Stochastic Domain Theory

Michael Mislove Tulane University

Simons Institute on the Theory of Computing Reunion Workshop on Logical Structures for Computation

December 12, 2017

Supported by US AFOSR

Stochastic Processes and Domains

Scott's Stochastic Lambda Calculus

- Untyped lambda calculus with probabilistic choice
- Probabilistic choice implemented via random variables
 X: ([0, 1], λ) → P(ℕ) using Borel sets generated by Scott topology.

Barker's Randomized PCF

- PCF (simply typed lambda calculus + $\mathbb{N}+\mathbb{B}+\texttt{rec})$ with randomized choice
- Models randomized algorithms reveals speedup in Miller-Rabin Prime Testing Algorithm

Stochastic Lambda Calculus for Probabilistic Programming

This talk: Applying domain theory to stochastic processes.

Stochastic Processes and Skorohod's Theorem

A stochastic process is a time-indexed family $\{X_t \mid t \in T \subseteq \mathbb{R}_+\}$ of random variables $X_t \colon \Omega \to S$, where $(\Omega, \Sigma_{\Omega}, \mu)$ is a probability space, and S is a Polish space.

Note: If S is Polish, then so is $(Prob(S), d_p)$, where d_p is the Prokhorov metric. d_P generates the weak topology on Prob(S).

Examples:

• Brownian motion, Lévy processes, Markov chains

MCMC – Markov chain Monte Carlo Theme in *Probabilistic Programming Semantics*

Stochastic Processes and Skorohod's Theorem

Let λ denote Lebesgue measure on [0, 1].

Skorohod's Theorem

If S is a Polish space, and $\nu \in \operatorname{Prob} S$, then there is a random variable $X: [0,1] \to S$ with $X_* \lambda = \nu$; i.e., $\nu(A) = \lambda(X^{-1}(A)) \forall A$ measurable. Moreover, if $\nu_n, \nu \in \operatorname{Prob} S$ satisfy $\nu_n \to_w \nu$, then there are random

variables $X_n, X \colon [0,1] \to S$ with $X_* \lambda = \nu, X_{n*} \lambda = \nu_n$ and $X_n \to X \lambda$ -a.e.

So: 1) Every stochastic process arises from some X_t: [0, 1] → S.
2) Convergence in (Prob S, weak) is equivalent to pointwise convergence a.e. of measurable maps X: [0, 1] → S.

Goal: Obtain domain-theoretic version of Skorohod's Theorem with Skorohod's Theorem as a Corollary.

Interlude: Some Domain Theory

Domains are partially ordered sets with additional properties:

Directed completeness

 $\emptyset \neq A \subseteq D$ directed if $x, y \in A \Rightarrow (\exists z \in A) x, y \leq z$. D directed complete: A directed \Rightarrow sup A exists.

Approximation

$$\begin{aligned} x \ll y \text{ iff } y \leq \sup A \text{ directed } \Rightarrow (\exists a \in A) x \leq a. \\ Domain: & \downarrow y = \{x \mid x \ll y\} \text{ directed and } y = \sup & \downarrow y \\ Basis: B_D \subseteq D \text{ satisfying } & \downarrow y \cap B_D \subseteq & \downarrow y \& y = \sup & \downarrow y \cap B_D \ (\forall y \in D) \end{aligned}$$

Scott Topology

U Scott open if:

•
$$U = \uparrow U = \{x \in D \mid (\exists u \in U) \ u \le x\}$$
 and

• A directed, sup $A \in U \Rightarrow A \cap U \neq \emptyset$.

Example: $\uparrow x = \{y \mid x \ll y\}$ is Scott open $(\forall x \in D)$.

Interlude: Some Domain Theory

Morphisms

- $f: D \rightarrow E$ is Scott continuous if:
- *f* is monotone, and
- A directed \Rightarrow $f(\sup A) = \sup f(A)$.

Lawson Topology

Basis: {
$$\uparrow x \setminus \uparrow F \mid x \in D, F \in \mathcal{P}_{<\omega}D$$
}

Hausdorff refinement of Scott topology.

All the domains we discuss are Lawson compact.

First step: We can use any standard probability space for $([0,1],\lambda)$:

Let $C = 2^{\omega}$ denote a countable product of 2-point groups, and let μ_C denote Haar measure on C.

Theorem:

If S is a Polish space, and $\nu \in \operatorname{Prob} S$, then there is a random variable $X \colon \mathcal{C} \to S$ with $X_* \mu_{\mathcal{C}} = \nu$.

Moreover, if $\nu_n, \nu \in \operatorname{Prob} S$ satisfy $\nu_n \to_w \nu$, then there are random variables $X_n, X : \mathcal{C} \to S$ with $X_* \mu_{\mathcal{C}} = \nu, X_{n*} \mu_{\mathcal{C}} = \nu_n$ and $X_n \to X \mu_{\mathcal{C}}$ -a.e.

Proof: Use $\varphi : \mathcal{C} \rightarrow [0, 1]$.

