A Channel-Based Perspective on Conjugate Priors

Simons Institute, Berkeley
Bart Jacobs, Radboud University Nijmegen
bart@cs.ru.nl
Dec 12, 2017

Where we are, so far

Introduction

Disintegration and inversion

Conjugate priors

Conclusions
iCIS | Digital Security
Radboud University

Standard example: Finding the bias of a coin

- Suppose we have a coin with unkown bias, and perform a number of tests, giving certain head/tail outcomes
- We like to learn what the bias is
- This bias is an (unkown) number $r \in[0,1]$.
- with discrete coin distribution Flip $(r)=r|H\rangle+(1-r)|T\rangle$
- aim: learn a continuous probability distribution on $[0,1]$ for r
- and possibly also a resulting expected value
- Standard procedure:
- start from a uniform probability distribution on $[0,1]$
- update this distribution for each observation
- (these updates are different for head and for tail)

Finding the bias of a coin, II

The probability density functions (pdf's) of the resulting distributions are:

Initially
Beta(1, 1)

After $\mathrm{H}=$ head
Beta(2,1)

After $\mathrm{H}-\mathrm{T}-\mathrm{T}-\mathrm{T}$
Beta(2, 4)

- As is well-known, one does not have to re-compute the distributions each time
- It suffices to re-compute the parameters α, β in $\operatorname{Beta}(\alpha, \beta)$
- One says: Beta is conjugate prior to Flip/Bernouilli

What does Conjugate priorship mean, precisely??

- The literature is remarkably informal on this topic:
- sometimes exaplained by example, like for Beta/Flip above
- e.g. in Russell-Norvig's Artifical Intelligence book
- Alternatively, informal descriptions are given:
- Alpaydin'10: "We see that the posterior has the same form as the prior and we call such a prior a conjugate prior"
- Bishop'06: " . . . the posterior distribution has the same functional form as the prior."
- Most precise/technical description in Bernardo \& Smith'00.

Our aim: give a mathemtically precise account of conjugate priorship

The account relies on channels and their inversion (via disintegration)

General picture

- Now, Beta and Flip are both channels - technically, Kleisli maps
- Conjugate priorship involves parameter translation function:

Parameters \times Observations \longrightarrow Parameters

$$
\begin{aligned}
& (\alpha, \beta, H) \longmapsto(\alpha+1, \beta) \\
& (\alpha, \beta, T) \longmapsto(\alpha, \beta+1)
\end{aligned}
$$

Question: which equations should hold? Answer involves "inversion"

Where we are, so far

Introduction

Disintegration and inversion

Conjugate priors

Conclusions

Disintegration

- Informally, disintegration involves turning a joint probability into a conditional probability
- going from $P(A, B)$ to $P(A \mid B)$
- i.e. turning a joint state on $A \times B$ into a channel $B \rightarrow A$
- It is fundamental for turning a (big) joint probability distribution into a Bayesian network
- the graph's edges are channels (Kleisli maps)
- useful perspective, following Brendan Fong, Fabio Zanasi, BJ
- Here it will be presented graphically (Kenta Cho \& BJ)
- main models: Kleisli categories of distribution $\mathcal{D} /$ Giry \mathcal{G} monad
- copying is allowed in a probabilistic (non-quantum) setting
- inversion is then (best) explained as special case of disintegration
- Existence of disintegration is a separate topic - ignored here
- easy for \mathcal{D}, non-trivial for \mathcal{G}

Graphical language: channels as boxes (flow is upwards)

For symmetric monoidal categories with discarding (tensor unit is final):

- Sequential and parallel composition:

$$
\frac{\square}{g \circ f}=\frac{\square}{g}
$$

- States $1 \rightarrow X$ are triangles that can be marginalised via discarding $\bar{〒}$

- By finality, channels are causal (or unital):

$$
\stackrel{\overline{\bar{\gamma}}}{\stackrel{-}{f}}=\overline{\bar{\top}}
$$

Disintegration: extraction of channel

- Assume a joint state (distribution) ω on X, Y as depicted below
- A disintegration of ω is a channel $c: Y \rightarrow X$ such that:

