A Stochastic Lambda-Calculus for Probabilistic Programming (Preliminary Report)

Radu Mardare,

Prakash Panangaden,

and

Dana Scott

Logical Structures in Computation Reunion Workshop December 2017

Randomizing a Model

Definition. Let $\langle A, \bullet \rangle$ be an *abstract algebra* with a binary operation, where A is a *topological space*, and where \bullet is *continuous*. Suppose Ω is a *probability space*, and let A^{Ω} be the set of *measurable functions* from the sample space of Ω into the set A. Define $(\alpha \circ \beta)(\omega) = \alpha(\omega) \cdot \beta(\omega)$ as an *operation* on A^{Ω} .

Proposition. The algebras $\langle A, \bullet \rangle$ and $\langle A^{\Omega}, \circ \rangle$ satisfy the same equations, even when, in the second algebra, equality is *equality almost everywhere*.

- Dana S. Scott. A proof of the independence of the continuum hypothesis. Mathematical Systems Theory, vol. 1 (1967), pp. 89–111.
- Dexter Kozen. Semantics of Probabilistic Programs. Journal of Computer and System Sciences, vol. 22 (1981), pp. 328–350.
- H. Jerome Keisler. *Randomizing a Model*. Advances in Mathematics, vol. 143 (1999), pp. 124–158.
- Dana S. Scott. Stochastic λ-calculi: An extended abstract.
 Journal of Applied Logic, vol. 12 (2014), pp. 369–376.

Boolean-Valued Models

Definition. Let $\langle A, R \rangle$ be a relational structure, and let A^{Ω} be the set of measurable functions with values in A. Give formulae Boolean-valued *semantics* in the algebra of measurable sets modulo Null sets: $\llbracket \alpha R^{\Omega} \beta \rrbracket = \{ \omega \in A^{\Omega} \mid \alpha(\omega) R \beta(\omega) \} / Null$ $\llbracket \alpha = \beta \rrbracket = \{ \omega \in A^{\Omega} \mid \alpha(\omega) = \beta(\omega) \} / Null$ $\llbracket \Phi \land \Psi \rrbracket = \llbracket \Phi \rrbracket \land \llbracket \Psi \rrbracket$ $\llbracket \Phi \lor \Psi \rrbracket = \llbracket \Phi \rrbracket \lor \llbracket \Psi \rrbracket$ $\llbracket \Phi \to \Psi \rrbracket = \llbracket \Phi \rrbracket \to \llbracket \Psi \rrbracket$ $\llbracket \Phi \to \Psi \rrbracket = \llbracket \Phi \rrbracket \to \llbracket \Psi \rrbracket$ $\llbracket \Phi \to \Psi \rrbracket = \llbracket \Phi \rrbracket \to \llbracket \Psi \rrbracket$ $\llbracket \Psi \times \Phi(x) \rrbracket = \lor_{\alpha \in A^{\Omega}} \llbracket \Phi(\alpha) \rrbracket$

Theorem. Under very mild assumptions, the Boolean-valued structure $\langle A^{\Omega}, R^{\Omega} \rangle$ will satisfy the same first-order formulae as $\langle A, R \rangle$.

Church's λ -Calculus

Definition. λ -calculus — as a formal theory — has rules for the **explicit definition** of functions *via* well known equational axioms:

 $\begin{array}{l} \boldsymbol{\alpha}-\boldsymbol{conversion}\\ \boldsymbol{\lambda}\boldsymbol{X}.[\ldots\boldsymbol{X}\ldots] \ = \ \boldsymbol{\lambda}\boldsymbol{Y}.[\ldots\boldsymbol{Y}\ldots] \end{array}$

 β -conversion

 $(\lambda X.[\ldots X.\ldots])(T) = [\ldots T.\ldots]$

 η -conversion

 λ X.F(X) = F

NOTE: The third axiom will be dropped in favor of a theory employing properties of a partial ordering.

 F. Cardone and J.R. Hindley. Lambda-Calculus and Combinators in the 20th Century. In: Volume 5, pp. 723-818, of Handbook of the History of Logic, Dov M. Gabbay and John Woods (eds.), North-Holland/Elsevier Science, 2009.

