
Automata minimization
and glueing of categories

13 12 2017 Berkeley
Thomas Colcombet

joint work with Daniela Petrişan

Automata minimization
and glueing of categories

13 12 2017 Berkeley
Thomas Colcombet

joint work with Daniela Petrişan

[MFCS 2017] & [Informal presentation in SIGLOG column]

Description of the
situation

Automata

Automata
An deterministic automaton is

hQ, i, f, (�a)a2Ai
where
Q is a set of states,
i : 1 ! Q is the initial map
f : Q ! 2 is the final map
�a : Q ! Q is the transition map

Automata
An deterministic automaton is

hQ, i, f, (�a)a2Ai
where
Q is a set of states,
i : 1 ! Q is the initial map
f : Q ! 2 is the final map
�a : Q ! Q is the transition map

Rabin & Scott

Automata
An deterministic automaton is

hQ, i, f, (�a)a2Ai
where
Q is a set of states,
i : 1 ! Q is the initial map
f : Q ! 2 is the final map
�a : Q ! Q is the transition map

Rabin & Scott

It computes the language:
[[A]] : A⇤ ! [1, 2]

u 7! f � �u � i

Automata
An deterministic automaton is

hQ, i, f, (�a)a2Ai
where
Q is a set of states,
i : 1 ! Q is the initial map
f : Q ! 2 is the final map
�a : Q ! Q is the transition map

⇡ 2

Rabin & Scott

It computes the language:
[[A]] : A⇤ ! [1, 2]

u 7! f � �u � i

Automata
An deterministic automaton is

hQ, i, f, (�a)a2Ai
where
Q is a set of states,
i : 1 ! Q is the initial map
f : Q ! 2 is the final map
�a : Q ! Q is the transition map

⇡ 2

Rabin & Scott

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

where

A vector automaton is

hQ, i, f, (�a)a2Ai

It computes the language:
[[A]] : A⇤ ! [1, 2]

u 7! f � �u � i

Automata
An deterministic automaton is

hQ, i, f, (�a)a2Ai
where
Q is a set of states,
i : 1 ! Q is the initial map
f : Q ! 2 is the final map
�a : Q ! Q is the transition map

⇡ 2

Schützenberger’s
automata weighted

over a field
Rabin & Scott

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

where

A vector automaton is

hQ, i, f, (�a)a2Ai

It computes the language:
[[A]] : A⇤ ! [1, 2]

u 7! f � �u � i

Automata
An deterministic automaton is

hQ, i, f, (�a)a2Ai
where
Q is a set of states,
i : 1 ! Q is the initial map
f : Q ! 2 is the final map
�a : Q ! Q is the transition map

⇡ 2

Schützenberger’s
automata weighted

over a field
Rabin & Scott

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

where

A vector automaton is

hQ, i, f, (�a)a2Ai

It computes the language:
[[A]] : A⇤ ! [1, 2]

u 7! f � �u � i

It computes the language:
[[A]] : A⇤ ! [R,R]

u 7! f � �u � i

Automata
An deterministic automaton is

hQ, i, f, (�a)a2Ai
where
Q is a set of states,
i : 1 ! Q is the initial map
f : Q ! 2 is the final map
�a : Q ! Q is the transition map

⇡ R⇡ 2

Schützenberger’s
automata weighted

over a field
Rabin & Scott

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

where

A vector automaton is

hQ, i, f, (�a)a2Ai

It computes the language:
[[A]] : A⇤ ! [1, 2]

u 7! f � �u � i

It computes the language:
[[A]] : A⇤ ! [R,R]

u 7! f � �u � i

Automata
An deterministic automaton is

hQ, i, f, (�a)a2Ai
where
Q is a set of states,
i : 1 ! Q is the initial map
f : Q ! 2 is the final map
�a : Q ! Q is the transition map

⇡ R⇡ 2

Schützenberger’s
automata weighted

over a field
Rabin & Scott

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

where

A vector automaton is

hQ, i, f, (�a)a2Ai

It computes the language:
[[A]] : A⇤ ! [1, 2]

u 7! f � �u � i

It computes the language:
[[A]] : A⇤ ! [R,R]

u 7! f � �u � i

Automata
An deterministic automaton is

hQ, i, f, (�a)a2Ai
where
Q is a set of states,
i : 1 ! Q is the initial map
f : Q ! 2 is the final map
�a : Q ! Q is the transition map

⇡ R⇡ 2

Schützenberger’s
automata weighted

over a field
Rabin & Scott

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

where

A vector automaton is

hQ, i, f, (�a)a2Ai

It computes the language:
[[A]] : A⇤ ! [1, 2]

u 7! f � �u � i

It computes the language:
[[A]] : A⇤ ! [R,R]

u 7! f � �u � i

These data can modeled
as a functor.

Example
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

Example
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

Q = R2

Example
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

Q = R2

i(x) = (x, 0)

Example
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

Q = R2

i(x) = (x, 0)

f(x, y) = x

Example
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)

�b(x, y) = (y, x)

�c(x, y) = (0, 0)

Example
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q Ris an -vector space
i : R ! Q is a linear map
f : Q ! R is a linear map
�a : Q ! Q is a linear map

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)

�b(x, y) = (y, x)

�c(x, y) = (0, 0)

Is it possible to do better?

