Semantic Tractability of
 Conjunctive Queries

Diego Figueira
CNRS, LaBRI

Query optimization

$\mathcal{C} \ni Q(\square)$ hard to evaluate
\downarrow
:) $\mathcal{C}^{\prime} \ni Q^{\prime}$, with $Q \equiv Q^{\prime}$ where $Q^{\prime}(\square)$ efficient

$$
\begin{aligned}
& =\text { relational structure } \\
\mathcal{C} & =\text { Conjunctive Queries } \\
\mathcal{C}^{\prime} & =\text { Conjunctive Queries of small treewidth }
\end{aligned}
$$

Conjunctive Queries

$\mathrm{CQ}=$ first-order formula
$\exists \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} . \bigwedge($ atoms $)$
Basic query language on databases

$$
\exists x_{1}, x_{2}, x_{3} R\left(x_{1}, x_{2}\right) \wedge S\left(x_{1}, x_{3}\right) \wedge S\left(x_{2}, x_{3}\right)
$$

"Canonical structure" evaluation of $\mathrm{CQ} \approx \exists$ homomorphism on relational structures

$$
\begin{array}{ll}
\phi & -\rightarrow C_{\phi} \\
\text { s.t. } \forall S: S \models \phi \quad \text { if } C_{\phi} \longrightarrow S \\
\phi_{\mathrm{A}} \leftrightarrow-\mathrm{A} & \text { s.t. } \forall \mathrm{S}: \mathrm{S} \models \phi_{\mathrm{A}} \text { inf } \mathrm{A} \longrightarrow \mathrm{~S}
\end{array}
$$

[Chandra, Merlin, '77]

Conjunctive Queries: syntactic restrictions

Evaluation for CQ's is intractable: NP-complete, W[1]-hard

```
Evaluating }\phi\mathrm{ on A takes }|\textrm{A}\mp@subsup{|}{}{|\phi}\mp@subsup{|}{\mathrm{ time }}{\mathrm{ tim ( }
```

Effort to find tractable syntactic fragments:

* Acyclic CQ (ACQ)
(CQ's that "resemble a tree")
* Bounded treewidth CQ's (TW_{k})
* Bounded generalized hyper-treewidth / coverwidth CQ's (GHW ${ }_{\mathrm{k}}$)
(:) Evaluation for $\mathrm{ACQ} / \mathrm{TW}_{\mathrm{k}} / \mathrm{GHW}_{\mathrm{k}}$ queries is tractable

Conjunctive Queries: syntactic restrictions

Treewidth, examples
(a tree)

tree-width 1
tree-width 2
tree-width $n-1$

tree-width 2

tree-width 4

tree-width n

Conjunctive Queries: semantic restrictions

Evaluation for acyclic/TW ${ }_{k} / \mathrm{GHW}_{\mathrm{k}} \mathrm{CQs}^{\text {is }} \mathrm{O}\left(|\phi| \cdot|\mathrm{D}|^{\mathrm{k}+1}\right)$

[Yannakakis, '81]
[Chekuri, Rajaraman, '00]
[Gottlob, Leone, Scarcello, '02]

What about semantic conditions?

If $\phi \equiv \psi$ with $\psi \in \mathrm{GHW}_{\mathrm{k}}: \quad$ instead of evaluating $\phi(\mathbf{A})$ in $\operatorname{TIME}\left(|\mathrm{A}|^{|\phi|}\right)$, evaluate $\psi(\mathbf{A})$ in $\operatorname{TIME}\left(|\psi| \cdot|\mathbf{A}|^{\text {const }}\right)$
(fixed-parameter tractable)

Optimization problem: "find a well-behaved equivalent query"

Semantic tree-width problem

Semantic width-k problem
Input: $\phi \in \mathrm{CQ}$
Output: Is there an $\mathrm{GHW}_{\mathrm{k}} \mathrm{CQ} \psi$ so that $\psi \equiv \phi$?

The semantic width-k problem is NP-complete.
[Dalmau, Kolaitis, Vardi, '02]

Evaluation of semantically width-k queries is in PTime
[Chen, Dalmau, '05]

Semantic width-k problem under constraints

Semantic width-k problem under \mathscr{C}
Input: $\phi \in \mathrm{CQ}, \Sigma \subseteq \mathscr{G}$
Output: Is there a CQ $\psi \in \mathrm{GHW}_{\mathrm{k}}$ so that $\psi \equiv \Sigma \phi$?

