Foundations of Information Integration under Bag Semantics

André Hernich University of Liverpool

Phokion G. Kolaitis UC Santa Cruz & IBM Research - Almaden

Logic and Information Integration

- Two uses of logic in databases:
 - Logic as a database query language
 - Logic as a specification language to express integrity constraints
- Both uses occur in the formalization and analysis of information integration
- So far, information integration has been studied under set semantics
- This works aims to study information integration under bag semantics.

The Relational Database Model

Introduced by E.F. Codd in 1969

Relational Database

 $D = (R_1, ..., R_m)$, where

- each R_i is a relation of a specified arity with named attributes.
- EMPLOYEE (name, department, salary)
- First-Order Logic used as a database query language.
- First-Order Logic forms the core of SQL, the main commercial database query language.

Conjunctive Queries

Definition: A conjunctive query is a query expressible by a FO-formula built from atomic formulas, \land , and \exists

{ (
$$x_1,...,x_k$$
): $\exists z_1 \cdots \exists z_m \chi(x_1,...,x_k, z_1,...,z_k)$ },

where $\chi(x_1,...,x_k, z_1,...,z_k)$ is a conjunction of atomic formulas $R_i(y_1,...,y_m)$.

Fact:

- Conjunctive queries are expressed using the SELECT ... FROM ... WHERE construct of SQL.
- Conjunctive queries are among the most frequently asked database queries.

Examples of Conjunctive Queries

- Salaries of employees (Unary query) { s | \exists n \exists d EMPLOYEE(n,d,s) }

- Path of Length 2: (Binary query) { (x,y) | $\exists z (E(x,z) \land E(z,y))$ }

− Existence of a triangle: (Boolean query) $\exists x \exists y \exists z (E(x,y) \land E(y,z) \land E(z,x))$

Set Semantics of Conjunctive Queries

Salaries of employees (Unary query)
 { s | ∃ n ∃ d EMPLOYEE(n,d,s) }
 Returns the set of all distinct salaries of employees.

Path of Length 2: (Binary query)
 { (x,y) | ∃ z (E(x,z) ∧ E(z,y)) }
 Returns the set of all pairs (a,b) connected via a path of
 length 2.

- Existence of a triangle: (Boolean query) $\exists x \exists y \exists z(E(x,y) \land E(y,z) \land E(z,x))$ Tells whether or not the graph contains a triangle.

Bag Semantics of Conjunctive Queries

Fact: SQL uses bag (multiset) semantics (unless explicitly told otherwise via the SELECT DISTINCT construct).

- Salaries of employees (Unary query)
 { s | ∃ n ∃ d EMPLOYEE(n,d,s) }
 { (s:m) | there are m employees earning salary s }
- Path of Length 2: (Binary query) { (x,y) | $\exists z (E(x,z) \land E(z,y))$ } { (a,b:m) | there are m paths of length 2 between a and b}
- Existence of a triangle: (Boolean query) $\exists x \exists y \exists z(E(x,y) \land E(y,z) \land E(z,x))$ $6 \cdot #$ of triangles in E

Set Semantics vs. Bag Semantics

Fact:

- The algorithmic properties of conjunctive queries under set semantics are well understood.
- The algorithmic properties of conjunctive queries under bag semantics are **not** well understood.

Conjunctive Query Containment (CQC)

• Given two conjunctive queries q_1 and q_2 of the same arity, is it true that $q_1 \subseteq q_2$? (i.e., $q_1(D) \subseteq q_2(D)$, for every D)

Fact:

- Under set semantics, CQC is NP-complete.
- Under bag semantics, it is **not** known whether or not QCQ is decidable.

Information Integration

- Data may reside
 - at several different sites
 - in several different formats.
- Applications need to access, process, and query these data.
- Data Exchange:
 - A fundamental problem in information integration
 - Described as the "oldest problem in databases"
 - Formalized and studied in depth in the past 15 years.

Data Exchange

- Transform data structured under a source schema into data structured under a different target schema.
- Answer queries over the target schema.

Schema Mappings and Data Exchange

Schema Mapping M = (S, T, Σ)
 Source schema S, Target schema T

- Σ: High-level, declarative assertions that specify the relationship between **S** and **T**.
- Let I be a source instance. A solution for I w.r.t. M is a target instance J such that (I,J) ⊨ Σ
 - The certain answers of a target query q on I w.r.t. M certain(q,I,M) = ∩ {q(J) | J is a solution for I w.r.t. M }

Schema-Mapping Specification Languages

Question:

What is a "good" schema-mapping specification language?