A better implementation
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Solution in vector
spaces

A better implementation
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Informally: use one bit for the
parity to the number of b’s.

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Solution in vector
spaces

A better implementation
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Informally: use one bit for the
parity to the number of b’s.

Q = ({odd}⇥ R) [({even}⇥ R)

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Solution in vector
spaces

A better implementation
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Informally: use one bit for the
parity to the number of b’s.

Q = ({odd}⇥ R) [({even}⇥ R)
i(x) = (even, x)

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Solution in vector
spaces

A better implementation
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Informally: use one bit for the
parity to the number of b’s.

Q = ({odd}⇥ R) [({even}⇥ R)
i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Solution in vector
spaces

A better implementation
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Informally: use one bit for the
parity to the number of b’s.

Q = ({odd}⇥ R) [({even}⇥ R)
i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Solution in vector
spaces

A better implementation
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Informally: use one bit for the
parity to the number of b’s.

Q = ({odd}⇥ R) [({even}⇥ R)
i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Solution in vector
spaces

A better implementation
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Informally: use one bit for the
parity to the number of b’s.

Q = ({odd}⇥ R) [({even}⇥ R)
i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Solution in vector
spaces

A better implementation
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Informally: use one bit for the
parity to the number of b’s.

Q = ({odd}⇥ R) [({even}⇥ R)
i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Solution in vector
spaces

Why is it a better implementation?
Is there a good notion of such automata?
What are their properties (e.g. minimization) ?

A definition via
categories

Automata in a category

Automata in a category
A (C,I,F)-automaton is

hQ, i, f, (�a)a2Ai
where
Q is a object of states,

is the initial arrow
is the final arrow

�a : Q ! Q is the transition arrow
for the letter . a

f : Q ! F

i : I ! Q

Automata in a category

The (C,I,F)-language computed is:{

[[A]] : A⇤ ! [I, F]

u 7! f � �u � i

A (C,I,F)-automaton is
hQ, i, f, (�a)a2Ai

where
Q is a object of states,

is the initial arrow
is the final arrow

�a : Q ! Q is the transition arrow
for the letter . a

f : Q ! F

i : I ! Q

Automata in a category

The (C,I,F)-language computed is:{

[[A]] : A⇤ ! [I, F]

u 7! f � �u � i

Auto(L) is the category of (C,I,F)-
automata for the (C,I,F)-language L.

A (C,I,F)-automaton is
hQ, i, f, (�a)a2Ai

where
Q is a object of states,

is the initial arrow
is the final arrow

�a : Q ! Q is the transition arrow
for the letter . a

f : Q ! F

i : I ! Q

Automata in a category

The (C,I,F)-language computed is:{

[[A]] : A⇤ ! [I, F]

u 7! f � �u � i

Auto(L) is the category of (C,I,F)-
automata for the (C,I,F)-language L.

A morphism is an arrow

such that tfdc:

h : QA ! QB

A (C,I,F)-automaton is
hQ, i, f, (�a)a2Ai

where
Q is a object of states,

is the initial arrow
is the final arrow

�a : Q ! Q is the transition arrow
for the letter . a

f : Q ! F

i : I ! Q

Automata in a category

The (C,I,F)-language computed is:{

[[A]] : A⇤ ! [I, F]

u 7! f � �u � i

Auto(L) is the category of (C,I,F)-
automata for the (C,I,F)-language L.

A morphism is an arrow

such that tfdc:

h : QA ! QB

A (C,I,F)-automaton is
hQ, i, f, (�a)a2Ai

where
Q is a object of states,

is the initial arrow
is the final arrow

�a : Q ! Q is the transition arrow
for the letter . a

f : Q ! F

i : I ! Q

Rk: Morphisms preserve the language.

Automata in a category
- (Set,1,2)-automata are

deterministic automata
- (Rel,1,1)-automata are non-

deterministic automata
- (Vec,K,K)-automata are

automata weighted over a
field K. (more generally
semi-modules)

- …

The (C,I,F)-language computed is:{

[[A]] : A⇤ ! [I, F]

u 7! f � �u � i

Auto(L) is the category of (C,I,F)-
automata for the (C,I,F)-language L.

A morphism is an arrow

such that tfdc:

h : QA ! QB

A (C,I,F)-automaton is
hQ, i, f, (�a)a2Ai

where
Q is a object of states,

is the initial arrow
is the final arrow

�a : Q ! Q is the transition arrow
for the letter . a

f : Q ! F

i : I ! Q

Rk: Morphisms preserve the language.

Category of disjoint unions of
vector spaces (free co-product

completion of Vec)

Category of disjoint unions of
vector spaces (free co-product

completion of Vec)

A disjoint union of vector space is an ordered pair
(I, (Vi)i2I)

where is a set of indices, and is a vector space for all .I Vi i 2 I

Category of disjoint unions of
vector spaces (free co-product

completion of Vec)

A disjoint union of vector space is an ordered pair
(I, (Vi)i2I)

where is a set of indices, and is a vector space for all .I Vi i 2 I

Let Duvs be the category with
- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

Category of disjoint unions of
vector spaces (free co-product

completion of Vec)

A disjoint union of vector space is an ordered pair
(I, (Vi)i2I)

where is a set of indices, and is a vector space for all .I Vi i 2 I

Let Duvs be the category with
- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from to is the pair of:(I, (Vi)i2I) (J, (Wi)i2J)

