# Deciding <br> Probabilistic Bisimilarity Distance One for Labelled Markov Chains 

Franck van Breugel

Joint work with Qiyi Tang



December 12, 2017

## Table of Contents

(1) Overview

- Probabilistic bisimilarity
- Probabilistic bisimilarity distances
- Algorithm to compute distances
- Deciding distance one
(2) Details


## Labelled Markov Chain



## Probabilistic Bisimilarity is not Robust

fair coin


## Probabilistic Bisimilarity is not Robust

fair coin
biased coin


## Probabilistic Bisimilarity is not Robust

fair coin
biased coin

probabilistic bisimilarity

## Probabilistic Bisimilarity is not Robust

fair coin
biased coin


## Probabilistic Bisimilarity Distances

fair coin
biased coin


Each state has distance zero to itself. All other distances are one.

## Probabilistic Bisimilarity Distances

## Theorem

States are probabilistic bisimilar if and only if their probabilistic bisimilarity distance is zero.


Desharnais, Gupta, Jagadeesan and Panangaden. CONCUR 1999.

## Probabilistic Bisimilarity Distances

Franck van Breugel. Probabilistic bisimilarity distances. SIGLOG News, 4(4):33-51, October 2017.

## Algorithm to Compute Distances

(1) Decide probabilistic bisimilarity in $O(m \lg n)$


Derisavi, Hermanns and Sanders. IPL 2003.
(2) Policy iteration in $\Omega\left(2^{n}\right)$


Bacci, Bacci, Larsen and Mardare. TACAS 2013

## Main Result

## Theorem

Distance one can be decided in $O\left(n^{2}+m^{2}\right)$.

## New Algorithm to Compute Distances

(1) Decide distance zero in $O(m \lg n)$
(2) Decide distance one in $O\left(n^{2}+m^{2}\right)$
(3) Policy iteration in $\Omega\left(2^{n}\right)$

## New Algorithm to Compute Distances



## New Algorithm to Compute Distances



## New Algorithm to Compute Distances



## New Algorithm to Compute Distances

Donald Knuth and Andrew Yao. The Complexity of Nonuniform Random Number Generation. In Proceedings of a Symposium on New Directions and Recent Results in Algorithms and Complexity, pages 375-428, Pittsburgh, PA, USA, April 1976. Academic Press.

Labelled Markov chain with 26 states and 36 transitions
DHS + B²LM algorithm: 4.753 seconds

## New Algorithm to Compute Distances

Donald Knuth and Andrew Yao. The Complexity of Nonuniform Random Number Generation. In Proceedings of a Symposium on New Directions and Recent Results in Algorithms and Complexity, pages 375-428, Pittsburgh, PA, USA, April 1976. Academic Press.

Labelled Markov chain with 26 states and 36 transitions
DHS + B²LM algorithm: 4.753 seconds
Our algorithm: 0.237 seconds

## New Algorithm to Compute Distances

Alon Itai and Michael Rodeh. Symmetry Breaking in Distributed Networks. Information and Computation, 88(1):60-87, September 1990.

Labelled Markov chain with 147 states and 210 transitions
DHS + B²LM algorithm: 49 hours

## New Algorithm to Compute Distances

Alon Itai and Michael Rodeh. Symmetry Breaking in Distributed Networks. Information and Computation, 88(1):60-87, September 1990.

Labelled Markov chain with 147 states and 210 transitions
DHS + B²LM algorithm: 49 hours
Our algorithm: 0.013 seconds

## Any Non-Trivial Distances?

(1) Decide distance zero in $O(m \lg n)$
(3) Decide distance one in $O\left(n^{2}+m^{2}\right)$

## Any Non-Trivial Distances?

Alon Itai and Michael Rodeh. Symmetry Breaking in Distributed Networks. Information and Computation, 88(1):60-87, September 1990.

Labelled Markov chain with 12400 states and 16495 transitions

## Any Non-Trivial Distances?

Alon Itai and Michael Rodeh. Symmetry Breaking in Distributed Networks. Information and Computation, 88(1):60-87, September 1990.