Towards a Domain-theoretic Skorohod Theorem

Second Step: Embed C in an appropriate domain:

 $\mathbb{CT} = \{0,1\}^\infty$ is a domain in the prefix order.

 $\mathcal{C}\simeq (\{0,1\}^{\omega}, \Sigma(\mathbb{CT}\,)|_{\{0,1\}^{\omega}}) = (\mathsf{Max}\,\mathbb{CT}\,, \Lambda(\mathbb{CT}\,)|_{\mathsf{Max}\,\mathbb{CT}}\,)$

Towards a Domain-theoretic Skorohod Theorem

Third Step: Which domains represent Polish spaces?

 BCD_ω – countably based bounded complete domains and Scott continuous maps.

- $D^{\infty} \simeq [D^{\infty} \to D^{\infty}]$ is in BCD_{ω} .
- $\mathbb{CT}=\{0,1\}^\infty$ is a bounded complete domain.

Theorem: (Lawson; Ciesielski, Flagg & Kopperman)

Each countably-based bounded complete domain D satisfies Max D is a Polish space in the inherited Scott topology. Moreover, Max D is a G_{δ} in D.

Conversely, every Polish space can be embedded as Max D for a countably based bounded complete domain D.

Examples:

1) $\mathcal{C} \simeq \mathsf{Max} \mathbb{CT} \hookrightarrow \mathbb{CT}$.

2) $\mathbb{R} \simeq \mathsf{Max} \, \mathbb{IR} \hookrightarrow \mathbb{IR} = (\{[a, b] \mid a \leq b \in \mathbb{R}\} \cup \{\mathbb{R}\}, \supseteq).$

Skorohod's Theorem for Domains

If D is a countably based bounded complete domain and $\nu \in \operatorname{Prob} D$, then there is a Scott-continuous map $X : \mathbb{CT} \to D$ with $X_* \mu_{\mathcal{C}} = \nu$.

Moreover, if $\nu_n, \nu \in \operatorname{Prob} D$ satisfy $\nu_n \to_w \nu$, then there are Scott-continuous maps $X_n, X \colon \mathbb{CT} \to D$ with $X_* \mu_{\mathcal{C}} = \nu$, $X_{n*} \mu_{\mathcal{C}} = \nu_n$ and $X_n \to X$ in $[\mathbb{CT} \to D]$.

 BCD_{ω} is Cartesian closed:

- $[D \rightarrow E] = \{f : D \rightarrow E \mid f \text{ Scott continuous}\}$
- $f \leq g$ iff $f(x) \leq g(x)$ ($\forall x \in D$).

So: $X \mapsto X_* \mu_{\mathcal{C}} \colon [\mathbb{CT} \to D] \twoheadrightarrow (\operatorname{Prob} D, weak)$ is continuous surjection

Skorohod's Theorem for Domains

If *D* is a countably based bounded complete domain and $\nu \in \operatorname{Prob} D$, then there is a Scott-continuous map $X : \mathbb{CT} \to D$ with $X_* \mu_{\mathcal{C}} = \nu$. Moreover, if $\nu_n, \nu \in \operatorname{Prob} D$ satisfy $\nu_n \to_w \nu$, then there are Scott-continuous maps $X_n, X : \mathbb{CT} \to D$ with $X_* \mu_{\mathcal{C}} = \nu$, $X_{n*} \mu_{\mathcal{C}} = \nu_n$ and $X_n \to X$ in $[\mathbb{CT} \to D]$.

Corollary: Skorohod's Theorem

Proof: If *S* is Polish, then (Prob *S*, *weak*) \hookrightarrow (Max Prob *D*, *weak*) for some BCD_{ω} *D*. Then $\nu \in$ Prob *S* \Rightarrow ($\exists X : \mathbb{CT} \rightarrow D$) $X_*\mu_{\mathcal{C}} = \nu$.

 $X|_{\mathcal{C}} \colon \mathcal{C} \to D$ is measurable is easy argument.

Note: $(\mathbb{CT}, \mu_{\mathcal{C}})$ is a standard probability space (mod 0), so we get more information about X, X_n : they're all Scott continuous.

Outline of Proof

Deflations

$$\begin{split} \phi \colon D \to D \text{ is a deflation if } \phi \text{ is Scott continuous and } \phi(D) \text{ is finite.} \\ D \in \mathsf{BCD}_{\omega} \implies 1_D = \sup_n \phi_n, \ \phi_n \leq \phi_{n+1}, \text{ deflations} \\ \text{Example: } \pi_n \colon \mathbb{CT} \to \downarrow \mathcal{C}_n, \text{ where } \mathcal{C}_n \simeq 2^n \\ \text{Prob functorial} \implies 1_{\mathsf{Prob}\,D} = \sup_n \phi_{n*} \\ \text{Example: } \mu_{\mathcal{C}} = \sup_n \pi_{n*} \mu_{\mathcal{C}} = \sup_n \mu_{\mathcal{C}_n} \\ \text{So: If } D \in \mathsf{BCD}_{\omega} \text{ and } \mu \in \mathsf{Prob}\,D, \text{ then } \mu = \sup_n \phi_{n*} \mu \end{split}$$

with $\phi_{n*} \mu = \sum_{x \in F_n} r_x \delta_x$, where F_n finite for all n.

