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Randomizing a Model 
Definition. Let  ⟨A, • ⟩ be an abstract algebra with a binary operation, 

where A is a topological space, and where • is continuous.  
Suppose Ω is a probability space, and let AΩ be the set of 

measurable functions from the sample space of Ω into the set A.  
Define (α○β)(ω) = α(ω)•β(ω) as an operation on AΩ.

Proposition. The algebras ⟨A, • ⟩ and ⟨AΩ, ○ ⟩ satisfy the same equations, 
even when, in the second algebra, equality is equality almost everywhere.
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Journal of  Applied Logic,  vol. 12 (2014), pp. 369–376.



Boolean-Valued Models


Theorem. Under very mild assumptions, the Boolean-valued structure 

  ⟨AΩ, RΩ ⟩ will satisfy the same first-order formulae as  ⟨A, R ⟩. 

Definition. Let  ⟨A, R ⟩ be a relational structure, and let  


 AΩ be the set of measurable functions with values in A.  
Give formulae Boolean-valued semantics in the algebra of 

measurable sets modulo Null sets:

⟦α RΩ

 β⟧ = {ω ∈  AΩ | α(ω) R β(ω)} / Null
⟦α = β⟧ = {ω ∈  AΩ | α(ω) = β(ω)} / Null

    ⟦Φ ∧ Ψ⟧ = ⟦Φ⟧ ∧ ⟦Ψ⟧
    ⟦Φ ∨ Ψ⟧ = ⟦Φ⟧ ∨ ⟦Ψ⟧
  ⟦Φ → Ψ⟧ = ⟦Φ⟧→⟦Ψ⟧

    ⟦∃x.Φ(x)⟧ = ∨α∈AΩ ⟦Φ(α)⟧
    ⟦∀x.Φ(x)⟧ = ∧α∈AΩ ⟦Φ(α)⟧



Church's λ-Calculus


   


NOTE: The third axiom will be dropped in favor of a theory 

employing properties of a partial ordering.


• F. Cardone and J.R. Hindley. Lambda-Calculus and Combinators in the 20th Century.
In: Volume 5, pp. 723-818, of Handbook of the History of Logic, Dov M. Gabbay and 

John Woods (eds.), North-Holland/Elsevier Science, 2009.  

Definition.  λ-calculus — as a formal theory — has rules for the 
explicit definition of functions  via well known equational axioms:

α-conversion
 λX.[...X...] = λY.[...Y...]
β-conversion

(λX.[...X...])(T) = [...T...]

η-conversion
   λX.F(X) = F



Using Integers as Data

   


ℕ = 1 + ℕ, the basic integers;  
ℕ = 1 + ℕ x ℕ, integers as binary trees; 
ℕ = ℕ*,  integers as finite sequences; 
ℕ =  Pf(ℕ), integers as finite sets. 

NOTE: Because such numbering within ℕ is so easy, 

there is no need for being more abstract.  

˙ Definitions. (1) Pairs: (n,m) = 2n(2m+1). 

(2)  Sequences: ⟨⟩ = 0 and  ⟨n0,...,nk-1,nk⟩ = (⟨n0,...,nk-1⟩, nk). 

(3) Terms: term(0) = ∅ and  term((n,m)) = term(n)∪{ m }.  
      

(4) Kleene star: X* = { n | term(n) ⊆ X }, for sets X ⊆ ℕ. 

(5) Finite sets:  set(0)  =  ∅ and  set ((n,m)) = {n } ∪ {  n+1+k | k ∈ set (m)   }.



Enumeration Operators as a Model


   
•  Richard M. Friedberg and Hartley Rogers Jr., Reducibility and completeness for sets of 

integers, Mathematical Logic Quarterly, vol. 5 (1959), pp. 117-125.   Some earlier  results 
are presented in an abstract in The Journal of Symbolic Logic, vol. 22 (1957), p. 107.

    

•  Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability, 
McGraw-Hill, 1967, xix + 482 pp.

    Definition.  The λ-calculus model is formed using the powerset   
P(ℕ)  = { X|X⊆ℕ } with a binary operation of application: 

 Application:

     

F(X) = { m | ∃n. set(n) ⊆ X & (n,m) ∈ F }

 This binary operation further permits a reverse procedure:       
 Abstraction:

      

λX.[...X...] = { (n,m) | m  ∈ [... set(n)...] }



What is the Secret?

