Proof Complexity Meets Algebra
joint work with Albert Atserias

Joanna Ochremiak
Université Paris Diderot - Paris 7

Logical Structures in Computation Reunion Workshop
Simons Institute, 13th December 2017
(CSP problem) \mathcal{P}

(proof system) \mathcal{S}

“Succinct” proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?
“Succinct” proofs in \(\mathcal{S} \) of the fact that an instance of \(\mathcal{P} \) is unsatisfiable?

Every unsatisfiable instance has a small refutation.
“Succinct” proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?

There exist unsatisfiable instances that require big refutations.
“Succinct” proofs in S of the fact that an instance of P is unsatisfiable?
(CSP problem) \(\mathcal{P} \) \hspace{1cm} (proof system) \(\mathcal{S} \)

“Succinct” proofs in \(\mathcal{S} \) of the fact that an instance of \(\mathcal{P} \) is unsatisfiable?

Standard CSP reductions.
Constraint Satisfaction Problems

template

\[\mathcal{B} = (B; R_1, R_2, \ldots, R_n) \text{- a fixed finite relational structure} \]

Problem: CSP(\(\mathcal{B}\))

Input: a finite relational structure \(\mathcal{A}\)

Decide: Is there a homomorphism from \(\mathcal{A}\) to \(\mathcal{B}\)?
Constraint Satisfaction Problems

\[\mathbb{B} = (B; R_1, R_2, \ldots, R_n) - \text{a fixed finite relational structure} \]

Problem: CSP(\(\mathbb{B}\))

Input: a finite relational structure \(\mathbb{A}\)

Decide: Is there a homomorphism from \(\mathbb{A}\) to \(\mathbb{B}\)?

\[\mathbb{A} = (A; R_1^A, R_2^A, \ldots, R_n^A) \]

\[h: A \rightarrow B - \text{homomorphism iff} \]

\[(a_1, \ldots, a_r) \in R_i^A \Rightarrow (h(a_1), \ldots, h(a_r)) \in R_i \]
Examples

\[\mathbb{B} = (\{0, 1\}; R_1, R_0) - \text{linear equations mod 2} \]

\[R_1 = \{(x, y, z) \in \{0, 1\}^3 \mid x + y + z = 1 \mod 2\} \]
\[R_0 = \{(x, y, z) \in \{0, 1\}^3 \mid x + y + z = 0 \mod 2\} \]
Examples

\[\mathcal{B} = (\{0, 1\}; R_1, R_0) - \text{linear equations mod } 2 \]

\[R_1 = \{(x, y, z) \in \{0, 1\}^3 \mid x + y + z = 1 \mod 2\} \]

\[R_0 = \{(x, y, z) \in \{0, 1\}^3 \mid x + y + z = 0 \mod 2\} \]

\[\mathcal{A} = (\{a, b, c\}; R_0^\mathcal{A}(a, b, c), R_1^\mathcal{A}(a, a, b), R_1^\mathcal{A}(a, c, c)) \]

\[a + b + c = 0 \]

\[a + a + b = 1 \]

\[a + c + c = 1 \]
Examples

- \(\mathcal{B} = (\{0, 1, 2\}; \neq) \) - three-colorability

- \(\mathcal{B} = (\{0, 1\}; R_0, R_1, R_2, R_3) \) - 3-SAT

 \[R_2 = \{0, 1\}^3 \setminus \{(1, 1, 0)\}, \text{ etc...} \]
Resolution

\(C \) - a set of clauses (disjunctions of literals, e.g. \(p \lor q \lor r \))

A resolution refutation of the set \(C \) is a sequence of clauses:

- from \(C \) or
- obtained from previous formulas using the rule:

\[
\frac{C \lor p \quad D \lor \bar{p}}{C \lor D}
\]

- finishing with a contradiction \(\bot \)
Example

\[C = \{ q, \overline{q} \lor p, \overline{p} \lor r, \overline{r} \} \]
A template \mathbb{B} admits “succinct” resolution refutations:

Take any instance \mathbb{A} of CSP(\mathbb{B}) such that $\mathbb{A} \not\implies \mathbb{B}$.

\[
\Downarrow
\]

$E(\mathbb{A})$ satisfiable iff $\mathbb{A} \implies \mathbb{B}$ (some fixed encoding for CSP(\mathbb{B}))

\[
\Downarrow
\]

$E(\mathbb{A})$ has a “succinct” resolution refutation \checkmark

“succinct” \leadsto only clauses with at most k variables (Ptime algorithm)
Polynomial Calculus

\[C = \{ q_1(\bar{x}) = 0, \ldots, q_n(\bar{x}) = 0 \} \] - a system of polynomial equations

A PC refutation of \(C \) is a sequence of polynomial equations:

- from \(C \) or
- obtained from previous equations using the rules:

\[
\begin{align*}
 f(\bar{x}) &= 0 \\
 g(\bar{x}) &= 0 \\
 af(\bar{x}) + bg(\bar{x}) &= 0 \\
 f(\bar{x}) &= 0 \\
 x_k f(\bar{x}) &= 0
\end{align*}
\]

- finishing with \(-1 = 0\)
A template \mathbb{B} admits “succinct” PC refutations:

Take any instance \mathbb{A} of CSP(\mathbb{B}) such that $\mathbb{A} \not\rightarrow \mathbb{B}$.

