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Why is it a better implementation?
Is there a good notion of such automata?
What are their properties (e.g. minimization) ?
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Category of disjoint unions of 
vector spaces (free co-product 

completion of Vec)

A disjoint union of vector space is an ordered pair
(I, (Vi)i2I)

where     is a set of indices, and       is a vector space for all          .I Vi i 2 I

Let Duvs be the category with 
- as objects the finite unions of vector spaces 
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Remark: Vec is a subcategory of Duvs.
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V
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= V
even
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Is it minimal ? No…
(odd, 0) (even, 0)              and                  are 
observationally equivalent

Can it be made minimal?

But the implementation is arbitrary.
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Well, in fact Yes… but would be larger…
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Ingredients for the existence 
of a minimal automaton

Questions:
Given a (C,I,F)-automaton, 
- what does it mean to be minimal? 
- at what condition there exists a minimal automaton for a language? 
- what do we need to effectively compute it?

Minimal? « A DFA is minimal if it divides any other automaton for 
the same language. »

it is the quotient of a subautomaton.
notion of « surjection » notion of « injection »

It suffices to have 1. an initial automaton 
2. a final automaton 
3. a factorization system
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Factorization systems
A pair of families of arrows              is a factorization system if: (E ,M)

- arrows that are both in      and in        are isomorphisms,E M

- furthermore, this decomposition is unique up to isomorphism 
 (it has in fact the stronger « diagonal property »).

f = m � e

m : Z ! Y

- all arrows                     can be written  
 
 
for some                   in     and                    in      .

f : X ! Y

e : X ! Z E M

f

X Y X Y

e m

Img f

In Set:

the factorization
of     .f

In Vec:

« epimorphisms »  
« surjections »

« monomorphisms » 
« injections »

dim = rank f

- arrows in     are closed under composition 
- arrows in       are closed under composition

E
M



Factorization system 
for automata



Factorization system 
for automata

Lemma: If there is a factorization system              in a category      then it 
can be lifted to the category of    -automata for a language: these automata 
morphisms that belong to      (resp.      ) as arrows in    .

(E ,M) C
C

E M C



Factorization system 
for automata

Hence (Set,1,2)-automata (i.e. DFA) have a factorization system 
(surjective morphisms,injective morphisms).

Lemma: If there is a factorization system              in a category      then it 
can be lifted to the category of    -automata for a language: these automata 
morphisms that belong to      (resp.      ) as arrows in    .

(E ,M) C
C

E M C



Factorization system 
for automata

Hence (Set,1,2)-automata (i.e. DFA) have a factorization system 
(surjective morphisms,injective morphisms).

Similarly (Vec,K,K)-automata (i.e., automata weighted over a field) 
possess factorization system (surjective morphisms,injective morphisms).

Lemma: If there is a factorization system              in a category      then it 
can be lifted to the category of    -automata for a language: these automata 
morphisms that belong to      (resp.      ) as arrows in    .

(E ,M) C
C

E M C



Factorization system 
for automata

Hence (Set,1,2)-automata (i.e. DFA) have a factorization system 
(surjective morphisms,injective morphisms).

Similarly (Vec,K,K)-automata (i.e., automata weighted over a field) 
possess factorization system (surjective morphisms,injective morphisms).

Definition:  
- an      -subobject      of      is such that there is an      -arrow                   , 
- an    -quotient      of      is such that there is an    -arrow                   , 
-                -divides       if it is a     -quotient of an      -subobject of     . 

M
E

X Y M m : X ! Y
X Y E e : Y ! X

E MX (E ,M) Y Y

Lemma: If there is a factorization system              in a category      then it 
can be lifted to the category of    -automata for a language: these automata 
morphisms that belong to      (resp.      ) as arrows in    .

(E ,M) C
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- C-automata and C-languages can be defined generally in a 

category C, yielding a 
 
         category Auto(L) of « C-automata for the language L »  

- for having a minimal object in a category, it is sufficient to have: 
  1) an initial and a final object in the category for the language, 
  2) a factorization system in C, 

- that the existence of initial and final automata arise from simple 
assumptions on C 

- that the factorization system for automata is inherited from C, 
- that standard minimization for DFA and field weighted automata 

are obtained this way.

But, what about minimizing duvs-automata?
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Minimization of Duvs automata is possible (all the ingredient are there).

However, for the definition of factorization system that works (epi,mono), 
the minimal automaton for 

LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

has state space 
Q = R2

and not
Q = ({odd}⇥ R) [ ({even}⇥ R)
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Defining Glue(Vec)
A glueing of vector space is 
- a disjoint union of vector spaces 
- together with an equivalence 

relation which: 
1) is trivial over each base space  
2) defines linear bijections between 
subspaces when restricted to pairs 
of base spaces. 

Morphisms are… 
complicated to describe…

Aggregating objects 
from a category is a well 
known task in category 
theory: this is obtained 
by freely adding colimits.

The category of glueings of 
vector spaces is the restriction 
of the co-completion of Vec to 
some specific colimits: mono-
colimits.

The advantage is that the 
concepts are well known, 
definition properly stated, and 
this can be applied to other 
categories than Vec.
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Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

A mono-co-limit diagram is a diagram such that the universal cocone 
consists only of monos.

coproducts  
are  

mono-colimits

Definition: 
The glueings of a category is its free completion under mono-co-limits

Yes! Yes!
Yes!

No!

For instance in Vec/Set:
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A factorization system through a subcategory S 
consists of classes (E,M) such that: 
- E-arrows end in S and are closer under composition
- M-arrows start in S and are closer under composition 
- all arrows that factorize through S has (E,M) factorization. 
- the diagnoal property holds.

Theorem: 
Glue(Vec) has 
a facrotization 
system through 
GlueFin(VecFin)

(the same goes for 
automata)
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The core algorithmic problem
Open problem: Given n×n matrices  A₁,…,Ak, compute the least finite 
union of subspaces of matrices that covers the generated semigroup.

For instance consider the matrice  Rot(α) for some rational number α.

If α is a rational multiple of π, it should output the (finite union) of 
the dimension one spaces Vec(Rot(nα)) for integer n.

Otherwise, the output is the two dimension vector spaces of 
matrices of the form

a
a
b

-b(  )
Open problem: Given n×n matrices  A₁,…,Ak, compute the Zariski 
closure of the semigroup generated by these matrices.
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And then ?
- Make this construction effective… (generalization of sequencialization) 
- tree automata 
- algebras (monoids,…) 
- infinite objects (ω-semigroup, o-semigroup, monads…).

Related works
- Schützenberger’s weighted automata, and its long continuations 

[Sakarovitch, Lombardy, Droste, Gastin, Vogler, …]  
- There is a long history of categorical view of minimization  

[Arbib, Manes, Adamek, Milius, Silva, Panangaden, Kupke…]

Contributions
- A categorical description of why minimization is possible, 
- new categorical concepts on the way, 
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