Labelled Markov chain with 12400 states and 16495 transitions
Our algorithm: 2971.244 seconds

## Compute Distances smaller than $\epsilon$

(1) Decide distance zero
(2) Decide distance one
(3) Compute $\Delta(d)$ where

$$
d(s, t)= \begin{cases}1 & \text { if distance of } s \text { and } t \text { is one } \\ 0 & \text { otherwise }\end{cases}
$$

(1) Partial policy iteration for

$$
\{(s, t) \in S \times S \mid \Delta(d)(s, t) \leq \epsilon\}
$$

## Compute Distances smaller than $\epsilon$

Donald Knuth and Andrew Yao. The Complexity of Nonuniform Random Number Generation. In Proceedings of a Symposium on New Directions and Recent Results in Algorithms and Complexity, pages 375-428, Pittsburgh, PA, USA, April 1976. Academic Press.

Labelled Markov chain with 26 states and 36 transitions
DHS $+B^{2}$ LM algorithm: 4.753 seconds

## Compute Distances smaller than $\epsilon$

Donald Knuth and Andrew Yao. The Complexity of Nonuniform Random Number Generation. In Proceedings of a Symposium on New Directions and Recent Results in Algorithms and Complexity, pages 375-428, Pittsburgh, PA, USA, April 1976. Academic Press.

Labelled Markov chain with 26 states and 36 transitions
DHS + $\mathrm{B}^{2} \mathrm{LM}$ algorithm: 4.753 seconds
Our algorithm: 0.237 seconds

## Compute Distances smaller than $\epsilon$

Donald Knuth and Andrew Yao. The Complexity of Nonuniform Random Number Generation. In Proceedings of a Symposium on New Directions and Recent Results in Algorithms and Complexity, pages 375-428, Pittsburgh, PA, USA, April 1976. Academic Press.

Labelled Markov chain with 26 states and 36 transitions
DHS + $\mathrm{B}^{2} \mathrm{LM}$ algorithm: 4.753 seconds
Our algorithm: 0.237 seconds
Our algorithm with $\epsilon=0.2$ : 0.076 seconds

## Table of Contents

(1) Overview
(2) Details

- Probabilistic bisimilarity distances
- Distance zero
- Distance one


## Labelled Markov Chain

## Definition

A labelled Markov chain is a tuple $\langle S, L, \tau, \ell\rangle$ consisting of

- a nonempty finite set $S$ of states,
- a nonempty finite set of $L$ of labels,
- a transition function $\tau: S \rightarrow \operatorname{Distr}(S)$ and
- a labelling function $\ell: S \rightarrow L$.

The probability of transitioning from state $s$ to state $t$ is $\tau(s)(t)$.

## Probabilistic Bisimilarity Distances

## Definition

The function $\Delta:[0,1]^{S \times S} \rightarrow[0,1]^{S \times S}$ is defined as follows.
Let $d: S \times S \rightarrow[0,1]$ and $s, t \in S$.

- If $\ell(s) \neq \ell(t)$ then

$$
\Delta(d)(s, t)=1 .
$$

- If $\ell(s)=\ell(t)$ then

$$
\Delta(d)(s, t)=\min _{c \in \mathcal{C}(\tau(s), \tau(t))} \sum_{u, v \in S} c(u, v) d(u, v) .
$$

## Probabilistic Bisimilarity Distances

## Definition

The function $\Delta:[0,1]^{S \times S} \rightarrow[0,1]^{S \times S}$ is defined as follows. Let $d: S \times S \rightarrow[0,1]$ and $s, t \in S$.

- If $\ell(s) \neq \ell(t)$ then

$$
\Delta(d)(s, t)=1
$$

- If $\ell(s)=\ell(t)$ then

$$
\Delta(d)(s, t)=\min _{c \in \mathcal{C}(\tau(s), \tau(t))} \sum_{u, v \in S} c(u, v) d(u, v) .
$$

## Proposition

$\Delta$ is a monotone function from the complete lattice $[0,1]^{S \times S}$ to itself.

## Probabilistic Bisimilarity Distances

## Definition

The function $\Delta:[0,1]^{S \times S} \rightarrow[0,1]^{S \times S}$ is defined as follows. Let $d: S \times S \rightarrow[0,1]$ and $s, t \in S$.