- Equationally, $\omega(x, y)=\omega(x \mid y) \cdot \omega(y)$
- Disintegration is a fundamental concept, esp. in conditional probability theory
- e.g. to define conditional independence abstractly

Bayesian inversion via disintegration

Bayesian inversion (Clerc et al 2017) turns a state and a channel into an inverted channel, written c_{ω}^{\dagger} in:

Graphically, disintegration is applied to the diagram on the left, giving the defining equation for Bayesian inversion c_{ω}^{\dagger} in:

Where we are, so far

Introduction

Disintegration and inversion

Conjugate priors

Conclusions

Main ideas behind abstract description

- The informal descriptions of 'conjugate priorship' speak about classes of distributions which are suitably closed
- Such a class will form a channel $c: P \rightarrow X$
- $\quad P$ is the object of parameters
- informally, for each $p \in P$ we have distribution $c(p)$ on X
- recall, we think of Kleisli maps $P \rightarrow \mathcal{D}(X)$ or $P \rightarrow \mathcal{G}(X)$
- Observations happen via another channel $d: X \rightarrow O$
- O is the object of observations
- now we can look at inversion of d for each state $c(p)$ on X
- we will seek a function $h: P \times O \rightarrow P$ to do so

Definition of conjugate prior

Setting: a pair of composable channels:

$$
P \xrightarrow{c} X \xrightarrow{d} 0 \quad \text { or, as diagram, }
$$

Definition: Channel c a conjugate prior of d if there is a (deterministic) channel $h: P \times O \rightarrow P$ such that:

Intuition:

$c \circ h$ forms inversion of d

Intermezzo on 'deterministic' channels

- In general, channels do not commute with copying
- If it does commute, then the channel is called deterministic as in:

- For a state ω this amounts to the equation on the right
- the state is then also called copyable
- Measurable functions form deterministic channels in $\mathcal{K} \ell(\mathcal{G})$
- point (Dirac) states are deterministic/copyable

Conjugate priors involve Bayesian inversion

Theorem

Given $P \xrightarrow{c} X \xrightarrow{d} O$, where c is conjugate prior to d via $h: P \times O \rightarrow P$. Then for each copyable state p, the map $c \circ h(p,-): O \rightarrow X$ is a Bayesian inversion of d.

Diagrammatic proof

Down-to-earth: what does this mean in practice?

- Suppose channels $c: P \rightarrow X$ and $d: X \rightarrow O$ are given by likelihoods
- $c=\int u$ and $d=\int v$, for $u: P \times X \rightarrow \mathbb{R}_{\geq 0}, v: X \times O \rightarrow \mathbb{R}_{\geq 0}$
- thus $c(p)(M)=\int_{M} u(p, x) d x$ and $\mathrm{d}(\mathrm{x})(\mathrm{N})=\int_{N} v(x, y) d y$
- If c is conjugate prior to d, then the defining equation amounts to:

$$
\int_{M} u(h(p, y), x) \mathrm{d} x=\frac{\int_{M} u(p, x) \cdot v(x, y) \mathrm{d} x}{\int u(p, x) \cdot v(x, y) \mathrm{d} x}
$$

- This is essentially Defn. 5.6 of Bernardo \& Smith, Bayesian Theory, 2000
- This equation holds in the well-known examples of conjugate priorship (that I checked)
- e.g. Beta - Flip, or Beta - Binom, or Norm - Norm

Where we are, so far

Introduction

Disintegration and inversion

Conjugate priors

Conclusions

Concluding remarks

- Conjugate priorship is an frequently used fundamental concept - that is often introduced only informally - e.g. via examples
- A definition is given here, that is both precise and abstract
- formulated via channels, with a non-trivial definining equation
- The (expected) relationship with Bayesian inversion holds via a simple (diagrammatic) proof
- Details in arXiv:1709.00322
- This (hopefully) demonstrates that categorical/graphical abstraction can indeed contribute to probability theory
- but my colleagues in machine learning could not read the report $\ddot{\theta}$; there is still work to do
- maybe you can!

