# Tensor topology 

Chris Heunen Pau Enrique Moliner Sean Tull

After a few months, though, I realized something. I hadn't gotten any better at understanding tensor products, but I was getting used to not understanding them. It was pretty amazing. I no longer felt anguished when tensor products came up; I was instead almost amused by their cunning ways.

## Reflexive objects

linear $\lambda$-calculus in monoidal closed category

$$
U \simeq[U \rightarrow U]
$$

## Idempotent subunits

Categorify central idempotents in ring
$\operatorname{ISub}(\mathbf{C})=\left\{s: S \mapsto I \mid \operatorname{id}_{S} \otimes s: S \otimes S \rightarrow S \otimes I\right.$ iso $\exists S \otimes(-) \Rightarrow(-) \otimes S$ iso $\} / \simeq$

## Example: order theory

Frame: complete lattice, $\wedge$ distributes over $\bigvee$ e.g. open subsets of topological space

## Example: order theory

Frame: complete lattice, $\wedge$ distributes over $\bigvee$ e.g. open subsets of topological space

Quantale: complete lattice, • distributes over $\bigvee$ e.g. $[0, \infty], \operatorname{Pow}(M)$

## Example: order theory

Frame: complete lattice, $\wedge$ distributes over $\bigvee$ e.g. open subsets of topological space

Quantale: complete lattice, • distributes over $\bigvee$ e.g. $[0, \infty], \operatorname{Pow}(M)$

$\left\{x \in Q \mid x^{2}=x \leq 1\right\} \longleftrightarrow Q$
'idempotent subunits are side-effect-free observations'

## Example: logic

$$
\begin{aligned}
\operatorname{ISub}(\operatorname{Sh}(X)) & =\{S \hookrightarrow 1\} \\
& =\{S \subseteq X \mid S \text { open }\} \in \text { Frame }
\end{aligned}
$$

'idempotent subunits are truth values'

## Example: algebra

$\operatorname{ISub}\left(\mathbf{M o d}_{R}\right)=$
$\left\{S \subseteq R\right.$ ideal $\left.\mid S=S^{2}=\left\{x_{1} y_{1}+\cdots x_{n} y_{n} \mid x_{i}, y_{i} \in S\right\}\right\}$
'idempotent subunits are idempotent ideals'

## Example: analysis

Hilbert module is $C_{0}(X)$-module with $C_{0}(X)$-valued inner product $C_{0}(X)=\{f: X \rightarrow \mathbb{C}|\forall \varepsilon>0 \exists K \subseteq X:|f(X \backslash K)|<\varepsilon\}$ $\operatorname{ISub}\left(\mathbf{H i l b}_{C_{0}(X)}\right)=\{S \subseteq X$ open $\}$
'idempotent subunits are open subsets of base space'

## Example: geometry

Hilbert bundle is bundle $E \rightarrow X$ with Hilbert spaces for fibres

$$
\operatorname{ISub}\left(\operatorname{Hilb}_{X}\right)=\{S \subseteq X \text { open }\}
$$

'idempotent subunits are open subsets of base space'

It is the things you can prove that tell you how to think about tensor products. In other words, you let elementary lemmas and examples shape your intuition of the mathematical object in question. There's nothing else, no magical intuition will magically appear to help you "understand" it.

## Semilattice

Proposition: $\operatorname{ISub}(\mathbf{C})$ is a semilattice, $\wedge=\otimes, 1=\operatorname{id}_{I}$


Caveat: $\mathbf{C}$ must be firm, i.e. $s \otimes \mathrm{id}_{T}$ monic, and size issue

## Semilattice

Proposition: $\operatorname{ISub}(\mathbf{C})$ is a semilattice, $\wedge=\otimes, 1=\operatorname{id}_{I}$


Caveat: C must be firm, i.e. $s \otimes \mathrm{id}_{T}$ monic, and size issue


## Spatial categories

Call $\mathbf{C}$ spatial when $\operatorname{ISub}(\mathbf{C})$ is frame


## Spatial categories

## Call $\mathbf{C}$ spatial when $\operatorname{ISub}(\mathbf{C})$ is frame



Idea: $\widehat{\mathbf{C}}=\left[\mathbf{C}^{\text {op }}, \mathbf{S e t}\right]$ is cocomplete