- If $\ell(s) \neq \ell(t)$ then

$$
\Delta(d)(s, t)=1
$$

- If $\ell(s)=\ell(t)$ then

$$
\Delta(d)(s, t)=\min _{c \in \mathcal{C}(\tau(s), \tau(t))} \sum_{u, v \in S} c(u, v) d(u, v)
$$

## Proposition

$\Delta$ is a monotone function from the complete lattice $[0,1]^{S \times S}$ to itself.

## Corollary

$\Delta$ has a least fixed point, denoted $\operatorname{lfp}(\Delta)$.

## Probabilistic Bisimilarity Distances

$$
\min _{c \in \mathcal{C}(\tau(s), \tau(t))} \sum_{u, v \in S} c(u, v) d(u, v)
$$


$d(u, v)$ : cost to transport one unit between $u$ and $v$ $c(u, v)$ : amount transported between $u$ and $v$

## Probabilistic Bisimilarity Distances



## Probabilistic Bisimilarity Distances



|  | h | t |
| :---: | :---: | :---: |
| h | 0 | 1 |
| t | 1 | 0 |

## Probabilistic Bisimilarity Distances



## Probabilistic Bisimilarity Distances



## Distance Zero and One

The set $S^{2}=S \times S$ is partitioned:

$$
\begin{aligned}
& S_{0}^{2}=\left\{(s, t) \in S^{2} \mid s \sim t\right\} \\
& S_{1}^{2}=\left\{(s, t) \in S^{2} \mid \ell(s) \neq \ell(t)\right\} \\
& S_{?}^{2}=S^{2} \backslash\left(S_{0}^{2} \cup S_{1}^{2}\right)
\end{aligned}
$$

## Distance Zero and One

The set $S^{2}=S \times S$ is partitioned:

$$
\begin{aligned}
& S_{0}^{2}=\left\{(s, t) \in S^{2} \mid s \sim t\right\} \\
& S_{1}^{2}=\left\{(s, t) \in S^{2} \mid \ell(s) \neq \ell(t)\right\} \\
& S_{?}^{2}=S^{2} \backslash\left(S_{0}^{2} \cup S_{1}^{2}\right)
\end{aligned}
$$

fair coin
biased coin


## Distance Zero and One

The set $S^{2}=S \times S$ is partitioned:

$$
\begin{aligned}
& S_{0}^{2}=\left\{(s, t) \in S^{2} \mid s \sim t\right\} \\
& S_{1}^{2}=\left\{(s, t) \in S^{2} \mid \ell(s) \neq \ell(t)\right\} \\
& S_{?}^{2}=S^{2} \backslash\left(S_{0}^{2} \cup S_{1}^{2}\right)
\end{aligned}
$$

fair coin
biased coin


## Distance Zero and One

The set $S^{2}=S \times S$ is partitioned:

$$
\begin{aligned}
& S_{0}^{2}=\left\{(s, t) \in S^{2} \mid s \sim t\right\} \\
& S_{1}^{2}=\left\{(s, t) \in S^{2} \mid \ell(s) \neq \ell(t)\right\} \\
& S_{?}^{2}=S^{2} \backslash\left(S_{0}^{2} \cup S_{1}^{2}\right)
\end{aligned}
$$

fair coin
biased coin


## Distance Zero and One

The set $S^{2}=S \times S$ is partitioned:

$$
\begin{aligned}
& S_{0}^{2}=\left\{(s, t) \in S^{2} \mid s \sim t\right\} \\
& S_{1}^{2}=\left\{(s, t) \in S^{2} \mid \ell(s) \neq \ell(t)\right\} \\
& S_{?}^{2}=S^{2} \backslash\left(S_{0}^{2} \cup S_{1}^{2}\right)
\end{aligned}
$$

fair coin
biased coin


## Distance Zero and One

The set $S^{2}=S \times S$ is partitioned:

$$
\begin{aligned}
& S_{0}^{2}=\left\{(s, t) \in S^{2} \mid s \sim t\right\} \\
& S_{1}^{2}=\left\{(s, t) \in S^{2} \mid \ell(s) \neq \ell(t)\right\} \\
& S_{?}^{2}=S^{2} \backslash\left(S_{0}^{2} \cup S_{1}^{2}\right)
\end{aligned}
$$

> Theorem (DGJP 1999)
> $S_{0}^{2}=D_{0}=\left\{(s, t) \in S^{2} \mid \operatorname{Ifp}(\Delta)(s, t)=0\right\}$.