$E(\mathbb{A})$ satisfiable iff $\mathbb{A} \rightarrow \mathbb{B}$ (some fixed encoding for CSP(\mathbb{B}))

$E(\mathbb{A})$ has a “succinct” PC refutation

“succinct” \leadsto degree at most d (Ptime - the Gröbner basis algorithm)
Sum-of-Squares

Positivstellensatz [Krivine’64, Stengle’74].

\[q_1(\bar{x}) = 0, \ldots, q_n(\bar{x}) = 0, \quad p_1(\bar{x}) \geq 0, \ldots, p_m(\bar{x}) \geq 0 \] unsat. in \(\mathbb{R} \)

\[\sum t_i(\bar{x})q_i(\bar{x}) + \sum s_j(\bar{x})p_j(\bar{x}) + s(\bar{x}) = -1, \text{ where } s \text{ and } s_j's \text{ are SOS} \]
Sum-of-Squares

Positivstellensatz [Krivine’64, Stengle’74].

\[q_1(\bar{x}) = 0, \ldots, q_n(\bar{x}) = 0, \quad p_1(\bar{x}) \geq 0, \ldots, p_m(\bar{x}) \geq 0 \text{ unsat. in } \mathbb{R} \]

\[\sum t_i(\bar{x})q_i(\bar{x}) + \sum s_j(\bar{x})p_j(\bar{x}) + s(\bar{x}) = -1, \text{ where } s \text{ and } s_j \text{’s are SOS} \]

Example.

\[q(x, y) = y + x^2 + 2 = 0, \quad p(x, y) = x - y^2 + 3 \geq 0 \]

\[tq + s_1p + s = -1 \]

\[t = -6, \quad s_1 = 2, \quad s = \frac{1}{3} + 2(y + \frac{3}{2})^2 + 6(x - \frac{1}{6})^2 \]
A template \mathcal{B} admits “succinct” SOS refutations:

Take any instance \mathcal{A} of CSP(\mathcal{B}) such that $\mathcal{A} \not\rightarrow \mathcal{B}$.

$E(\mathcal{A})$ satisfiable iff $\mathcal{A} \rightarrow \mathcal{B}$ (some fixed encoding for CSP(\mathcal{B}))

$E(\mathcal{A})$ has a “succinct” resolution refutation \vdash

“succinct” \leadsto degree at most d (Ptime - Semidefinite programming)
“Succinct” refutations

resolution
DNF-resolution
bounded-depth Frege
Polynomial Calculus
Sherali-Adams
Sum-of-Squares

solvable by Datalog

bounded width
Reductions

\(\mathcal{P}' \leq_{CSP} \mathcal{P} \) - “classical” reduction preserving the complexity of CSP

Theorem. If \(\mathcal{P}' \leq_{CSP} \mathcal{P} \) then “succinct” refutations for \(\mathcal{P} \) imply “succinct” refutations for \(\mathcal{P}' \).
Proof Complexity Meets Algebra,

classical” reduction preserving the complexity of CSP

Theorem. If $\mathcal{P}' \leq_{CSP} \mathcal{P}$ then “succinct” refutations for \mathcal{P} imply “succinct” refutations for \mathcal{P}'.

solvable by Datalog

$\mathcal{P}' \leq_{CSP} \mathcal{P}$
Reductions

$\mathcal{P}' \leq_{CSP} \mathcal{P}$ - “classical” reduction preserving the complexity of CSP

Theorem. If $\mathcal{P}' \leq_{CSP} \mathcal{P}$ then “succinct” refutations for \mathcal{P} imply “succinct” refutations for \mathcal{P}'.

solvable by Datalog

Theorem [Barto, Kozik]. For every $\mathcal{P} \in \mathcal{C}$, there is a finite Abelian group G such that $3LIN(G) \leq_{CSP} \mathcal{P}$.
Theorem [generalising Ben-Sasson]. Exponential size lower bound for $3LIN(G)$, for bounded-depth Frege.

Theorem [Buss, Grigoriev, Impagliazzo, Pitassi]. Linear PC degree lower bound for $3LIN(G)$.

Theorem [Chan]. Linear SOS degree lower bound for $3LIN(G)$.
Theorem. If $\mathcal{P}' \leq_{CSP} \mathcal{P}$ then “succinct” refutations for \mathcal{P} imply “succinct” refutations for \mathcal{P}'.