Category of disjoint unions of
vector spaces (free co-product

completion of Vec)

A disjoint union of vector space is an ordered pair
(I, (Vi)i2I)

where is a set of indices, and is a vector space for all .I Vi i 2 I

Let Duvs be the category with
- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from to is the pair of:(I, (Vi)i2I) (J, (Wi)i2J)

- a map from to f I J

Category of disjoint unions of
vector spaces (free co-product

completion of Vec)

A disjoint union of vector space is an ordered pair
(I, (Vi)i2I)

where is a set of indices, and is a vector space for all .I Vi i 2 I

Let Duvs be the category with
- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from to is the pair of:(I, (Vi)i2I) (J, (Wi)i2J)

- a map from to f I J
- a linear map from to for all .gi Vi Wf(i) i 2 I

Category of disjoint unions of
vector spaces (free co-product

completion of Vec)

A disjoint union of vector space is an ordered pair
(I, (Vi)i2I)

where is a set of indices, and is a vector space for all .I Vi i 2 I

Let Duvs be the category with
- as objects the finite unions of vector spaces
- as arrows the morphisms of finite unions of vector spaces.

A morphism from to is the pair of:(I, (Vi)i2I) (J, (Wi)i2J)

- a map from to f I J
- a linear map from to for all .gi Vi Wf(i) i 2 I

Remark: Vec is a subcategory of Duvs.

Duvs-automata
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = ({odd}⇥ R) [({even}⇥ R)

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Duvs-automata
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = ({odd}⇥ R) [({even}⇥ R)

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Indices = {odd, even}

Duvs-automata
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = ({odd}⇥ R) [({even}⇥ R)

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Indices = {odd, even}

V
odd

= V
even

= R

Duvs-automata
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = ({odd}⇥ R) [({even}⇥ R)

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Indices = {odd, even}

V
odd

= V
even

= R

Is it minimal ?

Duvs-automata
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = ({odd}⇥ R) [({even}⇥ R)

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Indices = {odd, even}

V
odd

= V
even

= R

Is it minimal ? No…

Duvs-automata
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = ({odd}⇥ R) [({even}⇥ R)

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Indices = {odd, even}

V
odd

= V
even

= R

Is it minimal ? No…
(odd, 0) (even, 0) and are
observationally equivalent

Duvs-automata
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = ({odd}⇥ R) [({even}⇥ R)

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Indices = {odd, even}

V
odd

= V
even

= R

Is it minimal ? No…
(odd, 0) (even, 0) and are
observationally equivalent
But the implementation is arbitrary.

Duvs-automata
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = ({odd}⇥ R) [({even}⇥ R)

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Indices = {odd, even}

V
odd

= V
even

= R

Is it minimal ? No…
(odd, 0) (even, 0) and are
observationally equivalent

Can it be made minimal?

But the implementation is arbitrary.

Duvs-automata
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = ({odd}⇥ R) [({even}⇥ R)

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Indices = {odd, even}

V
odd

= V
even

= R

Is it minimal ? No…
(odd, 0) (even, 0) and are
observationally equivalent

Can it be made minimal?

But the implementation is arbitrary.

No…

Duvs-automata
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = ({odd}⇥ R) [({even}⇥ R)

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Indices = {odd, even}

V
odd

= V
even

= R

Is it minimal ? No…
(odd, 0) (even, 0) and are
observationally equivalent

Can it be made minimal?

But the implementation is arbitrary.

No…
Well, in fact Yes… but would be larger…

Duvs-automata
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = ({odd}⇥ R) [({even}⇥ R)

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Indices = {odd, even}

V
odd

= V
even

= R

Is it minimal ? No…
(odd, 0) (even, 0) and are
observationally equivalent

Can it be made minimal?

But the implementation is arbitrary.

What can be done?

No…
Well, in fact Yes… but would be larger…

Minimizing automata
via categories

Ingredients for the existence
of a minimal automaton

Questions:
Given a (C,I,F)-automaton,
- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Ingredients for the existence
of a minimal automaton

Questions:
Given a (C,I,F)-automaton,
- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Minimal? « A DFA is minimal if it divides any other automaton for
the same language. »

Ingredients for the existence
of a minimal automaton

Questions:
Given a (C,I,F)-automaton,
- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Minimal? « A DFA is minimal if it divides any other automaton for
the same language. »

it is the quotient of a subautomaton.

Ingredients for the existence
of a minimal automaton

Questions:
Given a (C,I,F)-automaton,
- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Minimal? « A DFA is minimal if it divides any other automaton for
the same language. »

it is the quotient of a subautomaton.
notion of « surjection » notion of « injection »

Ingredients for the existence
of a minimal automaton

Questions:
Given a (C,I,F)-automaton,
- what does it mean to be minimal?
- at what condition there exists a minimal automaton for a language?
- what do we need to effectively compute it?

