Foundations of Information Integration under Bag Semantics

André Hernich
University of Liverpool
Phokion G. Kolaitis
UC Santa Cruz \& IBM Research - Almaden

SHITI CRIII

Logic and Information Integration

- Two uses of logic in databases:
- Logic as a database query language
- Logic as a specification language to express integrity constraints
- Both uses occur in the formalization and analysis of information integration
- So far, information integration has been studied under set semantics
- This works aims to study information integration under bag semantics.

The Relational Database Model

Introduced by E.F. Codd in 1969

- Relational Database

$$
\mathbf{D}=\left(R_{1}, \ldots, R_{m}\right), \text { where }
$$

- each R_{i} is a relation of a specified arity with named attributes.
- EMPLOYEE (name, department, salary)
- First-Order Logic used as a database query language.
- First-Order Logic forms the core of SQL, the main commercial database query language.

Conjunctive Queries

Definition: A conjunctive query is a query expressible by a FO-formula built from atomic formulas, \wedge, and \exists

$$
\left\{\left(x_{1}, \ldots, x_{k}\right): \exists z_{1} \cdots \exists z_{m} \chi\left(x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{k}\right)\right\}
$$

where $\chi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{k}}\right)$ is a conjunction of atomic formulas $R_{i}\left(y_{1}, \ldots, y_{m}\right)$.

Fact:

- Conjunctive queries are expressed using the SELECT ... FROM ... WHERE construct of SQL.
- Conjunctive queries are among the most frequently asked database queries.

Examples of Conjunctive Queries

- Salaries of employees (Unary query)

$$
\{\mathrm{s} \mid \exists \mathrm{n} \exists \mathrm{~d} \operatorname{EMPLOYEE}(\mathrm{n}, \mathrm{~d}, \mathrm{~s})\}
$$

- Path of Length 2: (Binary query)

$$
\{(x, y) \mid \exists z(E(x, z) \wedge E(z, y))\}
$$

- Existence of a triangle: (Boolean query)

$$
\exists x \exists y \exists z(E(x, y) \wedge E(y, z) \wedge E(z, x))
$$

Set Semantics of Conjunctive Queries

- Salaries of employees (Unary query)

$$
\{\mathrm{s} \mid \exists \mathrm{n} \exists \mathrm{~d} \operatorname{EMPLOYEE}(\mathrm{n}, \mathrm{~d}, \mathrm{~s})\}
$$

Returns the set of all distinct salaries of employees.

- Path of Length 2: (Binary query)

$$
\{(x, y) \mid \exists z(E(x, z) \wedge E(z, y))\}
$$

Returns the set of all pairs (a, b) connected via a path of length 2.

- Existence of a triangle: (Boolean query)

$$
\exists x \exists y \exists z(E(x, y) \wedge E(y, z) \wedge E(z, x))
$$

Tells whether or not the graph contains a triangle.

Bag Semantics of Conjunctive Queries

Fact: SQL uses bag (multiset) semantics (unless explicitly told otherwise via the SELECT DISTINCT construct).

- Salaries of employees (Unary query)

$$
\{\mathrm{s} \mid \exists \mathrm{n} \exists \mathrm{~d} \operatorname{EMPLOYEE}(\mathrm{n}, \mathrm{~d}, \mathrm{~s})\}
$$

$\{(\mathrm{s}: \mathrm{m}) \mid$ there are m employees earning salary s \}

- Path of Length 2: (Binary query)

$$
\{(x, y) \mid \exists z(E(x, z) \wedge E(z, y))\}
$$

$\{(a, b: m) \mid$ there are m paths of length 2 between a and $b\}$

- Existence of a triangle: (Boolean query)

$$
\begin{gathered}
\exists x \exists y \exists z(E(x, y) \wedge E(y, z) \wedge E(z, x)) \\
6 \cdot \# \text { of triangles in } E
\end{gathered}
$$

Set Semantics vs. Bag Semantics

Fact:

- The algorithmic properties of conjunctive queries under set semantics are well understood.
- The algorithmic properties of conjunctive queries under bag semantics are not well understood.

Conjunctive Query Containment (CQC)

- Given two conjunctive queries q_{1} and q_{2} of the same arity, is it true that $\mathrm{q}_{1} \subseteq \mathrm{q}_{2}$? (i.e., $\mathrm{q}_{1}(\mathrm{D}) \subseteq \mathrm{q}_{2}(\mathrm{D})$, for every D)
Fact:
- Under set semantics, CQC is NP-complete.
- Under bag semantics, it is not known whether or not QCQ is decidable.

Information Integration

- Data may reside
- at several different sites
- in several different formats.
- Applications need to access, process, and query these data.
- Data Exchange:
- A fundamental problem in information integration
- Described as the "oldest problem in databases"
- Formalized and studied in depth in the past 15 years.

