Foundations of Information Integration under Bag Semantics

André Hernich
University of Liverpool

Phokion G. Kolaitis
UC Santa Cruz & IBM Research - Almaden
Logic and Information Integration

• Two uses of logic in databases:
 – Logic as a database query language
 – Logic as a specification language to express integrity constraints

• Both uses occur in the formalization and analysis of information integration

• So far, information integration has been studied under set semantics

• This work aims to study information integration under bag semantics.
The Relational Database Model

Introduced by E.F. Codd in 1969

• Relational Database
 \[D = (R_1, \ldots, R_m), \text{ where} \]
 – each \(R_i \) is a relation of a specified arity with named attributes.
 – EMPLOYEE (name, department, salary)

• First-Order Logic used as a database query language.

• First-Order Logic forms the core of SQL, the main commercial database query language.
Conjunctive Queries

Definition: A conjunctive query is a query expressible by a FO-formula built from atomic formulas, \(\land \), and \(\exists \)

\[
\{ (x_1, \ldots, x_k): \exists z_1 \ldots \exists z_m \chi(x_1, \ldots, x_k, z_1, \ldots, z_k) \},
\]

where \(\chi(x_1, \ldots, x_k, z_1, \ldots, z_k) \) is a conjunction of atomic formulas \(R_i (y_1, \ldots, y_m) \).

Fact:

- Conjunctive queries are expressed using the `SELECT ... FROM ... WHERE` construct of SQL.
- Conjunctive queries are among the most frequently asked database queries.
Examples of Conjunctive Queries

– **Salaries of employees** (Unary query)
 \[
 \{ s \mid \exists n \exists d \text{ EMPLOYEE}(n,d,s) \}
 \]

– **Path of Length 2:** (Binary query)
 \[
 \{ (x,y) \mid \exists z \ (\text{E}(x,z) \land \text{E}(z,y)) \}
 \]

– **Existence of a triangle:** (Boolean query)
 \[
 \exists x \exists y \exists z \ (\text{E}(x,y) \land \text{E}(y,z) \land \text{E}(z,x))
 \]
Set Semantics of Conjunctive Queries

– **Salaries of employees** (Unary query)
 \[
 \{ s \mid \exists n \exists d \text{EMPLOYEE}(n,d,s) \}
 \]
 Returns the set of all distinct salaries of employees.

– **Path of Length 2:** (Binary query)
 \[
 \{ (x,y) \mid \exists z (E(x,z) \land E(z,y)) \}
 \]
 Returns the set of all pairs \((a,b)\) connected via a path of length 2.

– **Existence of a triangle:** (Boolean query)
 \[
 \exists x \exists y \exists z (E(x,y) \land E(y,z) \land E(z,x))
 \]
 Tells whether or not the graph contains a triangle.
Bag Semantics of Conjunctive Queries

Fact: SQL uses bag (multiset) semantics (unless explicitly told otherwise via the SELECT DISTINCT construct).

- **Salaries of employees** (Unary query)
 \[\{ s \mid \exists n \exists d \text{ EMPLOYEE}(n,d,s) \} \]
 \[\{ (s:m) \mid \text{there are m employees earning salary s} \} \]

- **Path of Length 2:** (Binary query)
 \[\{ (x,y) \mid \exists z (E(x,z) \land E(z,y)) \} \]
 \[\{ (a,b:m) \mid \text{there are m paths of length 2 between a and b} \} \]

- **Existence of a triangle:** (Boolean query)
 \[\exists x \exists y \exists z (E(x,y) \land E(y,z) \land E(z,x)) \]
 \[6 \cdot \# \text{ of triangles in E} \]
Set Semantics vs. Bag Semantics

Fact:
• The algorithmic properties of conjunctive queries under set semantics are well understood.
• The algorithmic properties of conjunctive queries under bag semantics are **not** well understood.

Conjunctive Query Containment (CQC)
• Given two conjunctive queries \(q_1 \) and \(q_2 \) of the same arity, is it true that \(q_1 \subseteq q_2 \)? (i.e., \(q_1(D) \subseteq q_2(D) \), for every \(D \))

Fact:
• Under set semantics, CQC is **NP-complete**.
• Under bag semantics, it is **not** known whether or not QCQ is decidable.
Information Integration

• Data may reside
 – at several different sites
 – in several different formats.