Minimal? « A DFA is minimal if it divides any other automaton for
the same language. »

it is the quotient of a subautomaton.
notion of « surjection » notion of « injection »

It suffices to have 1. an initial automaton
2. a final automaton
3. a factorization system

Factorization systems
A pair of families of arrows is a factorization system if: (E ,M)

Factorization systems
A pair of families of arrows is a factorization system if: (E ,M)

« epimorphisms »
« surjections »

« monomorphisms »
« injections »

Factorization systems
A pair of families of arrows is a factorization system if: (E ,M)

« epimorphisms »
« surjections »

« monomorphisms »
« injections »

- arrows in are closed under composition
- arrows in are closed under composition

E
M

Factorization systems
A pair of families of arrows is a factorization system if: (E ,M)

- arrows that are both in and in are isomorphisms,E M

« epimorphisms »
« surjections »

« monomorphisms »
« injections »

- arrows in are closed under composition
- arrows in are closed under composition

E
M

Factorization systems
A pair of families of arrows is a factorization system if: (E ,M)

- arrows that are both in and in are isomorphisms,E M

f = m � e

m : Z ! Y

- all arrows can be written  
 
 
for some in and in .

f : X ! Y

e : X ! Z E M

« epimorphisms »
« surjections »

« monomorphisms »
« injections »

- arrows in are closed under composition
- arrows in are closed under composition

E
M

Factorization systems
A pair of families of arrows is a factorization system if: (E ,M)

- arrows that are both in and in are isomorphisms,E M

f = m � e

m : Z ! Y

- all arrows can be written  
 
 
for some in and in .

f : X ! Y

e : X ! Z E M

the factorization
of .f

« epimorphisms »
« surjections »

« monomorphisms »
« injections »

- arrows in are closed under composition
- arrows in are closed under composition

E
M

Factorization systems
A pair of families of arrows is a factorization system if: (E ,M)

- arrows that are both in and in are isomorphisms,E M

- furthermore, this decomposition is unique up to isomorphism 
 (it has in fact the stronger « diagonal property »).

f = m � e

m : Z ! Y

- all arrows can be written  
 
 
for some in and in .

f : X ! Y

e : X ! Z E M

the factorization
of .f

« epimorphisms »
« surjections »

« monomorphisms »
« injections »

- arrows in are closed under composition
- arrows in are closed under composition

E
M

Factorization systems
A pair of families of arrows is a factorization system if: (E ,M)

- arrows that are both in and in are isomorphisms,E M

- furthermore, this decomposition is unique up to isomorphism 
 (it has in fact the stronger « diagonal property »).

f = m � e

m : Z ! Y

- all arrows can be written  
 
 
for some in and in .

f : X ! Y

e : X ! Z E M

f

X Y X Y

e m

Img f

In Set:

the factorization
of .f

« epimorphisms »
« surjections »

« monomorphisms »
« injections »

- arrows in are closed under composition
- arrows in are closed under composition

E
M

Factorization systems
A pair of families of arrows is a factorization system if: (E ,M)

- arrows that are both in and in are isomorphisms,E M

- furthermore, this decomposition is unique up to isomorphism 
 (it has in fact the stronger « diagonal property »).

f = m � e

m : Z ! Y

- all arrows can be written  
 
 
for some in and in .

f : X ! Y

e : X ! Z E M

f

X Y X Y

e m

Img f

In Set:

the factorization
of .f

In Vec:

« epimorphisms »
« surjections »

« monomorphisms »
« injections »

- arrows in are closed under composition
- arrows in are closed under composition

E
M

Factorization systems
A pair of families of arrows is a factorization system if: (E ,M)

- arrows that are both in and in are isomorphisms,E M

- furthermore, this decomposition is unique up to isomorphism 
 (it has in fact the stronger « diagonal property »).

f = m � e

m : Z ! Y

- all arrows can be written  
 
 
for some in and in .

f : X ! Y

e : X ! Z E M

f

X Y X Y

e m

Img f

In Set:

the factorization
of .f

In Vec:

« epimorphisms »
« surjections »

« monomorphisms »
« injections »

dim = rank f

- arrows in are closed under composition
- arrows in are closed under composition

E
M

Factorization system
for automata

Factorization system
for automata

Lemma: If there is a factorization system in a category then it
can be lifted to the category of -automata for a language: these automata
morphisms that belong to (resp.) as arrows in .

(E ,M) C
C

E M C

Factorization system
for automata

Hence (Set,1,2)-automata (i.e. DFA) have a factorization system
(surjective morphisms,injective morphisms).

Lemma: If there is a factorization system in a category then it
can be lifted to the category of -automata for a language: these automata
morphisms that belong to (resp.) as arrows in .

(E ,M) C
C

E M C

Factorization system
for automata

Hence (Set,1,2)-automata (i.e. DFA) have a factorization system
(surjective morphisms,injective morphisms).

Similarly (Vec,K,K)-automata (i.e., automata weighted over a field)
possess factorization system (surjective morphisms,injective morphisms).

Lemma: If there is a factorization system in a category then it
can be lifted to the category of -automata for a language: these automata
morphisms that belong to (resp.) as arrows in .

(E ,M) C
C

E M C

Factorization system
for automata

Hence (Set,1,2)-automata (i.e. DFA) have a factorization system
(surjective morphisms,injective morphisms).

Similarly (Vec,K,K)-automata (i.e., automata weighted over a field)
possess factorization system (surjective morphisms,injective morphisms).

Definition:
- an -subobject of is such that there is an -arrow ,
- an -quotient of is such that there is an -arrow ,
- -divides if it is a -quotient of an -subobject of .

