

DNF-resolution bounded-depth Frege Polynomial Calculus
Sherali-Adams
Sum-of-Squares

Polynomial Calculus over finite fields
Frege
bounded-degree Lovász-Schrijver
Lovász-Schrijver

"Succinct" refutations

Theorem. If $\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}^{\prime}.

DNF-resolution bounded-depth Frege Polynomial Calculus Sherali-Adams
Sum-of-Squares

Polynomial Calculus over finite fields

Frege

bounded-degree Lovász-Schrijver
Lovász-Schrijver
Theorem [Jeavons et al.; Barto, Opršal, Pinsker]. Class of CSP templates closed under $\leq_{C S P}$ has an algebraic characterisation.

Majority

$$
\begin{aligned}
& \qquad \begin{array}{l}
m(x, x, y)=m(x, y, x)=m(y, x, x)=x \\
\mathbb{B}=(\{0,1\} ; \neq)=(\{0,1\} ;\{(0,1),(1,0)\}) \text { identities } \\
(0,1) \in \neq \\
(0,1) \in \neq \\
(1,0)
\end{array} \in \neq
\end{aligned}
$$

Majority

$$
\begin{aligned}
& m(x, x, y)=m(x, y, x)=m(y, x, x)=x \\
& \mathbb{B}=(\{0,1\} ; \neq)=(\{0,1\} ;\{(0,1),(1,0)\})-\text { two-colorability }
\end{aligned}
$$

$$
\begin{aligned}
& (0,1) \in \neq \\
& (0,1) \in \neq \\
& (1,0) \in \neq \\
& (0,1) \in \neq
\end{aligned}
$$

Majority

$m(x, x, y)=m(x, y, x)=m(y, x, x)=x$
$\mathbb{B}=(\{0,1\} ; \neq)=(\{0,1\} ;\{(0,1),(1,0)\})$ - two-colorability

$$
\begin{aligned}
& (0,1) \in \neq \\
& (0,1) \in \neq \\
& (1,0) \in \neq \\
& (0,1) \in \neq
\end{aligned}
$$

Fact. Every CSP whose all relations are preserved by majority is solvable in Ptime.

Algebra

Theorem [Jeavons et al.; Barto, Opršal, Pinsker]. Class of CSP templates closed under $\leq_{C S P}$ has an algebraic characterisation.

There is a set of identities...
$" m(x, x, y)=m(x, y, x)=m(y, x, x)=x "$
such that \mathbb{B} is in the class iff there are functions which:

- satisfy the identities
- preserve the relations of \mathbb{B}

Algebra

Theorem [Jeavons et al.; Barto, Opršal, Pinsker]. Class of CSP templates closed under $\leq_{C S P}$ has an algebraic characterisation.

There is a set of identities...
$" m(x, x, y)=m(x, y, x)=m(y, x, x)=x "$
such that \mathbb{B} is in the class iff there are functions which:

- satisfy the identities
- preserve the relations of \mathbb{B}

Theorem [Bulatov; Zhuk]. CSPs solvable in PTime are characterised by $f(y, x, y, z)=f(x, y, z, x)$.

Algebraic characterisations

Classes of CSPs with succinct refutations in:
DNF-resolution bounded-depth Frege Polynomial Calculus Sherali-Adams

Sum-of-Squares
Polynomial Calculus over finite fields
Frege
bounded-degree Lovász-Schrijver
Lovász-Schrijver
have algebraic characterisations.

Beyond bounded-width

Fact. Polynomial Calculus over finite fields has succinct refutations beyond bounded-width.

Theorem. Frege, bounded-degree Lovász-Schrijver and
Lovász-Schrijver have succinct refutations beyond bounded-width.

Questions

Characterise CSPs which admit succinct refutations in:
Polynomial Calculus over finite fields
Frege
bounded-degree Lovász-Schrijver
Lovász-Schrijver
(CSP problem)

"Succinct" proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?

Standard CSP reductions.