  


(1)  The powerset  P(ℕ)  = { X|X⊆ℕ }is a topological space with the sets   
        Un = { X| set(n) ⊆ X } as a basis for the topology. 
    
(2)  Functions Φ:P(ℕ)n ⟶  P(ℕ) are continuous iff, for all m ∈ ℕ, we have  
        set(m) ⊆ Φ(X0,X1,…,Xn-1) iff  there exist set(ki)⊆ Xi for each i<n,  
 such that  set(m) ⊆  Φ(set(k0), set(k1),…, set(kn-1)). 
   

(3)  The application operation F(X) is continuous as a function of two variables.  
    
(4)  If the function  Φ(X0,X1,…,Xn-1) is continuous, then the abstraction term 
       λX0.Φ(X0,X1,…,Xn-1) is continuous in all of the remaining variables.       
     
(5)  If Φ(X) is continuous, then λX.Φ(X) is the largest set  F such that for all    

       sets T,  we have F(T)= Φ(T).  And, therefore, generally  F ⊆ λX.F(X).

NOTE: This model could easily have been defined in 1957!!

It clearly satisfies the rules of  α, β-conversion (but not η). 



Some Lambda Properties

     

Theorem. For all sets of integers F and G we have: 

λX.F(X) ⊆ λX.G(X) iff  ∀X.F(X) ⊆ G(X), 
   

λX.(F(X)∩ G(X)) = λX.F(X) ∩ λX.G(X),  

and 

λX.(F(X)∪ G(X)) = λX.F(X) ∪ λX.G(X). 

Definition.  A continuous operator Φ(X0,X1,…,Xn-1) 
is computable  iff  in the model this set is RE:  

F = λX0λX1…λXn-1.Φ(X0,X1,…,Xn-1).



How to do Recursion?


 

NOTE: So far we have a pure functional programming language for 
Recursion Theory.  For probabilistic programming more is needed.  

        

 Three Basic Theorems. 
   •  All pure λ-terms define computable operators. 

   •  If Φ(X) is continuous and if we let ∇ = λX.Φ(X(X)), then the  
     set  P = ∇(∇) is the least fixed point of Φ.

   • The least fixed point of a computable operator is computable.

 A Principal Theorem.   These computable operators: 
Succ(X)={n+1|n ∈ X },  

Pred(X)={n|n+1 ∈ X }, and  

Test(Z)(X)(Y)= {n ∈ X|0 ∈ Z }∪{m ∈ Y|∃ k.k+1 ∈ Z },

 together with λ-calculus, suffice for defining all RE sets.



How to Randomize P(ℕ)?


    

NOTE: The random variables are closed under application.


We then define the first-order structure by:  


⟦ X⊆Y ⟧ ={ t ∈ Ω |∀n ∈ X(t). n ∈ Y(t)}/Null.


The validity of the first order properties is then automatic.  

     

Definition. Suppose Ω is a probability space, and let  
P(ℕ)Ω be the set of measurable functions (random variables) 

 from Ω into the topological space P(ℕ).

   


Theorem. P(ℕ)Ω forms a Boolean-valued model  
for the λ- calculus — expanding the two-valued model P(ℕ).



How to do Probabilistic Programming?

(1) The elements of P(ℕ) are the non-random or stable objects. 

(2) Suitable elements of P(ℕ)Ω can function as random oracles. 

(3) For example, C : Ω ⟶ {{0},{1}} represents a coin toss. 
(4) Objects T of P(ℕ)Ω can also represent sequences of coins.  

(5) A sequence of fair and mutually independent coins is a tossing.  

(6) A stable algorithm can take a tossing as its oracle. 

NOTE: In order to mimic probabilistic programming in the

conventional sense, the application of the tossing in this model


has to be controlled to be used in a specific order, 

and no coin can be used more than once.


This can be achieved by using a continuation-passing style

style of semantics. 



Axioms for Stochastic λ-Calculus


NOTE: We now prefer to call terms without any occurrence of ⊕ 

“stable terms” rather than “classical terms”; however, the fixed-point 

operator μ must be carefully introduced to be stable.

To have simple rules the Boolen-valued logic has to be invoked

to make the meaning of equations independent of the choice


of a tossing as the oracle.  



Some Future Projects


Stay Tuned!


(1)  Explore using Boolean-valued logic in proving properties of programs. 

(2)  Expand the use of types in stable λ-calculus to stochastic λ-calculus. 

(3)  Show how the P(ℕ)Ω model corresponds to operational semantics.