Equivalence problem $\stackrel{\neq}{\Rightarrow}$ semantic $\mathrm{GHW}_{\mathrm{k}}$ problem under \mathcal{G} undecidable $\quad \rightarrow$ undecidable
[Barceló, Gottlob, Pieris, '16]

$$
(\mathscr{G}=\text { any class of tgds })
$$

$$
\forall \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \cdot \underbrace{\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \Rightarrow \exists \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}} \underbrace{\psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}\right)}
$$

Semantic width-k problem under constraints

Semantic width-k problem under \mathscr{C}
Input: $\phi \in \mathrm{CQ}, \Sigma \subseteq \mathscr{G}$
Output: Is there a CQ $\psi \in \mathrm{GHW}_{\mathrm{k}}$ so that $\psi \equiv \Sigma \phi$?

When \mathcal{G} is defined by full tgds the problem is undecidable.

$$
\forall \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \cdot \underbrace{\phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \Rightarrow} \underbrace{\psi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)}
$$

Semantic width-k problem

Semantic width-k problem under \mathscr{G}
Input: $\phi \in \mathrm{CQ}, \Sigma \subseteq \mathscr{G}$
Output: Is there a CQ $\psi \in \mathrm{GHW}_{\mathrm{k}}$ so that $\psi \equiv \Sigma \phi$?

When \mathcal{G} is defined by non-recursive/guarded/sticky tgds the semantic width-k under \mathscr{G} is decidable
[Barceló, Gottlob, Pieris, '16]

guarded tgds: 2ExpTime (NP if schema fixed)
 non-recursive tgds: NExpTime
 sticky tgds: NExpTime
 (NP if schema fixed)
 (NP if schema fixed)

Semantic width-k problem

Semantic width-k problem under \mathscr{G}
Input: $\phi \in \mathrm{CQ}, \Sigma \subseteq \mathscr{G}$
Output: Is there a CQ $\psi \in \mathrm{GHW}_{\mathrm{k}}$ so that $\psi \equiv \Sigma \phi$?

When \mathcal{G} is defined by egds the problem is undecidable.
[Barceló, Gottlob, Pieris, '16]
When \mathscr{G} is defined by unary functional dependencies it is decidable

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, R\left(x_{1}, \ldots, x_{n}\right) \wedge R\left(y_{1}, \ldots, y_{n}\right) \wedge\left(x_{i}=y_{i}\right) \Rightarrow\left(x_{j}=y_{j}\right)
$$

" $\mathrm{R}[\mathrm{i} \longrightarrow \mathrm{j}]$ " : in relation R the i-th component determines the j-th component

Semantic TW/acyclicity problem

Semantic width-k problem under UFD
Input: $\phi \in C Q, \Sigma=\left\{\mathrm{R}_{1}\left[\mathrm{i}_{1} \longrightarrow \mathrm{j}_{1}\right], \ldots, \mathrm{R}_{\mathrm{n}}\left[\mathrm{i}_{\mathrm{n}} \longrightarrow \mathrm{j}_{\mathrm{n}}\right]\right\}$
Output: Is there a CQ $\psi \in \mathrm{GHW}_{\mathrm{k}}$ so that $\psi \equiv \Sigma \phi$?

The semantic width-k problem under unary functional dependencies is decidable in 2ExpTime, for every k
(If possible, algorithm returns a $\mathrm{CQ} \in \mathrm{GHW}_{k}$)

Evaluation of CQs

$\phi \equiv \psi \quad$ iff $\quad \operatorname{core}\left(\mathrm{C}_{\phi}\right) \cong \operatorname{core}\left(\mathrm{C}_{\psi}\right)$

And for Σ : UFD,

$$
\phi \equiv_{\Sigma} \psi \quad \text { iff } \quad \operatorname{core}\left(\operatorname{chase} \Sigma\left(\mathbf{C}_{\phi}\right)\right) \cong \operatorname{core}\left(\operatorname{chase} \Sigma\left(\mathbf{C}_{\psi}\right)\right)
$$

Chase

chase $_{\Sigma}(\mathbf{A})=$ The result of repeating:

$$
(x, a) \in \mathrm{R},(x, b) \in \mathrm{R}
$$

If and $\mathrm{R}[1 \longrightarrow 2] \in \Sigma$, and

e.g.

for $\Sigma=\{\mathrm{R}[1 \longrightarrow 2]\}$

Restatement of semantic width-k problem under UFD

$$
\phi \equiv \Sigma \psi \quad \text { iff } \quad \operatorname{core}\left(\operatorname{chase} \Sigma\left(\mathbf{C}_{\phi}\right)\right) \cong \operatorname{core}\left(\operatorname{chase}_{\Sigma}\left(\mathbf{C}_{\psi}\right)\right)
$$