Fact:

Unrestricted use of FO leads to undecidability

(e.g., undecidability of certain answers of conjunctive queries).

Answer:

The language of GLAV (global-and-local as view) constraints strikes a good balance between expressive power and good algorithmic properties.

GLAV Constraints and GLAV Mappings

Definition: **S** source schema, **T** target schema.

• GLAV constraint: a FO-sentence of the form

 $\forall \mathbf{x} (q_1(\mathbf{x}) \rightarrow q_2(\mathbf{x}))$, where

 $q_1(\mathbf{x})$ is a conjunctive query over **S** and $q_2(\mathbf{x})$ is a conjunctive query over **T**.

- GLAV mapping: A schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ such that Σ is a finite set of GLAV constraints.
- GAV constraint: a GLAV constraint in which q₂(x) is a single atom over T.
- GAV mapping: A schema mapping M = (S, T, Σ) such that Σ is a finite set of GAV constraints.

Expressive Power of GLAV Constraints

- Copy (Nicknaming):
 - $\forall \mathbf{x}_1 \cdots \forall \mathbf{x}_n (\mathsf{P}(\mathbf{x}_1, \dots, \mathbf{x}_n) \rightarrow \mathsf{R}(\mathbf{x}_1, \dots, \mathbf{x}_n))$

(GAV constraint)

(GAV constraint)

- Projection:
 - $\forall x \ \forall y \ \forall z \ (P(x,y,z) \rightarrow R(x,y))$
- Column Augmentation:
 - $\forall x \ \forall y \ (P(x,y) \rightarrow \exists z \ R(x,y,z))$
- Decomposition:
 - $\forall x \; \forall y \; \forall z \; (P(x,y,z) \rightarrow R(x,y) \land T(y,z))$
- Join:
 - $\forall x \ \forall y \ \forall z \ (E(x,z) \land F(z,y) \rightarrow R(x,y,z))$ (GAV constraint)
- Combinations of the above ("join + column augmentation + ...")
 - $\forall x \ \forall y \ \forall z \ (E(x,z) \land F(z,y) \rightarrow \exists w \ (R(x,y) \land T(x,y,z,w)))$

Algorithmic Properties of GLAV Mappings

Theorem (Fagin, K ..., Miller, Popa – 2005) Let $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ be a GLAV mapping.

- Let q be a conjunctive query over the target schema T.
 There is a PTIME-algorithm that, given a source instance I, computes the certain answers certain(q,I,M).
- There a PTIME-algorithm that, given a source instance I, computes a universal solution J for I (i.e., a "most general" solution for I w.r.t. M).

Bag Semantics for Schema Mappings

- So far, the investigation of data exchange and schema mappings has been carried out under set semantics.
- The goal of the present work is to investigate data exchange and schema mappings under bag semantics.
- Conceptual Contributions:
 - Bag semantics for GLAV constraints.
 - Two different bag semantics for GLAV mappings.
- Technical Contributions:
 - Complexity-theoretic analysis of the certain answers of conjunctive queries under bag semantics.

Bag Semantics for GLAV Constraints

Definition: GLAV constraint $\forall \mathbf{x} (q_1(\mathbf{x}) \rightarrow q_2(\mathbf{x}))$.

Let I be a bag source instance and J be a bag target instance. Then (I,J) satisfies $\forall \mathbf{x} \ (q_1(\mathbf{x}) \rightarrow q_2(\mathbf{x}))$ if $q_1(I) \subseteq _{BAG} q_2(J)$.

Examples:

- (I,J) satisfies ∀x (P(x) → R(x)) means that, for every a in P, multiplicity of a in P is ≤ multiplicity of a in R.
- Let ψ be ∀x (∃y P(x,y) → R(x))
 If I = { P(a,b:2), P(a,c:3) }, J = { R(a:5) }, then (I,J) satisfies ψ.
 - If I = { P(a,b:2), P(a,c:3) }, J = { R(a:4) }, then
 (I,J) does not satisfy ψ.

Bag Semantics for GLAV Mappings

Motivation: GLAV mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, where Σ consists of $\forall \mathbf{x} (P(\mathbf{x}) \rightarrow R(\mathbf{x}))$ and $\forall \mathbf{x} (Q(\mathbf{x}) \rightarrow R(\mathbf{x}))$.

