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Labelled Markov Chain
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Probabilistic Bisimilarity is not Robust
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Probabilistic Bisimilarity Distances
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Probabilistic Bisimilarity Distances

Theorem
States are probabilistic bisimilar if and only if their probabilistic
bisimilarity distance is zero.

Desharnais, Gupta, Jagadeesan and Panangaden.
CONCUR 1999.
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Probabilistic Bisimilarity Distances

Franck van Breugel. Probabilistic bisimilarity distances.
SIGLOG News, 4(4):33–51, October 2017.
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Algorithm to Compute Distances

1 Decide probabilistic bisimilarity in O(m lg n)

Derisavi, Hermanns and Sanders. IPL 2003.
2 Policy iteration in Ω(2n)

Bacci, Bacci, Larsen and Mardare. TACAS 2013
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Main Result

Theorem

Distance one can be decided in O(n2 + m2).
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New Algorithm to Compute Distances

1 Decide distance zero in O(m lg n)

2 Decide distance one in O(n2 + m2)

3 Policy iteration in Ω(2n)
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New Algorithm to Compute Distances

1 2 3 4 5 6

1 1 1 1 1 1

1
2

1
2

1
2 1

2
1
2

1
2

1
2

1
2 1

2
1
2

1
2

1
2 1

2

1
2

14/37



New Algorithm to Compute Distances
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New Algorithm to Compute Distances

Donald Knuth and Andrew Yao. The Complexity of Nonuniform
Random Number Generation. In Proceedings of a Symposium
on New Directions and Recent Results in Algorithms and
Complexity, pages 375–428, Pittsburgh, PA, USA, April 1976.
Academic Press.

Labelled Markov chain with 26 states and 36 transitions

DHS + B2LM algorithm: 4.753 seconds

Our algorithm: 0.237 seconds
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New Algorithm to Compute Distances

Alon Itai and Michael Rodeh. Symmetry Breaking in Distributed
Networks. Information and Computation, 88(1):60–87,
September 1990.

Labelled Markov chain with 147 states and 210 transitions

DHS + B2LM algorithm: 49 hours

Our algorithm: 0.013 seconds

18/37



New Algorithm to Compute Distances

Alon Itai and Michael Rodeh. Symmetry Breaking in Distributed
Networks. Information and Computation, 88(1):60–87,
September 1990.

Labelled Markov chain with 147 states and 210 transitions

DHS + B2LM algorithm: 49 hours
Our algorithm: 0.013 seconds

18/37



Any Non-Trivial Distances?

1 Decide distance zero in O(m lg n)

2 Decide distance one in O(n2 + m2)
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Any Non-Trivial Distances?

Alon Itai and Michael Rodeh. Symmetry Breaking in Distributed
Networks. Information and Computation, 88(1):60–87,
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Compute Distances smaller than ε

1 Decide distance zero
2 Decide distance one
3 Compute ∆(d) where

d(s, t) =

{
1 if distance of s and t is one
0 otherwise

4 Partial policy iteration for

{ (s, t) ∈ S × S | ∆(d)(s, t) ≤ ε }
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Compute Distances smaller than ε

Donald Knuth and Andrew Yao. The Complexity of Nonuniform
Random Number Generation. In Proceedings of a Symposium
on New Directions and Recent Results in Algorithms and
Complexity, pages 375–428, Pittsburgh, PA, USA, April 1976.
Academic Press.

Labelled Markov chain with 26 states and 36 transitions

DHS + B2LM algorithm: 4.753 seconds
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Our algorithm with ε = 0.2: 0.076 seconds
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Labelled Markov Chain

Definition
A labelled Markov chain is a tuple 〈S,L, τ, `〉 consisting of

a nonempty finite set S of states,
a nonempty finite set of L of labels,
a transition function τ : S → Distr(S) and
a labelling function ` : S → L.

The probability of transitioning from state s to state t is τ(s)(t).
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Probabilistic Bisimilarity Distances

Definition

The function ∆ : [0,1]S×S → [0,1]S×S is defined as follows.
Let d : S × S → [0,1] and s, t ∈ S.

