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Probabilistic Bisimilarity Distances

fair coin biased coin

Each state has distance zero to itself. All other distances
are one.
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Probabilistic Bisimilarity Distances

States are probabilistic bisimilar if and only if their probabilistic
bisimilarity distance is zero.

Desharnais, Gupta, Jagadeesan and Panangaden.
CONCUR 1999.
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Probabilistic Bisimilarity Distances

Franck van Breugel. Probabilistic bisimilarity distances.
SIGLOG News, 4(4):33-51, October 2017.
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Algorithm to Compute Distances

@ Decide probabilistic bisimilarity in O(mlg n)

)
Derisavi, Hermanns and Sanders. IPL 2003.
@ Policy iteration in Q(2")

Bacci, Bacci, Larsen and Mardare. TACAS 2013
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Main Result

Distance one can be decided in O(n® + m?).
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New Algorithm to Compute Distances

@ Decide distance zero in O(mlgn)
@ Decide distance one in O(n? + m?)
© Policy iteration in Q(2")
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New Algorithm to Compute Distances

Donald Knuth and Andrew Yao. The Complexity of Nonuniform
Random Number Generation. In Proceedings of a Symposium
on New Directions and Recent Results in Algorithms and
Complexity, pages 375—428, Pittsburgh, PA, USA, April 1976.
Academic Press.

Labelled Markov chain with 26 states and 36 transitions

DHS + B2?LM algorithm: 4.753 seconds
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Any Non-Trivial Distances?

@ Decide distance zero in O(mlgn)
@ Decide distance one in O(n? + m?)
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Any Non-Trivial Distances?

Alon ltai and Michael Rodeh. Symmetry Breaking in Distributed
Networks. Information and Computation, 88(1):60-87,
September 1990.

Labelled Markov chain with 12400 states and 16495 transitions

Our algorithm: 2971.244 seconds
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Compute Distances smaller than ¢

@ Decide distance zero
@ Decide distance one
© Compute A(d) where

1 if distance of s and t is one
0 otherwise

d(s,t) = {

© Partial policy iteration for

((s,6) € Sx S| A(d)(s,1) < ¢}
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Compute Distances smaller than ¢

Donald Knuth and Andrew Yao. The Complexity of Nonuniform
Random Number Generation. In Proceedings of a Symposium
on New Directions and Recent Results in Algorithms and
Complexity, pages 375—428, Pittsburgh, PA, USA, April 1976.
Academic Press.
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Compute Distances smaller than ¢

Donald Knuth and Andrew Yao. The Complexity of Nonuniform
Random Number Generation. In Proceedings of a Symposium
on New Directions and Recent Results in Algorithms and
Complexity, pages 375—428, Pittsburgh, PA, USA, April 1976.
Academic Press.

Labelled Markov chain with 26 states and 36 transitions

DHS + B2LM algorithm: 4.753 seconds
Our algorithm: 0.237 seconds
Our algorithm with e = 0.2: 0.076 seconds
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Labelled Markov Chain

A labelled Markov chain is a tuple (S, L, 7, ¢) consisting of

@ a nonempty finite set S of states,

@ a nonempty finite set of L of labels,

@ a transition function 7 : S — Distr(S) and
@ a labelling function ¢: S — L.

The probability of transitioning from state s to state t is 7(s)(1).
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Probabilistic Bisimilarity Distances

The function A : [0, 1]5%° — [0, 1]°%° is defined as follows.

Letd: Sx S—[0,1]and s, t € S.
@ If ¢(s) # ¢(t) then

A(d)(s, 1) = 1.

@ If /(s) = ¢(t) then

A(d)(s, 1) = .1 > c(u,v)d(u,v).

u,veS
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Probabilistic Bisimilarity Distances

The function A : [0, 1]5%° — [0, 1]°%° is defined as follows.
Letd:Sx S —[0,1]and s, t € S.

@ If ¢(s) # ¢(t) then

A(d)(s, t) =1.
@ If /(s) = ¢(t) then

A(d)(s, 1) = .1 > c(u,v)d(u,v).

u,veS

Proposition

A is a monotone function from the complete lattice [0, 1]°*S to
itself.

A has a least fixed point, denoted Ifp(A).
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Probabilistic Bisimilarity Distances

d(u,v) : costto transport one unit between u and v
c(u,v) : amount transported between u and v
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Distance Zero and One

The set S? = S x S is partitioned:

S5 = {(s)eSP|s~t}
8¢ = {(st)eS®|Us)# D)}
§ = S\ (S5USH)
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Distance Zero and One

The set S? = S x S is partitioned:

Sz = {(s,t)e S?|s~t}
§2 = {(s,t)e S| U(s) # (1)}
2 = S\(SUSY

Theorem (DGJP 1999)

S2 = Dy ={(s,t) € S?|lfp(A)(s,t) =0}
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The set S? = S x S is partitioned:

Sz = {(s,t)e S?|s~t}

S2 = {(s.)eS2|us)# M)}
S = S%\(Sfus?)

Theorem (DGJP 1999)
S2 =Dy ={(s,t) € S?|Ifp(A)(s,t)=0}.

Proposition
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Definition

The function I : 255 —; 25%S s defined by

F(X)=S2U{(s,t) e S%|Vce(r(s),7(t)) : support(c) C X }.
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Distance One
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The function I : 255 —; 25%S s defined by

F(X)=S2U{(s,t) e S%|Vcec(r(s),7(t)) : support(c) C X} |

I is a monotone function from the complete lattice 25%S to itself.

v

I has a greatest fixed point, denoted gfp(I).

Dy = gfp(T).
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Distance smaller than One

The function L : 25%S — 25%S s defined by

L(X)
= SE\T(S?\ X)
= S2U{(s,t) e S%|3cec(r(s),7(t)) : support(c) Z S\ X
= S2U{(s t) e S?|3cec(r(s), () : support(c) N X # 0}

o
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Distance smaller than One

The function L : 25%S — 25%S s defined by

L(X)
= SE\T(S?\ X)
= S2U{(s,t) e S%|3cec(r(s),7(t)) : support(c) Z S\ X
= S2U{(s t) e S?|3cec(r(s), () : support(c) N X # 0}

o

Proposition
gfp(r) = 2\ Ifp(L).

Proposition

Jc € C(7(8s), 7(t)) : support(c) N X #
iff
A(u,v) € X : 7(s)(u) >0AT(t)(v)>0.
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Distance smaller than One

Definition

The directed graph G = (V, E) is defined by
e V=25%and
e E={((s01),(uv)|7(s)(u)>0AT(t)(v)>0}.
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Distance smaller than One

Definition

The directed graph G = (V, E) is defined by
e V=25%and
e E={((s01),(uv)|7(s)(u)>0AT(t)(v)>0}.

Proposition
Ifp(L) = { (u, v) | (u, v) is reachable from (s, t) with s ~ tin G }.

Proposition
lfo(L) can be computed in O(r? + ).

G has n? vertices and m? edges. Breadth first search, with the
queue initially containing SS, traverses all vertices in Ifp(L) and
takes O(n? 4+ m?).
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Conclusion

Distance one can be decided in O(n? + ).
@ New algorithm to compute distances.

@ New polynomial time algorithm to decide if there are any
non-trivial distances.

@ New algorithm to compute all distances smaller than a
given e.
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