

A Stochastic Lambda-Calculus

for Probabilistic Programming

(Preliminary Report)

Radu Mardare,
Prakash Panangaden,

and
Dana Scott

Logical Structures in Computation
Reunion Workshop

December 2017

Randomizing a Model 
Definition. Let ⟨A, • ⟩ be an abstract algebra with a binary operation,

where A is a topological space, and where • is continuous.
Suppose Ω is a probability space, and let AΩ be the set of

measurable functions from the sample space of Ω into the set A.
Define (α○β)(ω) = α(ω)•β(ω) as an operation on AΩ.

Proposition. The algebras ⟨A, • ⟩ and ⟨AΩ, ○ ⟩ satisfy the same equations,
even when, in the second algebra, equality is equality almost everywhere.

• Dana S. Scott. A proof of the independence of the continuum hypothesis.
Mathematical Systems Theory, vol. 1 (1967), pp. 89–111.

• Dexter Kozen. Semantics of Probabilistic Programs. Journal of Computer
and System Sciences, vol. 22 (1981), pp. 328–350.

• H. Jerome Keisler. Randomizing a Model. Advances in Mathematics,
vol. 143 (1999), pp. 124–158.

• Dana S. Scott. Stochastic λ-calculi: An extended abstract.
Journal of Applied Logic, vol. 12 (2014), pp. 369–376.

Boolean-Valued Models

Theorem. Under very mild assumptions, the Boolean-valued structure

 ⟨AΩ, RΩ ⟩ will satisfy the same first-order formulae as ⟨A, R ⟩. 

Definition. Let ⟨A, R ⟩ be a relational structure, and let

 AΩ be the set of measurable functions with values in A.
Give formulae Boolean-valued semantics in the algebra of

measurable sets modulo Null sets:

⟦α RΩ

 β⟧ = {ω ∈ AΩ | α(ω) R β(ω)} / Null
⟦α = β⟧ = {ω ∈ AΩ | α(ω) = β(ω)} / Null

 ⟦Φ ∧ Ψ⟧ = ⟦Φ⟧ ∧ ⟦Ψ⟧
 ⟦Φ ∨ Ψ⟧ = ⟦Φ⟧ ∨ ⟦Ψ⟧
 ⟦Φ → Ψ⟧ = ⟦Φ⟧→⟦Ψ⟧

 ⟦∃x.Φ(x)⟧ = ∨α∈AΩ ⟦Φ(α)⟧
 ⟦∀x.Φ(x)⟧ = ∧α∈AΩ ⟦Φ(α)⟧

Church's λ-Calculus

NOTE: The third axiom will be dropped in favor of a theory

employing properties of a partial ordering.

• F. Cardone and J.R. Hindley. Lambda-Calculus and Combinators in the 20th Century.
In: Volume 5, pp. 723-818, of Handbook of the History of Logic, Dov M. Gabbay and

John Woods (eds.), North-Holland/Elsevier Science, 2009.  

Definition. λ-calculus — as a formal theory — has rules for the
explicit definition of functions via well known equational axioms:

α-conversion
 λX.[...X...] = λY.[...Y...]
β-conversion

(λX.[...X...])(T) = [...T...]

η-conversion
 λX.F(X) = F

Using Integers as Data

ℕ = 1 + ℕ, the basic integers;
ℕ = 1 + ℕ x ℕ, integers as binary trees;
ℕ = ℕ*, integers as finite sequences;
ℕ = Pf(ℕ), integers as finite sets.

NOTE: Because such numbering within ℕ is so easy,

there is no need for being more abstract.  

˙ Definitions. (1) Pairs: (n,m) = 2n(2m+1).

(2) Sequences: ⟨⟩ = 0 and ⟨n0,...,nk-1,nk⟩ = (⟨n0,...,nk-1⟩, nk).

(3) Terms: term(0) = ∅ and term((n,m)) = term(n)∪{ m }.

(4) Kleene star: X* = { n | term(n) ⊆ X }, for sets X ⊆ ℕ.

(5) Finite sets: set(0) = ∅ and set ((n,m)) = {n } ∪ { n+1+k | k ∈ set (m) }.

Enumeration Operators as a Model

• Richard M. Friedberg and Hartley Rogers Jr., Reducibility and completeness for sets of

integers, Mathematical Logic Quarterly, vol. 5 (1959), pp. 117-125. Some earlier results
are presented in an abstract in The Journal of Symbolic Logic, vol. 22 (1957), p. 107.

• Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967, xix + 482 pp.