## Spatial categories

## Call $\mathbf{C}$ spatial when $\operatorname{ISub}(\mathbf{C})$ is frame



$$
\begin{gathered}
\text { Idea: } \widehat{\mathbf{C}}=\left[\mathbf{C}^{\text {op }}, \mathbf{S e t}\right] \text { is cocomplete } \\
F \widehat{\otimes} G(A)=\int^{B, C} \mathbf{C}(A, B \otimes C) \times F(B) \times G(C)
\end{gathered}
$$

Lemma: $\operatorname{ISub}(\widehat{\mathbf{C}}, \widehat{\otimes})$ is frame

## Spatial categories

## Call $\mathbf{C}$ spatial when $\operatorname{ISub}(\mathbf{C})$ is frame



Idea: $\widehat{\mathbf{C}}=\left[\mathbf{C}^{\text {op }}, \mathbf{S e t}\right]$ is cocomplete

$$
F \widehat{\otimes} G(A)=\int^{B, C} \mathbf{C}(A, B \otimes C) \times F(B) \times G(C)
$$

Lemma: $\operatorname{ISub}(\widehat{\mathbf{C}}, \widehat{\otimes})$ is frame, but $\operatorname{ISub}(\widehat{\mathbf{C}}) \neq \widehat{\operatorname{ISub}(\mathbf{C}})$

## Support

Say $s \in \operatorname{ISub}(\mathbf{C})$ supports $f: A \rightarrow B$ when


## Support

Say $s \in \operatorname{ISub}(\mathbf{C})$ supports $f: A \rightarrow B$ when


$$
\begin{aligned}
f \longmapsto & \{s \mid s \text { supports } f\} \\
\mathbf{C}^{2} \longrightarrow \operatorname{supp} & \operatorname{Pow}(\operatorname{ISub}(\mathbf{C}))
\end{aligned}
$$

## Support

Say $s \in \operatorname{ISub}(\mathbf{C})$ supports $f: A \rightarrow B$ when


Monoidal functor: $\operatorname{supp}(f) \wedge \operatorname{supp}(g) \leq \operatorname{supp}(f \otimes g)$

$$
\begin{aligned}
f \longmapsto & \{s \mid s \text { supports } f\} \\
\mathbf{C}^{2} \longrightarrow \operatorname{supp} & \operatorname{Pow}(\operatorname{ISub}(\mathbf{C}))
\end{aligned}
$$

## Support

Say $s \in \operatorname{ISub}(\mathbf{C})$ supports $f: A \rightarrow B$ when


Monoidal functor: $\operatorname{supp}(f) \wedge \operatorname{supp}(g) \leq \operatorname{supp}(f \otimes g)$

universal with $F(f)=\bigvee\{F(s) \mid s \in \operatorname{ISub}(\mathbf{C})$ supports $f\}$

## Spatial categories

Call $F: \mathbf{C}^{\text {op }} \rightarrow$ Set supported when

$$
\begin{gathered}
F(A) \simeq\{f: A \rightarrow B \mid \operatorname{supp}(f) \cap U \neq \emptyset\} \\
\text { for some } B \in \mathbf{C} \text { and } U \subseteq \operatorname{ISub}(\mathbf{C})
\end{gathered}
$$



## Complements

Subunit is split when id $C S \underset{\overleftrightarrow{k-----} I}{\xrightarrow{s}}$ $\operatorname{SISub}(\mathbf{C})$ is a sub-semilattice of $\operatorname{ISub}(\mathbf{C})$ (don't need firmness)

## Complements

## Subunit is split when id $C S \underset{\leftrightarrow<----}{S} I$ $\operatorname{SISub}(\mathbf{C})$ is a sub-semilattice of $\operatorname{ISub}(\mathbf{C})$ (don't need firmness)

If $\mathbf{C}$ has zero object, $\operatorname{ISub}(\mathbf{C})$ has least element 0 $s, s^{\perp}$ are complements if $s \wedge s^{\perp}=0$ and $s \vee s^{\perp}=1$

## Complements

 $\operatorname{SISub}(\mathbf{C})$ is a sub-semilattice of $\operatorname{ISub}(\mathbf{C})$ (don't need firmness)

If $\mathbf{C}$ has zero object, $\operatorname{ISub}(\mathbf{C})$ has least element 0 $s, s^{\perp}$ are complements if $s \wedge s^{\perp}=0$ and $s \vee s^{\perp}=1$

Proposition: when $\mathbf{C}$ has finite biproducts, then $s, s^{\perp} \in \operatorname{SISub}(\mathbf{C})$ are complements if and only if they are biproduct injections

Corollary: if $\oplus$ distributes over $\otimes$, then $\operatorname{SISub}(\mathbf{C})$ is a Boolean algebra (universal property?)