## Distance Zero and One

The set $S^{2}=S \times S$ is partitioned:

$$
\begin{aligned}
& S_{0}^{2}=\left\{(s, t) \in S^{2} \mid s \sim t\right\} \\
& S_{1}^{2}=\left\{(s, t) \in S^{2} \mid \ell(s) \neq \ell(t)\right\} \\
& S_{?}^{2}=S^{2} \backslash\left(S_{0}^{2} \cup S_{1}^{2}\right)
\end{aligned}
$$

## Theorem (DGJP 1999)

$S_{0}^{2}=D_{0}=\left\{(s, t) \in S^{2} \mid \operatorname{lfp}(\Delta)(s, t)=0\right\}$.

Proposition
$S_{1}^{2} \subseteq D_{1}=\left\{(s, t) \in S^{2} \mid \operatorname{lfp}(\Delta)(s, t)=1\right\}$.

## Distance One

## Definition

The function $\Gamma: 2^{S \times S} \rightarrow 2^{S \times S}$ is defined by
$\Gamma(X)=S_{1}^{2} \cup\left\{(s, t) \in S_{?}^{2} \mid \forall c \in \mathcal{C}(\tau(s), \tau(t)):\right.$ support $\left.(c) \subseteq X\right\}$.

## Distance One

## Definition

The function $\Gamma: 2^{S \times S} \rightarrow 2^{S \times S}$ is defined by
$\Gamma(X)=S_{1}^{2} \cup\left\{(s, t) \in S_{?}^{2} \mid \forall c \in \mathcal{C}(\tau(s), \tau(t)):\right.$ support $\left.(c) \subseteq X\right\}$.

## Proposition

$\Gamma$ is a monotone function from the complete lattice $2^{S \times S}$ to itself.

## Distance One

## Definition

The function $\Gamma: 2^{S \times S} \rightarrow 2^{S \times S}$ is defined by
$\Gamma(X)=S_{1}^{2} \cup\left\{(s, t) \in S_{?}^{2} \mid \forall c \in \mathcal{C}(\tau(s), \tau(t)):\right.$ support $\left.(c) \subseteq X\right\}$.

## Proposition

$\Gamma$ is a monotone function from the complete lattice $2^{S \times S}$ to itself.
Corollary
$\Gamma$ has a greatest fixed point, denoted $\operatorname{gfp}(\Gamma)$.

## Distance One

## Definition

The function $\Gamma: 2^{S \times S} \rightarrow 2^{S \times S}$ is defined by
$\Gamma(X)=S_{1}^{2} \cup\left\{(s, t) \in S_{?}^{2} \mid \forall c \in \mathcal{C}(\tau(s), \tau(t)):\right.$ support $\left.(c) \subseteq X\right\}$.

## Proposition

$\Gamma$ is a monotone function from the complete lattice $2^{S \times S}$ to itself.

## Corollary

$\Gamma$ has a greatest fixed point, denoted $\operatorname{gfp}(\Gamma)$.
Theorem
$D_{1}=\operatorname{gfp}(\Gamma)$.

## Distance smaller than One

## Definition

The function $L: 2^{S \times S} \rightarrow 2^{S \times S}$ is defined by
$\mathrm{L}(X)$

$$
=S^{2} \backslash \Gamma\left(S^{2} \backslash X\right)
$$

$$
=S_{0}^{2} \cup\left\{(s, t) \in S_{?}^{2} \mid \exists c \in \mathcal{C}(\tau(s), \tau(t)): \text { support }(c) \nsubseteq S^{2} \backslash X\right\}
$$

$$
=S_{0}^{2} \cup\left\{(s, t) \in S_{?}^{2} \mid \exists c \in \mathcal{C}(\tau(s), \tau(t)): \text { support }(c) \cap X \neq \emptyset\right\} .
$$