Using Integers as Data

 $\mathbb{N} = 1 + \mathbb{N}$, the basic integers;

- $\mathbb{N} = 1 + \mathbb{N} \times \mathbb{N}$, integers as binary trees;
- $\mathbb{N} = \mathbb{N}^*$, integers as finite sequences;
- $\mathbb{N} = \mathcal{P}_{f}(\mathbb{N})$, integers as finite sets.

Definitions. (1) **Pairs:** $(n,m) = 2^{n}(2m+1)$.

(2) Sequences: $\langle \rangle = 0$ and $\langle n_0, \ldots, n_{k-1}, n_k \rangle = (\langle n_0, \ldots, n_{k-1} \rangle, n_k).$

(3) **Terms:** term(0) = \emptyset and term((n,m)) = term(n) \cup {m}.

(4) *Kleene star:* $X^* = \{n \mid term(n) \subseteq X\}$, for sets $X \subseteq \mathbb{N}$.

(5) Finite sets: set(0) = \emptyset and set((n,m)) = {n} \cup {n+1+k | k \in set(m) }.

NOTE: Because such numbering within \mathbb{N} is so easy, there is no need for being more abstract.

Enumeration Operators as a Model

Definition. The λ -calculus model is formed using the powerset $\mathcal{P}(\mathbb{N}) = \{ x | x \subseteq \mathbb{N} \}$ with a binary operation of application:

Application:

 $F(X) = \{ m \mid \exists n. set(n) \subseteq X \& (n,m) \in F \}$

This binary operation further permits a *reverse* procedure:

Abstraction:

 λ X.[...X...] = { (n,m) | m \in [...set(n)...] }

• Richard M. Friedberg and Hartley Rogers Jr., *Reducibility and completeness for sets of integers*, **Mathematical Logic Quarterly**, vol. 5 (1959), pp. 117-125. Some earlier results are presented in an abstract in **The Journal of Symbolic Logic**, vol. 22 (1957), p. 107.

• Hartley Rogers, Jr., **Theory of Recursive Functions and Effective Computability**, McGraw-Hill, 1967, xix + 482 pp.

What is the Secret?

- (1) The powerset $\mathcal{P}(\mathbb{N}) = \{ x \mid x \subseteq \mathbb{N} \}$ is a *topological space* with the sets $\mathcal{U}_n = \{ x \mid set(n) \subseteq x \}$ as a *basis* for the topology.
- (2) Functions $\Phi: \mathcal{P}(\mathbb{N})^n \to \mathcal{P}(\mathbb{N})$ are *continuous* iff, for all $m \in \mathbb{N}$, we have set(m) $\subseteq \Phi(X_0, X_1, ..., X_{n-1})$ iff there exist set(k_i) $\subseteq X_i$ for each i < n, such that set(m) $\subseteq \Phi(set(k_0), set(k_1), ..., set(k_{n-1}))$.
- (3) The application operation F(X) is continuous as a function of *two* variables.
- (4) If the function $\Phi(X_0, X_1, ..., X_{n-1})$ is continuous, then the abstraction term $\lambda X_0 \cdot \Phi(X_0, X_1, ..., X_{n-1})$ is continuous in all of the *remaining variables*.
- (5) If $\Phi(X)$ is continuous, then $\lambda X \cdot \Phi(X)$ is the *largest set* F such that for all sets T, we have $F(T) = \Phi(T)$. And, therefore, generally $F \subseteq \lambda X \cdot F(X)$.

NOTE: This model could easily have been defined in 1957!! It clearly satisfies the rules of α , β -conversion (but not η).

Some Lambda Properties

Theorem. For all sets of integers F and G we have:

 λ X.F(X) \subseteq λ X.G(X) iff \forall X.F(X) \subseteq G(X),

 $\boldsymbol{\lambda} X.(F(X) \cap G(X)) = \boldsymbol{\lambda} X.F(X) \cap \boldsymbol{\lambda} X.G(X),$

and $\lambda X.(F(X) \cup G(X)) = \lambda X.F(X) \cup \lambda X.G(X).$

Definition. A continuous operator $\Phi(X_0, X_1, ..., X_{n-1})$ is *computable* iff in the model this set is **RE**: $F = \lambda X_0 \lambda X_1 ... \lambda X_{n-1} \cdot \Phi(X_0, X_1, ..., X_{n-1}).$

How to do Recursion?