## Linear logic

> if $T: \mathbf{C} \rightarrow \mathbf{C}$ monoidal monad, $\operatorname{Kl}(T)$ is monoidal semilattice morphism
> $\left\{\eta_{I} \circ s \mid s \in \operatorname{ISub}(\mathbf{C}), T(s)\right.$ is monic in $\left.\mathbf{C}\right\} \rightarrow \operatorname{ISub}(\operatorname{Kl}(T))$ is not injective, nor surjective

## Linear logic

$$
\begin{gathered}
\text { if } T: \mathbf{C} \rightarrow \mathbf{C} \text { monoidal monad, } \mathrm{Kl}(T) \text { is monoidal } \\
\text { semilattice morphism } \\
\left\{\eta_{I} \circ s \mid s \in \operatorname{ISub}(\mathbf{C}), T(s) \text { is monic in } \mathbf{C}\right\} \rightarrow \operatorname{ISub}(\mathrm{Kl}(T)) \\
\text { is not injective, nor surjective }
\end{gathered}
$$

model for linear logic: *-autonomous category $\mathbf{C}$ with finite products, monoidal comonad ! : $\mathbf{( C , \otimes ) \rightarrow ( \mathbf { C } , \times )}$
(then $\mathrm{Kl}(!)$ cartesian closed)
if $\varepsilon$ epi, then $\operatorname{ISub}(\mathbf{C}, \times) \simeq \operatorname{ISub}(\operatorname{Kl}(!), \times)$
(but hard to compare to $\operatorname{ISub}(\mathbf{C}, \otimes)$ )

## Further

Do you work with morphisms into a tensor unit?

- causality
- proof analysis
- control flow
- data flow
- concurrency
- graphical calculus


## Restriction

The full subcategory $\left.\mathbf{C}\right|_{s}$ of $A$ with $\operatorname{id}_{A} \otimes s$ invertible is:

- monoidal with tensor unit $S$
- coreflective: $\left.\mathbf{C}\right|_{s} \longleftrightarrow \xrightarrow{\perp} \mathbf{C}$
- tensor ideal: if $A \in \mathbf{C}$ and $\left.B \in \mathbf{C}\right|_{s}$, then $\left.A \otimes B \in \mathbf{C}\right|_{s}$
- monocoreflective: counit $\varepsilon_{I}$ monic (and $\operatorname{id}_{A} \otimes \varepsilon_{I}$ iso for $\left.A \in \mathrm{C}\right|_{s}$ )


## Restriction

The full subcategory $\left.\mathbf{C}\right|_{s}$ of $A$ with $\operatorname{id}_{A} \otimes s$ invertible is:

- monoidal with tensor unit $S$
- coreflective: $\left.\mathbf{C}\right|_{s} \stackrel{\perp}{\longleftrightarrow---} \mathbf{C}$
- tensor ideal: if $A \in \mathbf{C}$ and $\left.B \in \mathbf{C}\right|_{s}$, then $\left.A \otimes B \in \mathbf{C}\right|_{s}$
- monocoreflective: counit $\varepsilon_{I}$ monic (and $\operatorname{id}_{A} \otimes \varepsilon_{I}$ iso for $\left.A \in \mathrm{C}\right|_{s}$ )

Proposition: $\operatorname{ISub}(\mathbf{C}) \simeq\{$ monocoreflective tensor ideals in $\mathbf{C}\}$

## Localisation

A graded monad is a monoidal functor $\mathbf{E} \rightarrow[\mathbf{C}, \mathbf{C}]$ $(\eta: A \rightarrow T(1), \mu: T(t) \circ T(s) \rightarrow T(s \otimes t))$
Lemma: $\left.s \mapsto \mathbf{C}\right|_{s}$ is an $\operatorname{ISub}(\mathbf{C})$-graded monad

## Localisation

A graded monad is a monoidal functor $\mathbf{E} \rightarrow[\mathbf{C}, \mathbf{C}]$

$$
(\eta: A \rightarrow T(1), \mu: T(t) \circ T(s) \rightarrow T(s \otimes t))
$$

Lemma: $\left.s \mapsto \mathbf{C}\right|_{s}$ is an $\operatorname{ISub}(\mathbf{C})$-graded monad
universal property of localisation for $\Sigma=\left\{\mathrm{id}_{E} \otimes s \mid E \in \mathbf{C}\right\}$