If `(s) 6= `(t) then
∆(d)(s, t) = 1.

If `(s) = `(t) then

∆(d)(s, t) = min
c∈C(τ(s),τ(t))

∑
u,v∈S

c(u, v) d(u, v).

Proposition

∆ is a monotone function from the complete lattice [0,1]S×S to
itself.

Corollary

∆ has a least fixed point, denoted lfp(∆).
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Probabilistic Bisimilarity Distances

min
c∈C(τ(s),τ(t))

∑
u,v∈S

c(u, v) d(u, v)

s

u

v

u

v

t...
...

τ(s)(u)

τ(s)(v)

τ(t)(u)

τ(t)(v)

d(u, v) : cost to transport one unit between u and v
c(u, v) : amount transported between u and v
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Probabilistic Bisimilarity Distances
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Distance Zero and One

The set S2 = S × S is partitioned:

S2
0 = { (s, t) ∈ S2 | s ∼ t }

S2
1 = { (s, t) ∈ S2 | `(s) 6= `(t) }

S2
? = S2 \ (S2

0 ∪ S2
1)
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The set S2 = S × S is partitioned:

S2
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S2
1 = { (s, t) ∈ S2 | `(s) 6= `(t) }

S2
? = S2 \ (S2

0 ∪ S2
1)

Theorem (DGJP 1999)

S2
0 = D0 = { (s, t) ∈ S2 | lfp(∆)(s, t) = 0 }.
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S2
1 ⊆ D1 = { (s, t) ∈ S2 | lfp(∆)(s, t) = 1 }.

33/37



Distance Zero and One

The set S2 = S × S is partitioned:

S2
0 = { (s, t) ∈ S2 | s ∼ t }

S2
1 = { (s, t) ∈ S2 | `(s) 6= `(t) }

S2
? = S2 \ (S2

0 ∪ S2
1)

Theorem (DGJP 1999)

S2
0 = D0 = { (s, t) ∈ S2 | lfp(∆)(s, t) = 0 }.

Proposition

S2
1 ⊆ D1 = { (s, t) ∈ S2 | lfp(∆)(s, t) = 1 }.

33/37



Distance One

Definition

The function Γ : 2S×S → 2S×S is defined by

Γ(X ) = S2
1 ∪ { (s, t) ∈ S2

? | ∀c ∈ C(τ(s), τ(t)) : support(c) ⊆ X }.

Proposition

Γ is a monotone function from the complete lattice 2S×S to itself.

Corollary

Γ has a greatest fixed point, denoted gfp(Γ).

Theorem
D1 = gfp(Γ).
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Distance smaller than One

Definition

The function L : 2S×S → 2S×S is defined by

L(X )

= S2 \ Γ(S2 \ X )

= S2
0 ∪ { (s, t) ∈ S2

? | ∃c ∈ C(τ(s), τ(t)) : support(c) 6⊆ S2 \ X }
= S2

0 ∪ { (s, t) ∈ S2
? | ∃c ∈ C(τ(s), τ(t)) : support(c) ∩ X 6= ∅ }.

Proposition

gfp(Γ) = S2 \ lfp(L).

Proposition

∃c ∈ C(τ(s), τ(t)) : support(c) ∩ X 6= ∅
iff
∃(u, v) ∈ X : τ(s)(u)> 0 ∧ τ(t)(v)> 0.
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Distance smaller than One

Definition
The directed graph G = 〈V ,E〉 is defined by

V = S2 and
E = { 〈(s, t), (u, v)〉 | τ(s)(u)> 0 ∧ τ(t)(v)> 0 }.

Proposition

lfp(L) = { (u, v) | (u, v) is reachable from (s, t) with s ∼ t in G }.

Proposition

lfp(L) can be computed in O(n2 + m2).

Proof

G has n2 vertices and m2 edges. Breadth first search, with the
queue initially containing S2

0 , traverses all vertices in lfp(L) and
takes O(n2 + m2).
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Conclusion

Distance one can be decided in O(n2 + m2).
New algorithm to compute distances.
New polynomial time algorithm to decide if there are any
non-trivial distances.
New algorithm to compute all distances smaller than a
given ε.
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