DNF-resolution
bounded-depth Frege
Polynomial Calculus
Sherali-Adams
Sum-of-Squares
Polynomial Calculus over finite fields
Frege
bounded-degree Lovász-Schrijver
Lovász-Schrijver
“Succinct” refutations

Theorem. If $\mathcal{P} \leq_{\text{CSP}} \mathcal{P}$ then “succinct” refutations for \mathcal{P} imply “succinct” refutations for \mathcal{P}'.

- DNF-resolution
- bounded-depth Frege
- Polynomial Calculus
- Sherali-Adams
- Sum-of-Squares
- Polynomial Calculus over finite fields
- Frege
- bounded-degree Lovász-Schrijver
- Lovász-Schrijver
“Succinct” refutations

Theorem. If $\mathcal{P}' \leq_{CSP} \mathcal{P}$ then “succinct” refutations for \mathcal{P} imply “succinct” refutations for \mathcal{P}'.

- DNF-resolution
- bounded-depth Frege
- Polynomial Calculus
- Sherali-Adams
- Sum-of-Squares
- Polynomial Calculus over finite fields
- Frege
- bounded-degree Lovász-Schrijver
- Lovász-Schrijver

Theorem [Jeavons et al.; Barto, Opršal, Pinsker]. Class of CSP templates closed under \leq_{CSP} has an algebraic characterisation.
Majority

Identities

\[m(x, x, y) = m(x, y, x) = m(y, x, x) = x \]

\(\mathbb{B} = (\{0, 1\}; \neq) = (\{0, 1\}; \{(0, 1), (1, 0)\}) \) - two-colorability

\begin{align*}
(0, 1) & \in \neq \\
(0, 1) & \in \neq \\
(1, 0) & \in \neq
\end{align*}
Majority

$$m(x, x, y) = m(x, y, x) = m(y, x, x) = x$$

$$\mathbb{B} = ([0, 1]; \neq) = ([0, 1]; \{(0, 1), (1, 0)\}) - \text{two-colorability}$$

\begin{align*}
(0, 1) &\in \neq \\
(0, 1) &\in \neq \\
(1, 0) &\in \neq \\
\hline \\
(0, 1) &\in \neq
\end{align*}
Majority

\[
m(x, x, y) = m(x, y, x) = m(y, x, x) = x
\]

\[
\mathbb{B} = (\{0, 1\}; \neq) = (\{0, 1\}; \{(0, 1), (1, 0)\}) - \text{two-colorability}
\]

\[
\begin{align*}
(0, 1) & \in \neq \\
(0, 1) & \in \neq \\
(1, 0) & \in \neq \\
\hline
(0, 1) & \in \neq
\end{align*}
\]

Fact. Every CSP whose all relations are preserved by majority is solvable in Ptime.
Theorem [Jeavons et al.; Barto, Opršal, Pinsker]. Class of CSP templates closed under \(\leq_{_{CSP}} \) has an algebraic characterisation.

There is a set of identities...

\[m(x, x, y) = m(x, y, x) = m(y, x, x) = x \]

such that \(\mathbb{B} \) is in the class iff there are functions which:

- satisfy the identities
- preserve the relations of \(\mathbb{B} \)
Theorem [Jeavons et al.; Barto, Opršal, Pinsker]. Class of CSP templates closed under \leq_{CSP} has an algebraic characterisation.

There is a set of identities...

\[m(x, x, y) = m(x, y, x) = m(y, x, x) = x \]

such that \mathcal{B} is in the class iff there are functions which:

- satisfy the identities
- preserve the relations of \mathcal{B}

Theorem [Bulatov; Zhuk]. CSPs solvable in PTime are characterised by

\[f(y, x, y, z) = f(x, y, z, x). \]
Algebraic characterisations

Classes of CSPs with succinct refutations in:

- DNF-resolution
- bounded-depth Frege
- Polynomial Calculus
- Sherali-Adams
- Sum-of-Squares
- Polynomial Calculus over finite fields
- Frege
- bounded-degree Lovász-Schrijver
- Lovász-Schrijver

have algebraic characterisations.

\[f_3(x, x, y) = f_4(x, x, x, y) \] (WNU)

[Kozik, Krokhin, Valeriote, Willard]
Fact. Polynomial Calculus over finite fields has succinct refutations beyond bounded-width.

Theorem. Frege, bounded-degree Lovász-Schrijver and Lovász-Schrijver have succinct refutations beyond bounded-width.
Characterise CSPs which admit succinct refutations in:

Polynomial Calculus over finite fields
Frege
bounded-degree Lovász-Schrijver
Lovász-Schrijver
(CSP problem) \(\mathcal{P} \) \hspace{1cm} (proof system) \(\mathcal{S} \)

“Succinct” proofs in \(\mathcal{S} \) of the fact that an instance of \(\mathcal{P} \) is unsatisfiable?

Standard CSP reductions.