## Distance smaller than One

## Definition

The function $L: 2^{S \times S} \rightarrow 2^{S \times S}$ is defined by
$\mathrm{L}(X)$
$=S^{2} \backslash \Gamma\left(S^{2} \backslash X\right)$
$=S_{0}^{2} \cup\left\{(s, t) \in S_{?}^{2} \mid \exists c \in \mathcal{C}(\tau(s), \tau(t)):\right.$ support $\left.(c) \nsubseteq S^{2} \backslash X\right\}$
$=S_{0}^{2} \cup\left\{(s, t) \in S_{?}^{2} \mid \exists c \in \mathcal{C}(\tau(s), \tau(t)): \operatorname{support}(c) \cap X \neq \emptyset\right\}$
Proposition
$\operatorname{gfp}(\Gamma)=S^{2} \backslash \operatorname{lfp}(L)$.

## Distance smaller than One

## Definition

The function $L: 2^{S \times S} \rightarrow 2^{S \times S}$ is defined by
$\mathrm{L}(X)$

$$
=S^{2} \backslash \Gamma\left(S^{2} \backslash X\right)
$$

$$
=S_{0}^{2} \cup\left\{(s, t) \in S_{?}^{2} \mid \exists c \in \mathcal{C}(\tau(s), \tau(t)): \text { support }(c) \nsubseteq S^{2} \backslash X\right\}
$$

$$
=S_{0}^{2} \cup\left\{(s, t) \in S_{?}^{2} \mid \exists c \in \mathcal{C}(\tau(s), \tau(t)): \text { support }(c) \cap X \neq \emptyset\right\} .
$$

Proposition
$\operatorname{gfp}(\Gamma)=S^{2} \backslash \operatorname{lfp}(\mathrm{~L})$.

## Proposition

$\exists c \in \mathcal{C}(\tau(s), \tau(t))$ : support $(c) \cap X \neq \emptyset$
iff
$\exists(u, v) \in X: \tau(s)(u)>0 \wedge \tau(t)(v)>0$.

## Distance smaller than One

Definition
The directed graph $G=\langle V, E\rangle$ is defined by

- $V=S^{2}$ and
- $E=\{\langle(s, t),(u, v)\rangle \mid \tau(s)(u)>0 \wedge \tau(t)(v)>0\}$.


## Distance smaller than One

## Definition

The directed graph $G=\langle V, E\rangle$ is defined by

- $V=S^{2}$ and
- $E=\{\langle(s, t),(u, v)\rangle \mid \tau(s)(u)>0 \wedge \tau(t)(v)>0\}$.


## Proposition

 $\operatorname{Ifp}(\mathrm{L})=\{(u, v) \mid(u, v)$ is reachable from $(s, t)$ with $s \sim t$ in $G\}$.
## Distance smaller than One

Definition
The directed graph $G=\langle V, E\rangle$ is defined by

- $V=S^{2}$ and
- $E=\{\langle(s, t),(u, v)\rangle \mid \tau(s)(u)>0 \wedge \tau(t)(v)>0\}$.


## Proposition

 $\operatorname{lfp}(\mathrm{L})=\{(u, v) \mid(u, v)$ is reachable from $(s, t)$ with $s \sim t$ in $G\}$.
## Proposition

 Ifp(L) can be computed in $O\left(n^{2}+m^{2}\right)$.
## Distance smaller than One

## Definition

The directed graph $G=\langle V, E\rangle$ is defined by

- $V=S^{2}$ and
- $E=\{\langle(s, t),(u, v)\rangle \mid \tau(s)(u)>0 \wedge \tau(t)(v)>0\}$.


## Proposition

$$
\operatorname{lfp}(\mathrm{L})=\{(u, v) \mid(u, v) \text { is reachable from }(s, t) \text { with } s \sim t \text { in } G\} .
$$

## Proposition

Ifp(L) can be computed in $O\left(n^{2}+m^{2}\right)$.

## Proof

$G$ has $n^{2}$ vertices and $m^{2}$ edges. Breadth first search, with the queue initially containing $S_{0}^{2}$, traverses all vertices in Ifp(L) and takes $O\left(n^{2}+m^{2}\right)$.

Distance one can be decided in $O\left(n^{2}+m^{2}\right)$.

- New algorithm to compute distances.
- New polynomial time algorithm to decide if there are any non-trivial distances.
- New algorithm to compute all distances smaller than a given $\epsilon$.