Restatement of our problem:
core-chase problem
Input: $\mathrm{A} \in \mathrm{STR}, \Sigma \subseteq \mathrm{UFD}$
Output: $\operatorname{GHW}_{\mathrm{k}} \cap\{\mathbf{B} \in \operatorname{STR} \mid \operatorname{core}(\operatorname{chase}(\mathbf{B})) \cong \mathbf{A}\}=\varnothing$?

$$
\begin{aligned}
& \mathrm{A}=\operatorname{core}\left(\operatorname{chase}_{\Sigma}\left(\mathrm{C}_{\phi}\right)\right) \\
& \mathrm{B}=\mathrm{C}_{\psi}
\end{aligned}
$$

An easy case: GHW_{1}

core
chase preserve $\mathrm{GHW}_{1} \Rightarrow$ simply check if input structure $\mathrm{A} \in \mathrm{GHW}_{1}$

either $\mathrm{GHW}_{1} \longrightarrow \longrightarrow \mathrm{~A}$

The general case, for arbitrary k

However, this does not hold in general

$$
\text { for any } n: \text { chase }(\text { sth of width } 2)=(\text { sth of width } n)
$$

Solving the problem

$\mathrm{GHW}_{\mathrm{k}} \cap\{\mathbf{B} \in \operatorname{STR} \mid \operatorname{core}(\operatorname{chase}(\mathbf{B})) \cong \mathbf{A}\}=\varnothing$?

First approach:

- define $\{\mathbf{B} \mid \operatorname{core}(\operatorname{chase} \Sigma(\mathbf{B})) \cong \mathbf{A}\}$ with $\phi_{\mathbf{A}} \in \operatorname{MSO}$
- test $\mathrm{GHW}_{\mathrm{k}} \ni \mathrm{C} \vDash \phi_{\mathrm{A}}$ for some C [Sese' 91$]$
$\operatorname{But}\{\mathbf{B} \mid \operatorname{core}(\operatorname{chase}(\mathbf{B})) \cong \mathbf{A}\}$ is not MSO-definable :

Solving the problem

$\mathrm{GHW}_{\mathrm{k}} \cap\{\mathbf{B} \in \operatorname{STR} \mid \operatorname{core}(\operatorname{chase} \Sigma(\mathbf{B})) \cong \mathbf{A}\}=\varnothing$?

First approach:

- define $\{\mathbf{B} \mid \operatorname{core}(\operatorname{chase} \Sigma(\mathbf{B})) \cong \mathbf{A}\}$ with $\phi_{\mathbf{A}} \in \operatorname{MSO}$
- test $\mathrm{GHW}_{\mathrm{k}} \ni \mathrm{C} \vDash \phi_{\mathrm{A}}$ for some C [Sese'91]
$\operatorname{But}\{\mathbf{B} \mid \operatorname{core}(\operatorname{chase}(\mathbf{B})) \cong \mathbf{A}\}$ is not MSO-definable :

Solving the problem, now for real

$\operatorname{GHW}_{\mathrm{k}} \cap\{\mathbf{B} \in \operatorname{STR} \mid \operatorname{core}(\operatorname{chase}(\mathbf{B})) \cong \mathbf{A}\}=\varnothing$?

How it's actually solved: define $\phi_{\mathrm{A}} \in \mathrm{MSO}$ so that

- if core $(\operatorname{chase} \Sigma(\mathbf{B})) \cong \mathbf{A}$ then $\mathbf{B} \vDash \phi_{\mathrm{A}}$,
- if $\mathbf{B} \in T W_{k}, \mathbf{B} \neq \phi_{A}$ then there is some extension \mathbf{B}^{\prime} of \mathbf{B} so that * tree-width $\left(\mathbf{B}^{\prime}\right)=$ tree-width (\mathbf{B})
* $\operatorname{core}\left(\operatorname{chase} \Sigma\left(\mathbf{B}^{\prime}\right)\right) \cong \mathbf{A} \quad \ldots$ and test $\mathrm{GHW}_{\mathrm{k}} \ni \mathbf{C} \vDash \phi$ for some C

Final comments

- Exact complexity for semantic width-k problem under UFD?
(Between NP and 2ExpTime)
- Generalization to treating constants, free variables, UCQ
- Non-unary functional dependencies?
- Working optimization procedure?
- Extending to bounded fractional hyper-trewidth?