• Applications need to access, process, and query these data.

• Data Exchange:
 – A fundamental problem in information integration
 – Described as the “oldest problem in databases”
 – Formalized and studied in depth in the past 15 years.
Data Exchange

• Transform data structured under a source schema into data structured under a different target schema.
• Answer queries over the target schema.
Schema Mappings and Data Exchange

- **Schema Mapping** $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$
 - **Source schema** \mathbf{S}, **Target schema** \mathbf{T}
 - Σ: High-level, declarative assertions that specify the relationship between \mathbf{S} and \mathbf{T}.
- Let \mathbf{I} be a source instance. A **solution** for \mathbf{I} w.r.t. \mathbf{M} is a target instance \mathbf{J} such that $(\mathbf{I},\mathbf{J}) \models \Sigma$
- The **certain answers** of a target query \mathbf{q} on \mathbf{I} w.r.t. \mathbf{M}
 \[
 \text{certain}(\mathbf{q},\mathbf{I},\mathbf{M}) = \bigcap \{ \mathbf{q}(\mathbf{J}) \mid \mathbf{J} \text{ is a solution for } \mathbf{I} \text{ w.r.t. } \mathbf{M} \}
 \]
Question:
What is a “good” schema-mapping specification language?

Fact:
Unrestricted use of FO leads to undecidability (e.g., undecidability of certain answers of conjunctive queries).

Answer:
The language of GLAV (global-and-local as view) constraints strikes a good balance between expressive power and good algorithmic properties.
GLAV Constraints and GLAV Mappings

Definition: \(S \) source schema, \(T \) target schema.

- **GLAV constraint:** a FO-sentence of the form
 \[\forall x \left(q_1(x) \rightarrow q_2(x) \right) \], where
 \(q_1(x) \) is a conjunctive query over \(S \) and \(q_2(x) \) is a conjunctive query over \(T \).

- **GLAV mapping:** A schema mapping \(M = (S, T, \Sigma) \) such that \(\Sigma \) is a finite set of GLAV constraints.

- **GAV constraint:** a GLAV constraint in which \(q_2(x) \) is a single atom over \(T \).

- **GAV mapping:** A schema mapping \(M = (S, T, \Sigma) \) such that \(\Sigma \) is a finite set of GAV constraints.
Expressive Power of GLAV Constraints

- **Copy (Nicknaming):**
 - \(\forall x_1 \cdots \forall x_n (P(x_1,\ldots,x_n) \rightarrow R(x_1,\ldots,x_n)) \) (GAV constraint)

- **Projection:**
 - \(\forall x \forall y \forall z (P(x,y,z) \rightarrow R(x,y)) \) (GAV constraint)

- **Column Augmentation:**
 - \(\forall x \forall y (P(x,y) \rightarrow \exists z \ R(x,y,z)) \)

- **Decomposition:**
 - \(\forall x \forall y \forall z (P(x,y,z) \rightarrow R(x,y) \land T(y,z)) \)

- **Join:**
 - \(\forall x \forall y \forall z (E(x,z) \land F(z,y) \rightarrow R(x,y,z)) \) (GAV constraint)

- **Combinations of the above** (“join + column augmentation + ...”)
 - \(\forall x \forall y \forall z (E(x,z) \land F(z,y) \rightarrow \exists w (R(x,y) \land T(x,y,z,w))) \)
Algorithmic Properties of GLAV Mappings

Theorem (Fagin, K ..., Miller, Popa – 2005)

Let $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ be a GLAV mapping.

• Let q be a conjunctive query over the target schema \mathbf{T}. There is a PTIME-algorithm that, given a source instance \mathbf{I}, computes the certain answers $\text{certain}(q, \mathbf{I}, \mathbf{M})$.

• There a PTIME-algorithm that, given a source instance \mathbf{I}, computes a universal solution \mathbf{J} for \mathbf{I} (i.e., a “most general” solution for \mathbf{I} w.r.t. \mathbf{M}).
Bag Semantics for Schema Mappings

• So far, the investigation of data exchange and schema mappings has been carried out under set semantics.

• The goal of the present work is to investigate data exchange and schema mappings under bag semantics.

