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Stochastic Processes and Domains

Scott’s Stochastic Lambda Calculus

• Untyped lambda calculus with probabilistic choice

• Probabilistic choice implemented via random variables
X : ([0, 1], λ)→ P(N) using Borel sets generated by Scott topology.

Barker’s Randomized PCF

• PCF (simply typed lambda calculus + N + B + rec) with
randomized choice

• Models randomized algorithms – reveals speedup in Miller-Rabin
Prime Testing Algorithm

Stochastic Lambda Calculus for Probabilistic Programming

This talk: Applying domain theory to stochastic processes.



Stochastic Processes and Skorohod’s Theorem

A stochastic process is a time-indexed family {Xt | t ∈ T ⊆ R+} of
random variables Xt : Ω→ S , where (Ω,ΣΩ, µ) is a probability space,
and S is a Polish space.

Note: If S is Polish, then so is (Prob(S), dp), where dp is the Prokhorov
metric. dP generates the weak topology on Prob(S).

Examples:

• Brownian motion, Lévy processes, Markov chains

MCMC – Markov chain Monte Carlo
Theme in Probabilistic Programming Semantics



Stochastic Processes and Skorohod’s Theorem

Let λ denote Lebesgue measure on [0, 1].

Skorohod’s Theorem
If S is a Polish space, and ν ∈ ProbS , then there is a random variable
X : [0, 1]→ S with X∗ λ = ν; i.e., ν(A) = λ(X−1(A)) ∀A measurable.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then there are random
variables Xn,X : [0, 1]→ S with X∗ λ = ν,Xn∗ λ = νn and Xn → X λ-a.e.

So: 1) Every stochastic process arises from some Xt : [0, 1]→ S .

2) Convergence in (ProbS ,weak) is equivalent to pointwise
convergence a.e. of measurable maps X : [0, 1]→ S .

Goal: Obtain domain-theoretic version of Skorohod’s Theorem with
Skorohod’s Theorem as a Corollary.



Interlude: Some Domain Theory

Domains are partially ordered sets with additional properties:

Directed completeness

∅ 6= A ⊆ D directed if x , y ∈ A ⇒ (∃z ∈ A) x , y ≤ z .
D directed complete: A directed ⇒ supA exists.

Approximation

x � y iff y ≤ supA directed ⇒ (∃a ∈ A) x ≤ a.

Domain: ↓↓y = {x | x � y} directed and y = sup ↓↓y
Basis: BD ⊆ D satisfying ↓y ∩ BD ⊆ ↓↓y & y = sup ↓y ∩ BD (∀y ∈ D)

Scott Topology

U Scott open if:

• U = ↑U = {x ∈ D | (∃u ∈ U) u ≤ x} and

• A directed, supA ∈ U ⇒ A ∩ U 6= ∅.
Example: ↑↑x = {y | x � y} is Scott open (∀x ∈ D).



Interlude: Some Domain Theory

Morphisms

f : D → E is Scott continuous if:
• f is monotone, and
• A directed ⇒ f (supA) = sup f (A).

Lawson Topology

Basis: {↑↑x \ ↑F | x ∈ D, F ∈ P<ωD}
Hausdorff refinement of Scott topology.

All the domains we discuss are Lawson compact.



Towards a Domain-theoretic Skorohod Theorem

First step: We can use any standard probability space for ([0, 1], λ):

Let C = 2ω denote a countable product of 2-point groups, and let µC
denote Haar measure on C.

Theorem:
If S is a Polish space, and ν ∈ ProbS , then there is a random variable
X : C → S with X∗ µC = ν.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then there are random
variables Xn,X : C → S with X∗ µC = ν,Xn∗ µC = νn and Xn → X
µC-a.e.

Proof: Use ϕ : C � [0, 1]. 2



Towards a Domain-theoretic Skorohod Theorem

Second Step: Embed C in an appropriate domain:

CT = {0, 1}∞ is a domain in the prefix order.

C

C ∩ [ 1
2
, 1]

...
...

...
...

C ∩ [0, 1
2
]

...
...

...
...

C ' ({0, 1}ω,Σ(CT )|{0,1}ω ) = (MaxCT ,Λ(CT )|Max CT )



Towards a Domain-theoretic Skorohod Theorem

Third Step: Which domains represent Polish spaces?

BCDω – countably based bounded complete domains and Scott
continuous maps.

• D∞ ' [D∞ → D∞] is in BCDω.

• CT = {0, 1}∞ is a bounded complete domain.

Theorem: (Lawson; Ciesielski, Flagg & Kopperman)

Each countably-based bounded complete domain D satisfies MaxD is a
Polish space in the inherited Scott topology. Moreover, MaxD is a Gδ in
D.

Conversely, every Polish space can be embedded as MaxD for a
countably based bounded complete domain D.

Examples:

1) C ' MaxCT ↪→ CT .

2) R ' Max IR ↪→ IR = ({[a, b] | a ≤ b ∈ R} ∪ {R},⊇).



Domain-theoretic Skorohod Theorem (cont’d)

Skorohod’s Theorem for Domains

If D is a countably based bounded complete domain and ν ∈ ProbD,
then there is a Scott-continuous map X : CT → D with X∗ µC = ν.