M
E

X Y M m : X ! Y
X Y E e : Y ! X

E MX (E ,M) Y Y

Lemma: If there is a factorization system in a category then it
can be lifted to the category of -automata for a language: these automata
morphisms that belong to (resp.) as arrows in .

(E ,M) C
C

E M C

Minimization !

Minimization !

- there exists an object that -divides all objects,Min (E ,M)
- furthermore for all ,Min ⇡ Obs(Reach(X)) ⇡ Reach(Obs(X)) X

where
- is the factorization of the only arrow from to , and
- is the factorization of the only arrow from to .
Reach(X)
Obs(X)

I
F
X

X

Lemma: In a category with initial object, final object, and a factorization
system then:(E ,M)

Minimization !

- there exists an object that -divides all objects,Min (E ,M)
- furthermore for all ,Min ⇡ Obs(Reach(X)) ⇡ Reach(Obs(X)) X

where
- is the factorization of the only arrow from to , and
- is the factorization of the only arrow from to .
Reach(X)
Obs(X)

I
F
X

X

Lemma: In a category with initial object, final object, and a factorization
system then:(E ,M)

Proof: is the factorization of the only arrow from to . And…Min I F

Minimization !

- there exists an object that -divides all objects,Min (E ,M)
- furthermore for all ,Min ⇡ Obs(Reach(X)) ⇡ Reach(Obs(X)) X

where
- is the factorization of the only arrow from to , and
- is the factorization of the only arrow from to .
Reach(X)
Obs(X)

I
F
X

X

Lemma: In a category with initial object, final object, and a factorization
system then:(E ,M)

Proof: is the factorization of the only arrow from to . And…Min I F

At this point…
We know that:
- C-automata and C-languages can be defined generally in a

category C, yielding a 
 
 category Auto(L) of « C-automata for the language L »  

- for having a minimal object in a category, it is sufficient to have: 
 1) an initial and a final object in the category for the language, 
 2) a factorization system in C,

- that the existence of initial and final automata arise from simple
assumptions on C

- that the factorization system for automata is inherited from C,
- that standard minimization for DFA and field weighted automata

are obtained this way.

At this point…
We know that:
- C-automata and C-languages can be defined generally in a

category C, yielding a 
 
 category Auto(L) of « C-automata for the language L »  

- for having a minimal object in a category, it is sufficient to have: 
 1) an initial and a final object in the category for the language, 
 2) a factorization system in C,

- that the existence of initial and final automata arise from simple
assumptions on C

- that the factorization system for automata is inherited from C,
- that standard minimization for DFA and field weighted automata

are obtained this way.

But, what about minimizing duvs-automata?

Minimization of Duvs
automata (wrong version)

Minimization of Duvs automata is possible (all the ingredient are there).

Minimization of Duvs
automata (wrong version)

Minimization of Duvs automata is possible (all the ingredient are there).

However, for the definition of factorization system that works (epi,mono),
the minimal automaton for

LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

has state space
Q = R2

and not
Q = ({odd}⇥ R) [({even}⇥ R)

Glueings

Glueings
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Glueings
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Vec-automaton

Glueings
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Vec-automaton

Glueings
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Vec-automaton

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Duvs-automaton
Q = {odd, even}⇥ R

Glueings
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Vec-automaton

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Duvs-automaton
Q = {odd, even}⇥ R

Glueings
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Vec-automaton Glue(Vec)-automaton

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Duvs-automaton
Q = {odd, even}⇥ R

Glueings
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Vec-automaton Glue(Vec)-automaton

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Duvs-automaton
Q = {odd, even}⇥ R

Glueings
LVec(u) =

(
2

|u|a
if |u|b is even, and |u|c = 0

0 otherwise

Q = R2

i(x) = (x, 0)

f(x, y) = x

�a(x, y) = (2x, 2y)
�b(x, y) = (y, x)
�c(x, y) = (0, 0)

Vec-automaton Glue(Vec)-automaton

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

Duvs-automaton
Q = {odd, even}⇥ R

?

Defining Glue(Vec)

Defining Glue(Vec)
A glueing of vector space is
- a disjoint union of vector spaces
- together with an equivalence

relation which: 
1) is trivial over each base space  
2) defines linear bijections between
subspaces when restricted to pairs
of base spaces.

Defining Glue(Vec)
A glueing of vector space is
- a disjoint union of vector spaces
- together with an equivalence

relation which: 
1) is trivial over each base space  
2) defines linear bijections between
subspaces when restricted to pairs
of base spaces.

Defining Glue(Vec)
A glueing of vector space is
- a disjoint union of vector spaces
- together with an equivalence

relation which: 
1) is trivial over each base space  
2) defines linear bijections between
subspaces when restricted to pairs
of base spaces.

Morphisms are…
complicated to describe…

Defining Glue(Vec)
A glueing of vector space is
- a disjoint union of vector spaces
- together with an equivalence

relation which: 
1) is trivial over each base space  
2) defines linear bijections between
subspaces when restricted to pairs
of base spaces.

Morphisms are…
complicated to describe…

Aggregating objects
from a category is a well
known task in category
theory: this is obtained
by freely adding colimits.

Defining Glue(Vec)
A glueing of vector space is
- a disjoint union of vector spaces
- together with an equivalence

relation which: 
1) is trivial over each base space  
2) defines linear bijections between
subspaces when restricted to pairs
of base spaces.