• Conceptual Contributions:
 – Bag semantics for GLAV constraints.
 – Two different bag semantics for GLAV mappings.

• Technical Contributions:
 – Complexity-theoretic analysis of the certain answers of conjunctive queries under bag semantics.
Bag Semantics for GLAV Constraints

Definition: GLAV constraint \(\forall x \ (q_1(x) \rightarrow q_2(x)) \).

Let I be a bag source instance and J be a bag target instance. Then \((I,J)\) satisfies \(\forall x \ (q_1(x) \rightarrow q_2(x)) \) if \(q_1(I) \subseteq_{\text{BAG}} q_2(J) \).

Examples:

- \((I,J)\) satisfies \(\forall x \ (P(x) \rightarrow R(x)) \) means that, for every \(a \) in \(P \), multiplicity of \(a \) in \(P \) is \(\leq \) multiplicity of \(a \) in \(R \).
- Let \(\psi \) be \(\forall x \ (\exists y \ P(x,y) \rightarrow R(x)) \)
 - If \(I = \{ P(a,b:2), P(a,c:3) \} \), \(J = \{ R(a:5) \} \), then \((I,J)\) satisfies \(\psi \).
 - If \(I = \{ P(a,b:2), P(a,c:3) \} \), \(J = \{ R(a:4) \} \), then \((I,J)\) does not satisfy \(\psi \).
Bag Semantics for GLAV Mappings

Motivation: GLAV mapping $M = (S, T, \Sigma)$, where Σ consists of
$\forall x (P(x) \rightarrow R(x))$ and $\forall x (Q(x) \rightarrow R(x))$.

- Intuitively, (I,J) satisfies Σ is R contains the union of P and Q.
- However, there are two notions of union of bags B_1 and B_2.

- Max-Union $B_1 \cup B_2$: the multiplicity of a tuple a in $B_1 \cup B_2$ is the maximum of the multiplicities of a in B_1 and B_2.
- Sum-Union $B_1 \uplus B_2$: the multiplicity of a tuple a in $B_1 \uplus B_2$ is the sum of the multiplicities of a in B_1 and B_2.

Note: SQL supports Sum-Union via the UNION ALL construct.
Bag Semantics for GLAV Mappings

Definition: GLAV mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$

- J is an incognizant solution (i-solution) for I w.r.t. M if (I,J) satisfies every constraint ψ in Σ.

- J is a cognizant solution (c-solution) for I w.r.t. M if for every constraint ψ in Σ, there is a target instance J_ψ such that (I,J_ψ) satisfies ψ and $\bigcup J_\psi \subseteq J$.

Note:

- i-solutions generalize max-union.
- c-solutions generalize sum-union.
- Every c-solution is an i-solution.
- An i-solution need not be a c-solution.
Bag Semantics for Certain Answers

Definition: GLAV mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, q conjunctive query over the target schema \mathbf{T}, and I a source instance.

- i-certain(q, I, \mathbf{M}) = $\bigcap \{q(J): J$ is an i-solution for I w.r.t. $\mathbf{M}\}$.
- c-certain(q, I, \mathbf{M}) = $\bigcap \{q(J): J$ is a c-solution for I w.r.t. $\mathbf{M}\}$.

Note: The intersection \bigcap of bags returns the minimum of the multiplicities of tuples in the intersecting sets.

Decision Problems for Boolean conjunctive queries

- i-QA(\mathbf{M}, q): Given a source instance I and some $m \geq 1$, is i-certain(q, I, \mathbf{M}) $\geq m$?
- c-QA(\mathbf{M}, q): Given a source instance I and some $m \geq 1$, is c-certain(q, I, \mathbf{M}) $\geq m$?
Complexity of Certain Answers

Theorem:

• If $M = (S, T, \Sigma)$ is a GLAV mapping and q is a Boolean conjunctive query, then i-$QA(M,q)$ and c-$QA(M,q)$ are in coNP.

• There are GLAV mappings M and Boolean conjunctive queries q such that i-$QA(M,q)$ and c-$QA(M,q)$ are coNP-complete.

