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Randomizing a Model

Definition. Let (A, ¢ ) be an abstract algebra with a binary operation,
where A is a topological space, and where ¢ is continuous.
Suppose Q) is a probability space, and let A® be the set of
measurable functions from the sample space of Q into the set A.
Define (aof)(w) = a(w)*B(w) as an operation on AS.

Proposition. The algebras (A, * ) and (A?, o ) satisfy the same equations,
even when, in the second algebra, equality is equality almost everywhere.

e Dana S. Scott. A proof of the independence of the continuum hypothesis.
Mathematical Systems Theory, vol. 1 (1967), pp. 89-111.

» Dexter Kozen. Semantics of Probabilistic Programs. Journal of Computer
and System Sciences, vol. 22 (1981), pp. 328-350.

e H. Jerome Keisler. Randomizing a Model. Advances in Mathematics,
vol. 143 (1999), pp. 124-158.

e Dana S. Scott. Stochastic A-calculi: An extended abstract.
Journal of Applied Logic, vol. 12 (2014), pp. 369-376.



Boolean-Valued Models

Definition. Let (A, R ) be a relational structure, and let

A2 be the set of measurable functions with values in A.
Give formulae Boolean-valued semantics in the algebra of
measurable sets modulo Null sets:

[aR2B] = {weA®l a(w) R B(w)}/Null
[a=B] ={weA?l a(w)=B(w)}/Null
[® A W] =[P] A [W]
[® v W] =[]] v [W]
[® - W] =[P]>[W]
[IX.D(X)] = Vaarr[P(O)]
[VX.D(X)] = NAacrr[D(a)]

Theorem. Under very mild assumptions, the Boolean-valued structure

(A2, R®? ) will satisfy the same first-order formulae as <A, R ).



Church's A-Calculus

Definition. A-calculus — as a formal theory — has rules for the
explicit definition of functions via well known equational axioms:

Ol-conversion
AX.[...Xe..] = AY.[...Y...]

B-conversion
(AX.TeeXeeo1)(T) = [o..Te..]
N-conversion
AX.F(X) = F

NOTE: The third axiom will be dropped in favor of a theory
employing properties of a partial ordering.
 F. Cardone and J.R. Hindley. Lambda-Calculus and Combinators in the 20th Century.

In: Volume 5, pp. 723-818, of Handbook of the History of Logic, Dov M. Gabbay and
John Woods (eds.), North-Holland/Elsevier Science, 2009.



Using Integers as Data

1 + N, the basic integers;
= 1 + N X N, integers as binary trees;

N*,  integers as finite sequences;
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|

P«N), integers as finite sets.

Definitions. (1) Pairs: (n,m) = 2n(2m+1).
(2) Sequences: {) = 0 and {no,...,nk-1,nx) = ({no, «..,Nk-1), Nx).
(3) Terms: term(0) =& and term((n,m)) = term(n)U{m}.
(4) Kleene star: x* = {n|term(n) C X }, for sets X C N.

(5) Finite sets: set(0) = @ and set((n,m)) ={n}U{ n+1+k | k € set(m) }.

NOTE: Because such numbering within N is so easy,
there is no need for being more abstract.



Enumeration Operators as a Model

Definition. The A-calculus model is formed using the powerset
P(N) = { X|XCN } with a binary operation of application:

Application:
F(X)={m | 3In. set(n) CX & (n,m) €F }
This binary operation further permits a reverse procedure:
Abstraction:
AX.[...X...]1={(n,m) |me[...set(n)...]}

e Richard M. Friedberg and Hartley Rogers Jr., Reducibility and completeness for sets of
integers, Mathematical Logic Quarterly, vol. 5 (1959), pp. 117-125. Some earlier results
are presented in an abstract in The Journal of Symbolic Logic, vol. 22 (1957), p. 107.

e Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967, xix + 482 pp.



What is the Secret?

(1) The powerset P(N) = { X|XCN }is a topological space with the sets
U, = {X]| set(n) CX} as a basis for the topology.

(2) Functions ®:P(N)» — P(N) are continuous iff, for allm € N, we have
set(m) C ®(Xo,X1,..,Xn-1) iff there exist set(k;i)C X; for each i<n,

such that set(m) ¢ P(set(ko),set(ki),...,set(kn-1)).