Data Exchange

- Transform data structured under a source schema into data structured under a different target schema.
- Answer queries over the target schema.

Schema Mappings and Data Exchange

- Schema Mapping $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \mathbf{\Sigma})$

Source schema S, Target schema \mathbf{T}
Σ : High-level, declarative assertions that specify the relationship between \mathbf{S} and \mathbf{T}.

- Let I be a source instance. A solution for I w.r.t. M is a target instance J such that $(\mathrm{I}, \mathrm{J}) \vDash \Sigma$
- The certain answers of a target query q on I w.r.t. M certain $(\mathrm{q}, \mathrm{I}, \mathbf{M})=\bigcap\{\mathrm{q}(\mathrm{J}) \mid \mathrm{J}$ is a solution for I w.r.t. $\mathbf{M}\}$

Schema-Mapping Specification Languages

Question:
What is a "good" schema-mapping specification language?

Fact:
Unrestricted use of FO leads to undecidability
(e.g., undecidability of certain answers of conjunctive queries).

Answer:
The language of GLAV (global-and-local as view) constraints strikes a good balance between expressive power and good algorithmic properties.

GLAV Constraints and GLAV Mappings

Definition: S source schema, \mathbf{T} target schema.

- GLAV constraint: a FO-sentence of the form

$$
\forall \mathbf{x}\left(\mathrm{q}_{1}(\mathbf{x}) \rightarrow \mathrm{q}_{2}(\mathbf{x})\right) \text {, where }
$$

$q_{1}(\mathbf{x})$ is a conjunctive query over \mathbf{S} and $\mathrm{q}_{2}(\mathbf{x})$ is a conjunctive query over \mathbf{T}.

- GLAV mapping: A schema mapping $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$ such that Σ is a finite set of GLAV constraints.
- GAV constraint: a GLAV constraint in which $\mathrm{q}_{2}(\mathbf{x})$ is a single atom over \mathbf{T}.
- GAV mapping: A schema mapping $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$ such that Σ is a finite set of GAV constraints.

Expressive Power of GLAV Constraints

- Copy (Nicknaming):
- $\forall \mathrm{x}_{1} \cdots \forall \mathrm{x}_{\mathrm{n}}\left(\mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \rightarrow \mathrm{R}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right)$
(GAV constraint)
- Projection:
- $\forall x \forall y \forall z(P(x, y, z) \rightarrow R(x, y))$
(GAV constraint)
- Column Augmentation:
- $\forall \mathrm{x} \forall \mathrm{y}(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \exists \mathrm{z}(\mathrm{x}, \mathrm{y}, \mathrm{z}))$
- Decomposition:
- $\forall x \forall y \forall z(P(x, y, z) \rightarrow R(x, y) \wedge T(y, z))$
- Join:
- $\forall x \forall y \forall z(E(x, z) \wedge F(z, y) \rightarrow R(x, y, z))$
(GAV constraint)
- Combinations of the above ("join + column augmentation + ...")
- $\forall x \forall y \forall z(E(x, z) \wedge F(z, y) \rightarrow \exists w(R(x, y) \wedge T(x, y, z, w)))$

Algorithmic Properties of GLAV Mappings

Theorem (Fagin, K ..., Miller, Popa - 2005)
Let $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$ be a GLAV mapping.

- Let q be a conjunctive query over the target schema \mathbf{T}. There is a PTIME-algorithm that, given a source instance I, computes the certain answers certain (q, I, M).
- There a PTIME-algorithm that, given a source instance I, computes a universal solution J for I (i.e., a "most general" solution for I w.r.t. M).

Bag Semantics for Schema Mappings

- So far, the investigation of data exchange and schema mappings has been carried out under set semantics.
- The goal of the present work is to investigate data exchange and schema mappings under bag semantics.
- Conceptual Contributions:
- Bag semantics for GLAV constraints.
- Two different bag semantics for GLAV mappings.
- Technical Contributions:
- Complexity-theoretic analysis of the certain answers of conjunctive queries under bag semantics.

Bag Semantics for GLAV Constraints

Definition: GLAV constraint $\forall \mathbf{x}\left(q_{1}(\mathbf{x}) \rightarrow q_{2}(\mathbf{x})\right)$.
Let I be a bag source instance and J be a bag target instance. Then (I, J) satisfies $\forall \mathbf{x}\left(\mathrm{q}_{1}(\mathbf{x}) \rightarrow \mathrm{q}_{2}(\mathbf{x})\right)$ if $\mathrm{q}_{1}(\mathrm{I}) \subseteq$ BAG $\mathrm{q}_{2}(\mathrm{~J})$.