• If $M = (S, T, \Sigma)$ is a GAV mapping and q is a Boolean conjunctive query, then i-$QA(M,q)$ and c-$QA(M,q)$ are in PTIME.
Minimal Extensions of GAV Constraints

Definition: GLAV constraint $\forall \mathbf{x} (q_1(\mathbf{x}) \rightarrow q_2(\mathbf{x}))$

- **GAV constraint:** $q_2(\mathbf{x})$ is a single atom
- **Elementary constraint:** $q_2(\mathbf{x})$ is a single atom or an existentially quantified single atom.
- **Full constraint:** $q_2(\mathbf{x})$ is a conjunction of atoms (no \exists)

Examples:

- **Projection:** GAV constraint
 $\forall x \forall y \forall z (P(x,y,z) \rightarrow R(x,y))$
- **Column Augmentation:** Elementary constraint
 $\forall x \forall y (P(x,y) \rightarrow \exists z R(x,y,z))$
- **Decomposition:** Full Constraint
 $\forall x \forall y \forall z (P(x,y,z) \rightarrow R(x,y) \land T(y,z))$
Complexity of Certain Answers

Theorem:
• If $M = (S, T, \Sigma)$ is an elementary mapping and q is a Boolean conjunctive query, then c-QA(M,q) is in PTIME. Moreover, every source instance has a c-universal solution.

• There is an elementary mapping M and a Boolean conjunctive query q such that i-QA(M,q) is coNP-complete.

• There is a full mapping M and a Boolean conjunctive query q such that i-QA(M,q) and c-QA(M,q) are coNP-complete.

Note: Under set semantics, every full mapping is logically equivalent to a GAV mapping.
Synopsis and Outlook

- Studied query answering in data exchange under bag semantics
- Introduced two flavors of bag semantics: **incognizant** and **cognizant**
- Studied the complexity of certain answers under bag semantics

<table>
<thead>
<tr>
<th>Type of Mapping</th>
<th>i-certain answers</th>
<th>c-certain answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAV</td>
<td>PTIME</td>
<td>PTIME</td>
</tr>
<tr>
<td>Elementary</td>
<td>coNP-complete</td>
<td>PTIME</td>
</tr>
<tr>
<td>Full</td>
<td>coNP-complete</td>
<td>coNP-complete</td>
</tr>
</tbody>
</table>

- Investigate approximation algorithms for i-certain and c-certain
- Investigate **ETL** (Extract-Transform-Load) tools under bag semantics
 - Most ETL transformations are specified by elementary mappings
- Nikolaou et al. studied bag semantics of **ontology-based data access**
 - Data integration with constraints expressible in **description logics**
 - Considered i-certain answers only
BACK-UP SLIDES
Complexity of Certain Answers

Theorem: There is a full mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ and a Boolean conjunctive query q such that i-$\text{QA}(\mathbf{M}, q)$ and c-$\text{QA}(\mathbf{M}, q)$ are coNP-complete.

Proof: Reduction from \textsc{Positive Not-All-Equal 3Sat} (a.k.a., \textsc{3-Hypergraph 2-Colorability})

- $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, where Σ consists of
 - $\forall x \; \forall t \; \forall f \; (V(x,t,f) \rightarrow A(x,t) \land A(x,f))$
 - $\forall x \; \forall y \; \forall z \; (C(x,y,z) \rightarrow C'(x,y,z))$.
- $q: \exists x \; \exists y \; \exists z \; \exists v \; (C'(x,y,z) \land A(x,v) \land A(y,v) \land A(z,v))$.
Complexity of Certain Answers

Theorem: There is an elementary mapping $M = (S, T, \Sigma)$ and a Boolean conjunctive query q such that i-$QA(M, q)$ is coNP-complete.

Proof: Reduction from **POSITIVE NOT-ALL-EQUAL 3SAT**

- **$M = (S, T, \Sigma)$**, where Σ consists of
 - $\forall x (P(x) \rightarrow \exists y T'(x,x,y))$
 - $\forall x (P(x) \rightarrow \exists z T'(x,z,x))$
 - $\forall x \forall y \forall z (W(x,y,z) \rightarrow W'(x,y,z))$, where $W \in \{R, S_t, S_f, C, T\}$.
- **q:** $\exists x \exists y \exists z \exists v (C'(x,y,z) \land \theta(x,v) \land \theta(y,v) \land \theta(z,v))$.