The Domain of Valuations

 $\mathbb{V}(D) = \{ v \colon \Sigma(D) \to [0,1] \mid v \text{ a valuation} \}:$

•
$$v(\emptyset) = 0 \& v(D) \leq 1$$

- $v(U \cup V) + v(U \cap V) = v(U) + v(V) \ (\forall U, V \in \Sigma(D))$
- v Scott continuous: $v(\bigcup_i U_i) = \sup_i v(U_i) \ (\forall \{U_i\}_i \text{ directed}).$

Define: $v \leq v'$ iff $v(U) \leq v'(U)$ $(\forall U \in \Sigma(D))$.

Fact: D (Lawson compact) domain \Longrightarrow $\mathbb{V}(D)$ (Lawson compact) domain

Interlude: Valuations and Probability Measures

Prob D is a Domain

- 1° $\mathbb{V}_1(D) = \{ v \in \mathbb{V}(D) \mid v(D) = 1 \}$ also a domain in pointwise order.
- $\begin{array}{ll} 2^{\circ} & \operatorname{Prob} D \simeq \mathbb{V}(D) \\ & \mu \leq \nu \text{ iff } \int f d\mu \leq \int f d\nu \; (\forall f \colon D \to \mathbb{R}_+ \text{ Scott continuous}) \end{array}$
- 3° D Lawson compact \Rightarrow (Prob(D), weak) = (Prob(D), Lawson). (Edalat; van Breugel, M., Ouaknine and Worrell - plays off Portmanteau Theorem).

Outline of Proof

Finitary Mappings

Fix $\mu \in \operatorname{Prob} D$, and fix $\phi_{n*} \mu = \sum_{x \in F_n} r_x \delta_x$. *Want:* $f_n: \mathcal{C}_{m_n} \to D$ with $f_{n*} \mu_{\mathcal{C}_{m_n}} = \phi_{n*} \mu$ for some $m_n > n$. *Requires:* r_x must be dyadic for $x \in F_n$.

So, we approximate
$$\phi_{n*} \mu$$
:
Choose $m_n > n$, $|F_n|$ with $r_x - s_x < \frac{1}{2^{m_n}}$ ($\forall x \in F_n$), where
 $s_x = \max \downarrow (r_x \cap Dyad_{m_n})$, with $Dyad_{m_n} = \{\frac{k}{2^{m_n}} \mid k \leq 2^{m_n}\}$.
Choose $y_x \ll x$ for each $x \in F_n$.
Let $\nu_n = \sum_{x \in F_n} s_x \delta_{y_x} + (1 - \sum s_x) \delta_{\perp}$.
Define $f_n \colon C_{m_n} \to F_n \cup \{\bot\} \subseteq D$ by
 $f_n^{-1}(x) = s_x$ ($\forall x \in F_n$), and $f_n^{-1}(\bot) = 1 - \sum_{x \in F_n} s_x$.
Then $f_{n*} \mu_{C_{m_n}} = \nu_n \ll \phi_{n*} \mu$

Outline of Proof

We can extend f_n to $\tilde{f}_n : \downarrow C_{m_n} \to D$ with $\tilde{f}_{n*} \mu_{C_{m_n}} = \phi_{n*} \mu$. *Problem:* $\{\tilde{f}_n\}_n$ is not a chain.

Proposition: Let $\nu = \sum_{x \in F} r_x \delta_x \leq \sum_{y \in G} s_y \delta_y = \nu' \in \operatorname{Prob} D$. Assume r_x, s_y are dyadic rationals for each $x \in F, y \in G$. Suppose $f_m \colon \mathcal{C}_{k_m} \to D$ satisfies $f_{m*} \mu_{\mathcal{C}_{k_m}} = \nu$. Then there are n > m, $k_n > k_m$, and $f_n \colon \mathcal{C}_{k_n} \to D$ satisfying:

- $f_{n*} \mu_{\mathcal{C}_{k_n}} = \nu'$, and
- $f_m \circ \pi_{k_m k_n} \leq f_n$, where $\pi_{k_m k_n} \colon C_{k_n} \to C_{k_m}$ is the canonical projection, which implies $\widetilde{f_m} \leq \widetilde{f_n}$.

The proof uses the Splitting Lemma, the fact that if r_x , s_y are dyadic, then the transport numbers $t_{x,y}$ are, too, and a generalization of Hall's Marriage Problem.

The proof of the first part of the Theorem follows by recursively defining the mappings \tilde{f}_n , starting with $\tilde{f}_0: C_0 \to D$ by $f_0(\mathbf{1}) = \perp_D$, and then letting $X = \sup_n \tilde{f}_n$.

Questions?