Examples:

- ($\mathrm{I}, \mathrm{J})$ satisfies $\forall \mathbf{x}(P(\mathbf{x}) \rightarrow R(\mathbf{x}))$ means that, for every \mathbf{a} in P , multiplicity of \mathbf{a} in P is \leq multiplicity of \mathbf{a} in R.
- Let ψ be $\forall x(\exists y \mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}))$
- If $I=\{P(a, b: 2), P(a, c: 3)\}, J=\{R(a: 5)\}$, then (I,J) satisfies ψ.
- If $\mathrm{I}=\{\mathrm{P}(\mathrm{a}, \mathrm{b}: 2), \mathrm{P}(\mathrm{a}, \mathrm{c}: 3)\}, \mathrm{J}=\{\mathrm{R}(\mathrm{a}: 4)\}$, then (I, J) does not satisfy ψ.

Bag Semantics for GLAV Mappings

Motivation: GLAV mapping $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, where Σ consists of $\forall \mathbf{x}(\mathrm{P}(\mathbf{x}) \rightarrow \mathrm{R}(\mathbf{x}))$ and $\forall \mathbf{x}(\mathrm{Q}(\mathbf{x}) \rightarrow \mathrm{R}(\mathbf{x}))$.

- Intuitively, (I,J) satisfies Σ is R contains the union of P and Q.
- However, there are two notions of union of bags B_{1} and B_{2}.
- Max-Union $B_{1} \cup B_{2}$: the multiplicity of a tuple a in $B_{1} \cup B_{2}$ is the maximum of the multiplicities of a in B_{1} and B_{2}.
- Sum-Union $B_{1} \uplus B_{2}$: the multiplicity of a tuple a in $B_{1} \uplus B_{2}$ is the sum of the multiplicities of a in B_{1} and B_{2}.

Note: SQL supports Sum-Union via the UNION ALL construct.

Bag Semantics for GLAV Mappings

Definition: GLAV mapping $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$

- J is an incognizant solution (i-solution) for I w.r.t. M if
(I, J) satisfies every constraint ψ in Σ.
- J is a cognizant solution (c-solution) for I w.r.t. M if for every constraint ψ in Σ, there is a target instance \mathbf{J}_{ψ} such that $\left(\mathrm{I}, \mathrm{J}_{\psi}\right)$ satisfies ψ and $\uplus \mathrm{J}_{\psi} \subseteq \mathrm{J}$.

Note:

- i-solutions generalize max-union.
- c-solutions generalize sum-union.
- Every c-solution is an i-solution.
- An i-solution need not be a c-solution.

Bag Semantics for Certain Answers

Definition: GLAV mapping $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, q conjunctive query over the target schema \mathbf{T}, and I a source instance.

- i -certain $(\mathrm{q}, \mathrm{I}, \mathbf{M})=\bigcap\{\mathrm{q}(\mathrm{J})$: J is an i -solution for I w.r.t. $\mathbf{M}\}$.
- c-certain $(\mathrm{q}, \mathrm{I}, \mathrm{M})=\bigcap\{\mathrm{q}(\mathrm{J})$: J is a c-solution for I w.r.t. $\mathbf{M}\}$. Note: The intersection \cap of bags returns the minimum of the multiplicities of tuples in the intersecting sets.

Decision Problems for Boolean conjunctive queries

- i-QA(M,q): Given a source instance I and some $m \geq 1$, is i-certain $(\mathrm{q}, \mathrm{I}, \mathrm{M}) \geq \mathrm{m}$?
- c-QA(M,q): Given a source instance I and some $m \geq 1$, is c-certain $(\mathrm{q}, \mathrm{I}, \mathrm{M}) \geq \mathrm{m}$?

Complexity of Certain Answers

Theorem:

- If $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$ is a GLAV mapping and q is a Boolean conjunctive query, then $\mathrm{i}-\mathrm{QA}(\mathbf{M}, \mathrm{q})$ and $\mathrm{c}-\mathrm{QA}(\mathbf{M}, \mathrm{q})$ are in coNP.
- There are GLAV mappings \mathbf{M} and Boolean conjunctive queries q such that $\mathrm{i}-\mathrm{QA}(\mathbf{M}, \mathrm{q})$ and $\mathrm{c}-\mathrm{QA}(\mathbf{M}, \mathrm{q})$ are coNP-complete.
- If $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$ is a GAV mapping and q is a Boolean conjunctive query, then $\mathrm{i}-\mathrm{QA}(\mathbf{M}, \mathrm{q})$ and $\mathrm{c}-\mathrm{QA}(\mathbf{M}, \mathrm{q})$ are in PTIME.