Morphisms are…
complicated to describe…

Aggregating objects
from a category is a well
known task in category
theory: this is obtained
by freely adding colimits.

The category of glueings of
vector spaces is the restriction
of the co-completion of Vec to
some specific colimits: mono-
colimits.

Defining Glue(Vec)
A glueing of vector space is
- a disjoint union of vector spaces
- together with an equivalence

relation which: 
1) is trivial over each base space  
2) defines linear bijections between
subspaces when restricted to pairs
of base spaces.

Morphisms are…
complicated to describe…

Aggregating objects
from a category is a well
known task in category
theory: this is obtained
by freely adding colimits.

The category of glueings of
vector spaces is the restriction
of the co-completion of Vec to
some specific colimits: mono-
colimits.

The advantage is that the
concepts are well known,
definition properly stated, and
this can be applied to other
categories than Vec.

Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

A mono-co-limit diagram is a diagram such that the universal cocone
consists only of monos.

Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

A mono-co-limit diagram is a diagram such that the universal cocone
consists only of monos.

For instance in Vec/Set:

Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

A mono-co-limit diagram is a diagram such that the universal cocone
consists only of monos.

Yes!

For instance in Vec/Set:

Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

A mono-co-limit diagram is a diagram such that the universal cocone
consists only of monos.

coproducts
are

mono-colimits

Yes!

For instance in Vec/Set:

Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

A mono-co-limit diagram is a diagram such that the universal cocone
consists only of monos.

coproducts
are

mono-colimits

Yes! Yes!

For instance in Vec/Set:

Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

A mono-co-limit diagram is a diagram such that the universal cocone
consists only of monos.

coproducts
are

mono-colimits

Yes! Yes!

For instance in Vec/Set:

Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

A mono-co-limit diagram is a diagram such that the universal cocone
consists only of monos.

coproducts
are

mono-colimits

Yes! Yes!

No!

For instance in Vec/Set:

Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

A mono-co-limit diagram is a diagram such that the universal cocone
consists only of monos.

coproducts
are

mono-colimits

Yes! Yes!

No!

For instance in Vec/Set:

Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

A mono-co-limit diagram is a diagram such that the universal cocone
consists only of monos.

coproducts
are

mono-colimits

Yes! Yes!
Yes!

No!

For instance in Vec/Set:

Defining Glue(Vec)
in categorical terms

Consider a category that already has colimits (for instance Vec)

A mono-co-limit diagram is a diagram such that the universal cocone
consists only of monos.

coproducts
are

mono-colimits

Definition:
The glueings of a category is its free completion under mono-co-limits

Yes! Yes!
Yes!

No!

For instance in Vec/Set:

Example: continued

The minimal automaton for our example is:

Example: continued

The minimal automaton for our example is:
Q = ({odd}⇥ R) [({even}⇥ R)

(even, 0) ⇠glue (odd, 0)with

Example: continued

The minimal automaton for our example is:

i(x) = (even, x)

Q = ({odd}⇥ R) [({even}⇥ R)
(even, 0) ⇠glue (odd, 0)with

Example: continued

The minimal automaton for our example is:

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

Q = ({odd}⇥ R) [({even}⇥ R)
(even, 0) ⇠glue (odd, 0)with

Example: continued

The minimal automaton for our example is:

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

Q = ({odd}⇥ R) [({even}⇥ R)
(even, 0) ⇠glue (odd, 0)with

} agrees on (even, 0) ⇠glue (odd, 0)

Example: continued

The minimal automaton for our example is:

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

Q = ({odd}⇥ R) [({even}⇥ R)
(even, 0) ⇠glue (odd, 0)with

} agrees on (even, 0) ⇠glue (odd, 0)

Example: continued

The minimal automaton for our example is:

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

Q = ({odd}⇥ R) [({even}⇥ R)
(even, 0) ⇠glue (odd, 0)with

} agrees on (even, 0) ⇠glue (odd, 0)

} agrees on (even, 0) ⇠glue (odd, 0)

Example: continued

The minimal automaton for our example is:

i(x) = (even, x)

f(even, x) = x

f(odd, x) = 0

�a(even, x) = (even, 2x)
�a(odd, x) = (odd, 2x)

Q = ({odd}⇥ R) [({even}⇥ R)
(even, 0) ⇠glue (odd, 0)with

} agrees on (even, 0) ⇠glue (odd, 0)

} agrees on (even, 0) ⇠glue (odd, 0)

�b(odd, x) = (even, x)
�b(even, x) = (odd, x)

�c(even, x) = (even, 0)
�c(odd, x) = (odd, 0)

} agrees on (even, 0) ⇠glue (odd, 0)

} agrees on (even, 0) ⇠glue (odd, 0)

Properties of automata one
glueings of vector spaces

Properties of automata one
glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.

Properties of automata one
glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.
There is a natural factorization system « (surjection like,injection like) ».

However, this yields wrong minimal automata:

Properties of automata one
glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.
There is a natural factorization system « (surjection like,injection like) ».

However, this yields wrong minimal automata:

Properties of automata one
glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.
There is a natural factorization system « (surjection like,injection like) ».

L(a

n
)(x) = x cos(n↵)

However, this yields wrong minimal automata:

Properties of automata one
glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.
There is a natural factorization system « (surjection like,injection like) ».

