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Standard example: Finding the bias of a coin

I Suppose we have a coin with unkown bias, and perform a number of
tests, giving certain head/tail outcomes
• We like to learn what the bias is

I This bias is an (unkown) number r ∈ [0, 1].
• with discrete coin distribution Flip(r) = r |H 〉+ (1− r)|T 〉
• aim: learn a continuous probability distribution on [0, 1] for r
• and possibly also a resulting expected value

I Standard procedure:
• start from a uniform probability distribution on [0, 1]
• update this distribution for each observation
• (these updates are different for head and for tail)
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Finding the bias of a coin, II

The probability density functions (pdf’s) of the resulting distributions are:

Initially After H = head After H-T-T-T

Beta(1, 1) Beta(2, 1) Beta(2, 4)

I As is well-known, one does not have to re-compute the distributions
each time

I It suffices to re-compute the parameters α, β in Beta(α, β)
I One says: Beta is conjugate prior to Flip/Bernouilli
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What does Conjugate priorship mean, precisely??

I The literature is remarkably informal on this topic:
• sometimes exaplained by example, like for Beta/Flip above
• e.g. in Russell-Norvig’s Artifical Intelligence book

I Alternatively, informal descriptions are given:
• Alpaydin’10: “We see that the posterior has the same form as

the prior and we call such a prior a conjugate prior”
• Bishop’06: “. . . the posterior distribution has the same functional

form as the prior.”
I Most precise/technical description in Bernardo & Smith’00.
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�Our aim: give a mathemtically precise account of conjugate priorship

The account relies on channels and their inversion (via disintegration)
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General picture

(hyper)
parameters

Beta // probability
space

Flip // Observations

α, β > 0 [0, 1] {H,T}

I Now, Beta and Flip are both channels — technically, Kleisli maps
I Conjugate priorship involves parameter translation function:

Parameters× Observations // Parameters
(α, β,H) � // (α+ 1, β)

(α, β,T ) � // (α, β + 1)�
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�Question: which equations should hold? Answer involves “inversion”
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Disintegration

I Informally, disintegration involves turning a joint probability into a
conditional probability
• going from P(A,B) to P(A | B)
• i.e. turning a joint state on A× B into a channel B → A

I It is fundamental for turning a (big) joint probability distribution into
a Bayesian network
• the graph’s edges are channels (Kleisli maps)
• useful perspective, following Brendan Fong, Fabio Zanasi, BJ

I Here it will be presented graphically (Kenta Cho & BJ)
• main models: Kleisli categories of distribution D / Giry G monad
• copying is allowed in a probabilistic (non-quantum) setting
• inversion is then (best) explained as special case of disintegration

I Existence of disintegration is a separate topic — ignored here
• easy for D, non-trivial for G
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Graphical language: channels as boxes (flow is upwards)

For symmetric monoidal categories with discarding (tensor unit is final):
I Sequential and parallel composition:

g ◦ f =
f

g
h ⊗ k = h k

I States 1→ X are triangles that can be marginalised via discarding

ω

X marginal on X←−−−−−−−−[
ω

X Y marginal on Y7−−−−−−−−→
ω

Y

I By finality, channels are causal (or unital):

f =
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Disintegration: extraction of channel

I Assume a joint state (distribution) ω on X ,Y as depicted below
I A disintegration of ω is a channel c : Y → X such that:

ω

X Y

=

ω

c

X Y

I Equationally, ω(x , y) = ω(x | y) · ω(y)
I Disintegration is a fundamental concept, esp. in conditional

probability theory
• e.g. to define conditional independence abstractly
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Bayesian inversion via disintegration

Bayesian inversion (Clerc et al 2017) turns a state and a channel into an
inverted channel, written c†ω in:

1 ω // X
c // Y

c†ω

bb

Graphically, disintegration is applied to the diagram on the left, giving
the defining equation for Bayesian inversion c†ω in:

ω

c

=

ω

c†ω

c
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Main ideas behind abstract description

I The informal descriptions of ‘conjugate priorship’ speak about
classes of distributions which are suitably closed

I Such a class will form a channel c : P → X
• P is the object of parameters
• informally, for each p ∈ P we have distribution c(p) on X
• recall, we think of Kleisli maps P → D(X ) or P → G(X )

I Observations happen via another channel d : X → O
• O is the object of observations
• now we can look at inversion of d for each state c(p) on X
• we will seek a function h : P × O → P to do so
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Definition of conjugate prior

Setting: a pair of composable channels:

P
c // X

d // O or, as diagram,
c

d

Definition: Channel c a conjugate prior of d if there is a (deterministic)
channel h : P × O → P such that:

c

d

=

c

d

h

c

Intuition:
c ◦ h forms
inversion of d
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Intermezzo on ‘deterministic’ channels

I In general, channels do not commute with copying
I If it does commute, then the channel is called deterministic as in:

c
=

c c

ω
= ω ω

I For a state ω this amounts to the equation on the right
• the state is then also called copyable

I Measurable functions form deterministic channels in K`(G)
• point (Dirac) states are deterministic/copyable
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Conjugate priors involve Bayesian inversion

Theorem
Given P

c→ X
d→ O, where c is conjugate prior to d via h : P × O → P.

Then for each copyable state p, the map c ◦ h(p,−) : O → X is a
Bayesian inversion of d .

Diagrammatic proof

p

c

d

=

p

c

d

h

c

=
p

p

c

d

h

c
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Down-to-earth: what does this mean in practice?

I Suppose channels c : P → X and d : X → O are given by likelihoods
• c =

∫
u and d =

∫
v , for u : P × X → R≥0, v : X × O → R≥0

• thus c(p)(M) =
∫
M
u(p, x)dx and d(x)(N) =

∫
N
v(x , y)dy

I If c is conjugate prior to d , then the defining equation amounts to:∫
M

u(h(p, y), x) dx =

∫
M
u(p, x) · v(x , y) dx∫
u(p, x) · v(x , y) dx

I This is essentially Defn. 5.6 of Bernardo & Smith, Bayesian Theory,
2000

I This equation holds in the well-known examples of conjugate
priorship (that I checked)
• e.g. Beta− Flip, or Beta− Binom, or Norm−Norm
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Concluding remarks

I Conjugate priorship is an frequently used fundamental concept
• that is often introduced only informally — e.g. via examples

I A definition is given here, that is both precise and abstract
• formulated via channels, with a non-trivial definining equation

I The (expected) relationship with Bayesian inversion holds via a
simple (diagrammatic) proof

I Details in arXiv:1709.00322
I This (hopefully) demonstrates that categorical/graphical abstraction

can indeed contribute to probability theory
• but my colleagues in machine learning could not read the

report ; there is still work to do
• maybe you can!
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