Minimal Extensions of GAV Constraints

Definition: GLAV constraint $\forall \mathbf{x}\left(\mathrm{q}_{1}(\mathbf{x}) \rightarrow \mathrm{q}_{2}(\mathbf{x})\right)$

- GAV constraint: $\mathrm{q}_{2}(\mathbf{x})$ is a single atom
- Elementary constraint: $\mathrm{q}_{2}(\mathbf{x})$ is a single atom or an existentially quantified single atom.
- Full constraint: $\mathrm{q}_{2}(\mathbf{x})$ is a conjunction of atoms (no \exists)

Examples:

- Projection: GAV constraint

$$
\forall x \forall y \forall z(P(x, y, z) \rightarrow R(x, y))
$$

- Column Augmentation: Elementary constraint

$$
\forall x \forall y(P(x, y) \rightarrow \exists z R(x, y, z))
$$

- Decomposition: Full Constraint

$$
\forall x \forall y \forall z(P(x, y, z) \rightarrow R(x, y) \wedge T(y, z))
$$

Complexity of Certain Answers

Theorem:

- If $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$ is an elementary mapping and q is a Boolean conjunctive query, then c-QA(M,q) is in PTIME. Moreover, every source instance has a c-universal solution.
- There is an elementary mapping \mathbf{M} and a Boolean conjunctive query q such that $i-Q A(\mathbf{M}, q)$ is coNP-complete.
- There is a full mapping \mathbf{M} and a Boolean conjunctive query q such that $\mathrm{i}-\mathrm{QA}(\mathbf{M}, \mathrm{q})$ and $\mathrm{c}-\mathrm{QA}(\mathbf{M}, \mathrm{q})$ are coNP-complete.

Note: Under set semantics, every full mapping is logically equivalent to a GAV mapping.

Synopsis and Outlook

- Studied query answering in data exchange under bag semantics
- Introduced two flavors of bag semantics: incognizant and cognizant
- Studied the complexity of certain answers under bag semantics

Type of Mapping	i-certain answers	c-certain answers
GAV	PTIME	PTIME
Elementary	coNP-complete	PTIME
Full	coNP-complete	coNP-complete

- Investigate approximation algorithms for i-certain and c-certain
- Investigate ETL (Extract-Transform-Load) tools under bag semantics
- Most ETL transformations are specified by elementary mappings
- Nikolaou et al. studied bag semantics of ontology-based data access
- Data integration with constraints expressible in description logics
- Considered i-certain answers only

BACK-UP SLIDES

Complexity of Certain Answers

Theorem: There is a full mapping $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \mathbf{\Sigma})$ and a Boolean conjunctive query q such that $\mathrm{i}-\mathrm{QA}(\mathbf{M}, \mathrm{q})$ and $\mathrm{c}-\mathrm{QA}(\mathbf{M}, \mathrm{q})$ are coNP-complete.

Proof: Reduction from POSITIVE NOT-ALL-EQUAL 3SAT (a.k.a., 3-HYPERGRAPH 2-COLORABILITY)

- $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, where Σ consists of
$-\forall x \forall t \forall f(V(x, t, f) \rightarrow A(x, t) \wedge A(x, f))$
$-\forall x \forall y \forall z\left(C(x, y, z) \rightarrow C^{\prime}(x, y, z)\right)$.
- $q: \exists x \exists y \exists z \exists v\left(C^{\prime}(x, y, z) \wedge A(x, v) \wedge A(y, v) \wedge A(z, v)\right)$.

Complexity of Certain Answers

Theorem: There is an elementary mapping $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \boldsymbol{\Sigma})$ and a Boolean conjunctive query q such that
$\mathrm{i}-\mathrm{QA}(\mathbf{M}, \mathrm{q})$ is coNP-complete.

Proof: Reduction from POSITIVE NOT-ALL-EQUAL 3SAT

- $\mathbf{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, where Σ consists of
$-\forall x\left(P(x) \rightarrow \exists y T^{\prime}(x, x, y)\right)$
$-\forall x\left(P(x) \rightarrow \exists z T^{\prime}(x, z, x)\right)$
- $\forall x \forall y \forall z\left(W(x, y, z) \rightarrow W^{\prime}(x, y, z)\right)$, where

$$
W \in\left\{R, S_{t}, S_{f}, C, T\right\}
$$

- $\mathrm{q}: \exists \mathrm{x} \exists \mathrm{y} \exists \mathrm{z} \exists \mathrm{v}\left(\mathrm{C}^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge \theta(\mathrm{x}, \mathrm{v}) \wedge \theta(\mathrm{y}, \mathrm{v}) \wedge \theta(\mathrm{z}, \mathrm{v})\right)$.