 Definition. The λ-calculus model is formed using the powerset
P(ℕ) = { X|X⊆ℕ } with a binary operation of application:

 Application:

F(X) = { m | ∃n. set(n) ⊆ X & (n,m) ∈ F }

 This binary operation further permits a reverse procedure:
 Abstraction:

λX.[...X...] = { (n,m) | m ∈ [... set(n)...] }

What is the Secret?

(1) The powerset P(ℕ) = { X|X⊆ℕ }is a topological space with the sets
 Un = { X| set(n) ⊆ X } as a basis for the topology.

(2) Functions Φ:P(ℕ)n ⟶ P(ℕ) are continuous iff, for all m ∈ ℕ, we have
 set(m) ⊆ Φ(X0,X1,…,Xn-1) iff there exist set(ki)⊆ Xi for each i<n,
 such that set(m) ⊆ Φ(set(k0), set(k1),…, set(kn-1)).

(3) The application operation F(X) is continuous as a function of two variables.

(4) If the function Φ(X0,X1,…,Xn-1) is continuous, then the abstraction term
 λX0.Φ(X0,X1,…,Xn-1) is continuous in all of the remaining variables.

(5) If Φ(X) is continuous, then λX.Φ(X) is the largest set F such that for all

 sets T, we have F(T)= Φ(T). And, therefore, generally F ⊆ λX.F(X).

NOTE: This model could easily have been defined in 1957!!

It clearly satisfies the rules of α, β-conversion (but not η). 

Some Lambda Properties

Theorem. For all sets of integers F and G we have:

λX.F(X) ⊆ λX.G(X) iff ∀X.F(X) ⊆ G(X),

λX.(F(X)∩ G(X)) = λX.F(X) ∩ λX.G(X),

and

λX.(F(X)∪ G(X)) = λX.F(X) ∪ λX.G(X).

Definition. A continuous operator Φ(X0,X1,…,Xn-1)
is computable iff in the model this set is RE:

F = λX0λX1…λXn-1.Φ(X0,X1,…,Xn-1).

How to do Recursion?

NOTE: So far we have a pure functional programming language for
Recursion Theory. For probabilistic programming more is needed.  

 Three Basic Theorems.
 • All pure λ-terms define computable operators.

 • If Φ(X) is continuous and if we let ∇ = λX.Φ(X(X)), then the
 set P = ∇(∇) is the least fixed point of Φ.

 • The least fixed point of a computable operator is computable.

 A Principal Theorem. These computable operators:
Succ(X)={n+1|n ∈ X },

Pred(X)={n|n+1 ∈ X }, and

Test(Z)(X)(Y)= {n ∈ X|0 ∈ Z }∪{m ∈ Y|∃ k.k+1 ∈ Z },

 together with λ-calculus, suffice for defining all RE sets.

How to Randomize P(ℕ)?

NOTE: The random variables are closed under application.

We then define the first-order structure by:

⟦ X⊆Y ⟧ ={ t ∈ Ω |∀n ∈ X(t). n ∈ Y(t)}/Null.

The validity of the first order properties is then automatic.  

Definition. Suppose Ω is a probability space, and let
P(ℕ)Ω be the set of measurable functions (random variables)

 from Ω into the topological space P(ℕ).

Theorem. P(ℕ)Ω forms a Boolean-valued model
for the λ- calculus — expanding the two-valued model P(ℕ).

How to do Probabilistic Programming?

(1) The elements of P(ℕ) are the non-random or stable objects.

(2) Suitable elements of P(ℕ)Ω can function as random oracles.

(3) For example, C : Ω ⟶ {{0},{1}} represents a coin toss.
(4) Objects T of P(ℕ)Ω can also represent sequences of coins.

(5) A sequence of fair and mutually independent coins is a tossing.

(6) A stable algorithm can take a tossing as its oracle.

NOTE: In order to mimic probabilistic programming in the

conventional sense, the application of the tossing in this model

has to be controlled to be used in a specific order,

and no coin can be used more than once.

This can be achieved by using a continuation-passing style

style of semantics.

Axioms for Stochastic λ-Calculus

NOTE: We now prefer to call terms without any occurrence of ⊕

“stable terms” rather than “classical terms”; however, the fixed-point

operator μ must be carefully introduced to be stable.

To have simple rules the Boolen-valued logic has to be invoked

to make the meaning of equations independent of the choice

of a tossing as the oracle.  

Some Future Projects

Stay Tuned!

(1) Explore using Boolean-valued logic in proving properties of programs.

(2) Expand the use of types in stable λ-calculus to stochastic λ-calculus.

(3) Show how the P(ℕ)Ω model corresponds to operational semantics.