Three Basic Theorems.

- All pure λ -terms define *computable* operators.
- If Φ(X) is continuous and if we let ∇ = λ X.Φ(X(X)), then the set P = ∇(∇) is the *least fixed point* of Φ.
- The least fixed point of a *computable* operator is computable.

A Principal Theorem. These computable operators: $Succ(X) = \{n+1 \mid n \in X\},$ $Pred(X) = \{n \mid n+1 \in X\},$ and $Test(Z)(X)(Y) = \{n \in X \mid 0 \in Z\} \cup \{m \in Y \mid \exists k.k+1 \in Z\},$ together with λ -calculus, suffice for defining all RE sets.

NOTE: So far we have a pure functional programming language for Recursion Theory. For probabilistic programming more is needed.

How to Randomize $\mathcal{P}(\mathbb{N})$?

Definition. Suppose Ω is a probability space, and let $\mathcal{P}(\mathbb{N})^{\Omega}$ be the set of measurable functions (random variables) from Ω into the topological space $\mathcal{P}(\mathbb{N})$.

Theorem. $\mathcal{P}(\mathbb{N})^{\Omega}$ forms a **Boolean-valued model** for the λ - calculus — expanding the two-valued model $\mathcal{P}(\mathbb{N})$.

NOTE: The random variables are closed under application. We then define the first-order structure by:

 $[\![\mathbf{X} \subseteq \mathbf{Y}]\!] = \{ t \in \Omega \mid \forall n \in \mathbf{X}(t) . n \in \mathbf{Y}(t) \} / \text{Null.}$

The validity of the first order properties is then automatic.

How to do Probabilistic Programming?

- (1) The elements of $\mathcal{P}(\mathbb{N})$ are the **non-random** or **stable** objects.
- (2) Suitable elements of $\mathcal{P}(\mathbb{N})^{\Omega}$ can function as *random oracles*.
- (3) For example, $C : \Omega \rightarrow \{\{0\}, \{1\}\}$ represents a *coin toss.*
- (4) Objects **T** of $\mathcal{P}(\mathbb{N})^{\Omega}$ can also represent **sequences** of coins.
- (5) A sequence of *fair* and *mutually independent* coins is a *tossing*.
- (6) A stable algorithm can take a tossing as its *oracle*.

NOTE: In order to mimic probabilistic programming in the conventional sense, the application of the tossing in this model has to be controlled to be used in a specific order, and no coin can be used more than once. This can be achieved by using a continuation-passing style style of semantics.

Axioms for Stochastic λ -Calculus

(Commutativity) $M \oplus N = N \oplus M;$ (Idempotence) (Fixed point)

(α -conversion) $\lambda x.M = \lambda y.M\{y/x\};$ (β -reduction) $(\lambda x.M)(N) = M\{N/x\}, \text{ for } M \text{ and } N \text{ classical terms};$ $M \oplus M = M;$ (L-distributivity) $(M_1 \oplus M_2)(N) = M_1(N) \oplus M_2(N);$ (R-distributivity) $N(M_1 \oplus M_2) = N(M_1) \oplus N(M_2);$ $(\lambda \text{-distributivity})$ $\lambda x.(M_1 \oplus M_2) = \lambda x.M_1 \oplus \lambda x.M_2;$ (Entropic equality) $(M_1 \oplus M_2) \oplus (N_1 \oplus N_2) = (M_1 \oplus N_1) \oplus (M_2 \oplus N_2);$ $\mu x.M = (\lambda x.M)(\mu x.M);$ (Recursive choice) $\mu x.(x \oplus M) = \mu x.M.$

NOTE: We now prefer to call terms without any occurrence of \oplus "stable terms" rather than "classical terms"; however, the fixed-point operator μ must be carefully introduced to be stable. To have simple rules the Boolen-valued logic has to be invoked to make the meaning of equations independent of the choice of a tossing as the oracle.

Some Future Projects

- (1) Explore using Boolean-valued logic in proving *properties* of programs.
- (2) Expand the use of *types* in stable λ -calculus to stochastic λ -calculus.
- (3) Show how the $\mathcal{P}(\mathbb{N})^{\Omega}$ model corresponds to *operational* semantics.

Stay Tuned!