L(a

n
)(x) = x cos(n↵)

« implementation »

However, this yields wrong minimal automata:

Properties of automata one
glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.
There is a natural factorization system « (surjection like,injection like) ».

L(a

n
)(x) = x cos(n↵) For α not a rational multiple of π, the

minimal automaton contains countable
many copies of , …one for each n…R

« implementation »

However, this yields wrong minimal automata:

Properties of automata one
glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.
There is a natural factorization system « (surjection like,injection like) ».

L(a

n
)(x) = x cos(n↵) For α not a rational multiple of π, the

minimal automaton contains countable
many copies of , …one for each n…R
This is not what we wanted: we
implicitly wanted to minimize among
finite glueings of finite dimension
vector spaces.« implementation »

However, this yields wrong minimal automata:

Properties of automata one
glueings of vector spaces

There exists an initial and a final automaton for a Glue(Vec)-language.
There is a natural factorization system « (surjection like,injection like) ».

L(a

n
)(x) = x cos(n↵) For α not a rational multiple of π, the

minimal automaton contains countable
many copies of , …one for each n…R
This is not what we wanted: we
implicitly wanted to minimize among
finite glueings of finite dimension
vector spaces.

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)-
automata, there exists a minimal automaton for the language among
GlueFin(VecFin)-automata.

« implementation »

The problem
L(a

n
)(x) = x cos(n↵) For α not a rational multiple of π, the

minimal automaton contains countable
many copies of , …one for each n…R
This is not what we wanted: we
implicitly wanted to minimize among
finite glueings of finite dimension
vector spaces.« implementation »

The problem

Glue(Vec)
-automata
 for L

L(a

n
)(x) = x cos(n↵) For α not a rational multiple of π, the

minimal automaton contains countable
many copies of , …one for each n…R
This is not what we wanted: we
implicitly wanted to minimize among
finite glueings of finite dimension
vector spaces.« implementation »

The problem

Init Final

Glue(Vec)
-automata
 for L

L(a

n
)(x) = x cos(n↵) For α not a rational multiple of π, the

minimal automaton contains countable
many copies of , …one for each n…R
This is not what we wanted: we
implicitly wanted to minimize among
finite glueings of finite dimension
vector spaces.« implementation »

The problem

Init Final
Fact(f)Glue(Vec)

-automata
 for L

L(a

n
)(x) = x cos(n↵) For α not a rational multiple of π, the

minimal automaton contains countable
many copies of , …one for each n…R
This is not what we wanted: we
implicitly wanted to minimize among
finite glueings of finite dimension
vector spaces.« implementation »

The problem

Init Final
Fact(f)Glue(Vec)

-automata
 for L

GlueFin(VecFin)
-automata for L

L(a

n
)(x) = x cos(n↵) For α not a rational multiple of π, the

minimal automaton contains countable
many copies of , …one for each n…R
This is not what we wanted: we
implicitly wanted to minimize among
finite glueings of finite dimension
vector spaces.« implementation »

The problem

Init Final
Fact(f)

« minimal automaton»

Glue(Vec)
-automata
 for L

GlueFin(VecFin)
-automata for L

L(a

n
)(x) = x cos(n↵) For α not a rational multiple of π, the

minimal automaton contains countable
many copies of , …one for each n…R
This is not what we wanted: we
implicitly wanted to minimize among
finite glueings of finite dimension
vector spaces.« implementation »

Idea 1: factorization through

Idea 1: factorization through

C

Idea 1: factorization through

X Y

C

Idea 1: factorization through

X Y
Fact(f)

C

Idea 1: factorization through

X Y
Fact(f)

C

A factorization system through a subcategory S
consists of classes (E,M) such that:
- E-arrows end in S and are closer under composition
- M-arrows start in S and are closer under composition
- all arrows that factorize through S has (E,M) factorization.
- the diagnoal property holds.

Idea 1: factorization through

X Y
Fact(f)

C

S

A factorization system through a subcategory S
consists of classes (E,M) such that:
- E-arrows end in S and are closer under composition
- M-arrows start in S and are closer under composition
- all arrows that factorize through S has (E,M) factorization.
- the diagnoal property holds.

Idea 1: factorization through

X Y
Fact(f)

C

S

FactThroughS(f)

A factorization system through a subcategory S
consists of classes (E,M) such that:
- E-arrows end in S and are closer under composition
- M-arrows start in S and are closer under composition
- all arrows that factorize through S has (E,M) factorization.
- the diagnoal property holds.

Idea 1: factorization through

X Y
Fact(f)

C

S

FactThroughS(f)

A factorization system through a subcategory S
consists of classes (E,M) such that:
- E-arrows end in S and are closer under composition
- M-arrows start in S and are closer under composition
- all arrows that factorize through S has (E,M) factorization.
- the diagnoal property holds.

Theorem:
Glue(Vec) has
a facrotization
system through
GlueFin(VecFin)

Idea 1: factorization through

X Y
Fact(f)

C

S

FactThroughS(f)

A factorization system through a subcategory S
consists of classes (E,M) such that:
- E-arrows end in S and are closer under composition
- M-arrows start in S and are closer under composition
- all arrows that factorize through S has (E,M) factorization.
- the diagnoal property holds.