(3) The application operation F (X) is continuous as a function of two variables.

(4) If the function ®(Xo,X1,..,%n-1) is continuous, then the abstraction term
AXo.®P(Xo,X1,..,Xn-1) is continuous in all of the remaining variables.

(5) If ®(x) is continuous, then AX.® (X) is the largest set F such that for all

sets T, we have F(T)= ®(T). And, therefore, generally FC AX.F(X).

NOTE: This model could easily have been defined in 1957!!
It clearly satisfies the rules of a, B-conversion (but not n).



Some Lambda Properties

Theorem. For all sets of integers F and G we have:
AX.F(X)C AX.G(X) iff VX.F(X) CG(X),

AX.(F(X)NG(X)) = AX.F(X)N AX.G(X),
and

AX.(F(X)UG(X)) = AX.F(X)UAX.G(X).

Definition. A continuous operator ® (Xo, X1, .., Xn-1)
is computable iff in the model this set is RE:
F=AXoAX1.AXn-1.P(Xo,X1,0,Xn-1).



How to do Recursion?

Three Basic Theorems.
* All pure A-terms define computable operators.

e If ®(X) is continuous and if we let V=AX.® (X (X)), then the
set P=V (V) is the least fixed point of ®.

* The least fixed point of a computable operator is computable.

A Principal Theorem. These computable operators:
Succ(X)={n+l|ne X},
Pred(X)={n|n+le X}, and
Test(Z) (X)(Y)= {neX|0eZ}U{meY|Ik.k+1€2Z},

together with A -calculus, suffice for defining all RE sefts.

NOTE: So far we have a pure functional programming language for
Recursion Theory. For probabilistic programming more is needed.



How to Randomize P(N)?

Definition. Suppose Q is a probability space, and let
P(N )2 be the set of measurable functions (random variables)
from Q into the topological space P(N).

Theorem. P(N)? forms a Boolean-valued model
for the A - calculus — expanding the two-valued model P(N).

NOTE: The random variables are closed under application.
We then define the first-order structure by:

[XcY]={teQ|VneX(t). neY(t)}/Null.

The validity of the first order properties is then automatic.



How to do Probabilistic Programming?

(1) The elements of P(N) are the non-random or stable objects.

(2) Suitable elements of (N )@ can function as random oracles.

(3) Forexample, C: QQ — {{0},{1}} represents a coin toss.

(4) Objects T of P(N )@ can also represent sequences of coins.

(5) A sequence of fair and mutually independent coins is a tossing.

(6) A stable algorithm can take a tossing as its oracle.

NOTE: In order to mimic probabilistic programming in the
conventional sense, the application of the tossing in this model
has to be controlled to be used in a specific order,
and no coin can be used more than once.

This can be achieved by using a continuation-passing style
style of semantics.



Axioms for Stochastic A-Calculus

a-conversion) Ax.M = y. M{y/z};

B-reduction) (Ae.M)(N)=M{N/x}, for M and N classical terms;
Commutativity) MaeN=NoM,;

[dempotence) MaeM-=M;

L-distributivity) (M1 & M3)(N) =M{(N)® Ms(N);
R-distributivity)  N(M; @& Ma)=N(M;) & N(Mz);

A-distributivity) Ax.(My & Ms) = Ax. My & Ax. Ms;

Entropic equality) (M@ Ms) & (N1 ® No) =(M;® Ny) & (M@ No);
Fixed point) px. M = (dx. M) (pz.M);

Recursive choice) px.(ze& M) = px.M.

B . i o e e o P s N Sl S oo S

NOTE: We now prefer to call terms without any occurrence of @
“stable terms” rather than “classical terms”; however, the fixed-point
operator 1 must be carefully introduced to be stable.

To have simple rules the Boolen-valued logic has to be invoked
to make the meaning of equations independent of the choice
of a tossing as the oracle.



Some Future Projects

(1) Explore using Boolean-valued logic in proving properties of programs.

(2) Expand the use of types in stable A -calculus to stochastic A -calculus.

(3) Show how the P(N )@ model corresponds to operational semantics.

Stay Tuned!