Moreover, if νn, ν ∈ ProbD satisfy νn →w ν, then there are
Scott-continuous maps Xn,X : CT → D with X∗ µC = ν,
Xn∗ µC = νn and Xn → X in [CT → D].

BCDω is Cartesian closed:

• [D → E ] = {f : D → E | f Scott continuous}
• f ≤ g iff f (x) ≤ g(x) (∀x ∈ D).

So: X 7→ X∗µC : [CT → D] � (ProbD,weak) is continuous surjection



Domain-theoretic Skorohod Theorem (cont’d)

Skorohod’s Theorem for Domains

If D is a countably based bounded complete domain and ν ∈ ProbD,
then there is a Scott-continuous map X : CT → D with X∗ µC = ν.

Moreover, if νn, ν ∈ ProbD satisfy νn →w ν, then there are
Scott-continuous maps Xn,X : CT → D with X∗ µC = ν,
Xn∗ µC = νn and Xn → X in [CT → D].

Corollary: Skorohod’s Theorem

Proof: If S is Polish, then (Prob S ,weak) ↪→ (Max ProbD,weak) for
some BCDω D. Then ν ∈ ProbS ⇒ (∃X : CT → D)X∗µC = ν.

X |C : C → D is measurable is easy argument. 2

Note: (CT , µC) is a standard probability space (mod 0), so we get more
information about X ,Xn: they’re all Scott continuous.



Outline of Proof

Deflations

φ : D → D is a deflation if φ is Scott continuous and φ(D) is finite.

D ∈ BCDω =⇒ 1D = supn φn, φn ≤ φn+1, deflations

Example: πn : CT → ↓Cn, where Cn ' 2n

Prob functorial =⇒ 1Prob D = supn φn∗

Example: µC = supn πn∗ µC = supn µCn

So: If D ∈BCDω and µ ∈ ProbD, then µ = supn φn∗ µ

with φn∗ µ =
∑

x∈Fn
rxδx , where Fn finite for all n.



Interlude: Valuations and Probability Measures

The Domain of Valuations

V(D) = {v : Σ(D)→ [0, 1] | v a valuation}:
• v(∅) = 0 & v(D) ≤ 1

• v(U ∪ V ) + v(U ∩ V ) = v(U) + v(V ) (∀U,V ∈ Σ(D))

• v Scott continuous: v(
⋃

i Ui ) = supi v(Ui ) (∀{Ui}i directed).

Define: v ≤ v ′ iff v(U) ≤ v ′(U) (∀U ∈ Σ(D)).

Fact: D (Lawson compact) domain =⇒
V(D) (Lawson compact) domain



Interlude: Valuations and Probability Measures

ProbD is a Domain

1◦ V1(D) = {v ∈ V(D) | v(D) = 1} also a domain in pointwise order.

2◦ ProbD ' V(D)

µ ≤ ν iff
∫
fdµ ≤

∫
fdν (∀f : D → R+ Scott continuous)

3◦ D Lawson compact ⇒ (Prob(D),weak) = (Prob(D), Lawson).

(Edalat; van Breugel, M., Ouaknine and Worrell
- plays off Portmanteau Theorem).



Outline of Proof

Finitary Mappings

Fix µ ∈ ProbD, and fix φn∗ µ =
∑

x∈Fn
rxδx .

Want: fn : Cmn → D with fn∗ µCmn
= φn∗ µ for some mn > n.

Requires: rx must be dyadic for x ∈ Fn. E

So, we approximate φn∗ µ:

Choose mn > n, |Fn| with rx − sx <
1

2mn (∀x ∈ Fn), where

sx = max ↓(rx ∩ Dyadmn), with Dyadmn = { k
2mn | k ≤ 2mn}.

Choose yx � x for each x ∈ Fn.

Let νn =
∑

x∈Fn
sxδyx + (1−

∑
sx)δ⊥.

Define fn : Cmn → Fn ∪ {⊥} ⊆ D by

f −1
n (x) = sx (∀x ∈ Fn), and f −1

n (⊥) = 1−
∑

x∈Fn
sx .

Then fn∗ µCmn
= νn � φn∗ µ



Outline of Proof

We can extend fn to f̃n : ↓Cmn → D with f̃n∗ µCmn
= φn∗ µ.

Problem: {f̃n}n is not a chain.

Proposition: Let ν =
∑

x∈F rxδx ≤
∑

y∈G syδy = ν′ ∈ ProbD.

Assume rx , sy are dyadic rationals for each x ∈ F , y ∈ G .

Suppose fm : Ckm → D satisfies fm∗ µCkm = ν.

Then there are n > m, kn > km, and fn : Ckn → D satisfying:

• fn∗ µCkn = ν′, and

• fm ◦ πkmkn ≤ fn, where πkmkn : Ckn → Ckm is the canonical projection,

which implies f̃m ≤ f̃n.

The proof uses the Splitting Lemma, the fact that if rx , sy are dyadic,
then the transport numbers tx,y are, too, and a generalization of Hall’s
Marriage Problem.

The proof of the first part of the Theorem follows by recursively defining

the mappings f̃n, starting with f̃0 : C0 → D by f0(1) =⊥D , and then

letting X = supn f̃n.



Questions?