Theorem:
Glue(Vec) has
a facrotization
system through
GlueFin(VecFin)

(the same goes for
automata)

Factorization of glueings

Factorization of glueings
Theorem:
Glue(Vec) has a factorization system through GlueFin(VecFin)

Factorization of glueings
Theorem:
Glue(Vec) has a factorization system through GlueFin(VecFin)
Lemma: finite unions of subspaces of a finite dimension vector space
are closed under arbitrary intersection.

Factorization of glueings
Theorem:
Glue(Vec) has a factorization system through GlueFin(VecFin)
Lemma: finite unions of subspaces of a finite dimension vector space
are closed under arbitrary intersection.
Corollary: for all subset of a (finite dimension)
vector space, there is a least finite union of
vector spaces that covers it.

Factorization of glueings
Theorem:
Glue(Vec) has a factorization system through GlueFin(VecFin)
Lemma: finite unions of subspaces of a finite dimension vector space
are closed under arbitrary intersection.
Corollary: for all subset of a (finite dimension)
vector space, there is a least finite union of
vector spaces that covers it.

This is the closure in the
topology where closed
sets are finite unions of
subspaces.

Factorization of glueings
Theorem:
Glue(Vec) has a factorization system through GlueFin(VecFin)
Lemma: finite unions of subspaces of a finite dimension vector space
are closed under arbitrary intersection.
Corollary: for all subset of a (finite dimension)
vector space, there is a least finite union of
vector spaces that covers it.

This is the closure in the
topology where closed
sets are finite unions of
subspaces.
This is a coarsening of
Zariski topology.

Factorization of glueings
Theorem:
Glue(Vec) has a factorization system through GlueFin(VecFin)
Lemma: finite unions of subspaces of a finite dimension vector space
are closed under arbitrary intersection.
Corollary: for all subset of a (finite dimension)
vector space, there is a least finite union of
vector spaces that covers it.

This is the closure in the
topology where closed
sets are finite unions of
subspaces.
This is a coarsening of
Zariski topology.

Proof by example in affine spaces
…

Factorization of glueings
Theorem:
Glue(Vec) has a factorization system through GlueFin(VecFin)
Lemma: finite unions of subspaces of a finite dimension vector space
are closed under arbitrary intersection.
Corollary: for all subset of a (finite dimension)
vector space, there is a least finite union of
vector spaces that covers it.

This is the closure in the
topology where closed
sets are finite unions of
subspaces.
This is a coarsening of
Zariski topology.

Proof by example in affine spaces
…

We obtain

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)-
automata, there exists a minimal automaton for the language among
GlueFin(VecFin)-automata.

We obtain

Theorem: For Glue(Vec)-languages recognized by GlueFin(VecFin)-
automata, there exists a minimal automaton for the language among
GlueFin(VecFin)-automata.

But, we do not know how to compute it…

The core algorithmic problem
Open problem: Given n×n matrices A₁,…,Ak, compute the least finite
union of subspaces of matrices that covers the generated semigroup.

For instance consider the matrice Rot(α) for some rational number α.

If α is a rational multiple of π, it should output the (finite union) of
the dimension one spaces Vec(Rot(nα)) for integer n.

Otherwise, the output is the two dimension vector spaces of
matrices of the form

a
a
b

-b()

The core algorithmic problem
Open problem: Given n×n matrices A₁,…,Ak, compute the least finite
union of subspaces of matrices that covers the generated semigroup.

For instance consider the matrice Rot(α) for some rational number α.

If α is a rational multiple of π, it should output the (finite union) of
the dimension one spaces Vec(Rot(nα)) for integer n.

Otherwise, the output is the two dimension vector spaces of
matrices of the form

a
a
b

-b()
Open problem: Given n×n matrices A₁,…,Ak, compute the Zariski
closure of the semigroup generated by these matrices.

Conclusion

Contributions

Contributions
- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of 

minimizable automata using « glueings ».

Related works

Contributions
- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of 

minimizable automata using « glueings ».

Related works
- Schützenberger’s weighted automata, and its long continuations

[Sakarovitch, Lombardy, Droste, Gastin, Vogler, …]
- There is a long history of categorical view of minimization  

[Arbib, Manes, Adamek, Milius, Silva, Panangaden, Kupke…]

Contributions
- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of 

minimizable automata using « glueings ».

And then ?

Related works
- Schützenberger’s weighted automata, and its long continuations

[Sakarovitch, Lombardy, Droste, Gastin, Vogler, …]
- There is a long history of categorical view of minimization  

[Arbib, Manes, Adamek, Milius, Silva, Panangaden, Kupke…]

Contributions
- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of 

minimizable automata using « glueings ».

And then ?
- Make this construction effective… (generalization of sequencialization)
- tree automata
- algebras (monoids,…)
- infinite objects (ω-semigroup, o-semigroup, monads…).

Related works
- Schützenberger’s weighted automata, and its long continuations

[Sakarovitch, Lombardy, Droste, Gastin, Vogler, …]
- There is a long history of categorical view of minimization  

[Arbib, Manes, Adamek, Milius, Silva, Panangaden, Kupke…]

Contributions
- A categorical description of why minimization is possible,
- new categorical concepts on the way,
- new ways to construct categories that yield natural classes of 

minimizable automata using « glueings ».

Questions ?