- Intuitively, (I,J) satisfies Σ is R contains the union of P and Q.
- However, there are two notions of union of bags B_1 and B_2 .
- Max-Union B₁ ∪ B₂: the multiplicity of a tuple a in B₁ ∪ B₂ is the maximum of the multiplicities of a in B₁ and B₂.
- Sum-Union $B_1 \uplus B_2$: the multiplicity of a tuple a in $B_1 \uplus B_2$ is the sum of the multiplicities of a in B_1 and B_2 .

Note: SQL supports Sum-Union via the UNION ALL construct.

Bag Semantics for GLAV Mappings

Definition: GLAV mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$

- J is an incognizant solution (i-solution) for I w.r.t. M if (I,J) satisfies every constraint ψ in Σ.
- J is a cognizant solution (c-solution) for I w.r.t. M if for every constraint ψ in Σ , there is a target instance J_{ψ} such that (I,J_{ψ}) satisfies ψ and $\uplus J_{\psi} \subseteq J$.

Note:

- i-solutions generalize max-union.
- c-solutions generalize sum-union.
- Every c-solution is an i-solution.
- An i-solution need **not** be a c-solution.

Bag Semantics for Certain Answers

Definition: GLAV mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, q conjunctive query over the target schema \mathbf{T} , and I a source instance.

- i-certain(q,I, \mathbf{M}) = $\bigcap \{q(J): J \text{ is an i-solution for I w.r.t. } \mathbf{M}\}$.
- c-certain(q,I, \mathbf{M}) = $\bigcap \{q(J): J \text{ is a c-solution for I w.r.t. } \mathbf{M}\}$.

Note: The intersection \cap of bags returns the minimum of the multiplicities of tuples in the intersecting sets.

Decision Problems for Boolean conjunctive queries

- i-QA(M,q): Given a source instance I and some m ≥ 1, is i-certain(q,I,M) ≥ m?
- c-QA(M,q): Given a source instance I and some m ≥ 1, is c-certain(q,I,M) ≥ m?

Complexity of Certain Answers

Theorem:

- If M = (S, T, Σ) is a GLAV mapping and q is a Boolean conjunctive query, then i-QA(M,q) and c-QA(M,q) are in coNP.
- There are GLAV mappings **M** and Boolean conjunctive queries q such that i-QA(**M**,q) and c-QA(**M**,q) are coNP-complete.
- If M = (S, T, Σ) is a GAV mapping and q is a Boolean
 conjunctive query, then i-QA(M,q) and c-QA(M,q) are in PTIME.

Minimal Extensions of GAV Constraints

Definition: GLAV constraint $\forall \mathbf{x} (q_1(\mathbf{x}) \rightarrow q_2(\mathbf{x}))$

- GAV constraint: $q_2(\mathbf{x})$ is a single atom
- Elementary constraint: q₂(x) is a single atom or an existentially quantified single atom.
- Full constraint: q₂(x) is a conjunction of atoms (no ∃)
 Examples:
- Projection: GAV constraint

 $\forall x \ \forall y \ \forall z \ (P(x,y,z) \rightarrow R(x,y))$

- Column Augmentation: Elementary constraint $\forall x \forall y (P(x,y) \rightarrow \exists z R(x,y,z))$
- Decomposition: Full Constraint $\forall x \forall y \forall z (P(x,y,z) \rightarrow R(x,y) \land T(y,z))$

Complexity of Certain Answers

Theorem:

- If M = (S, T, Σ) is an elementary mapping and q is a Boolean conjunctive query, then c-QA(M,q) is in PTIME.
 Moreover, every source instance has a c-universal solution.
- There is an elementary mapping **M** and a Boolean conjunctive query q such that i-QA(**M**,q) is coNP-complete.
- There is a full mapping **M** and a Boolean conjunctive query q such that i-QA(**M**,q) and c-QA(**M**,q) are coNP-complete.

Note: Under set semantics, every full mapping is logically equivalent to a GAV mapping.

Synopsis and Outlook

- Studied query answering in data exchange under bag semantics
- Introduced two flavors of bag semantics: incognizant and cognizant
- Studied the complexity of certain answers under bag semantics

Type of Mapping	i-certain answers	c-certain answers
GAV	PTIME	PTIME
Elementary	coNP-complete	PTIME
Full	coNP-complete	coNP-complete

- Investigate approximation algorithms for i-certain and c-certain
- Investigate ETL (Extract-Transform-Load) tools under bag semantics
 - Most ETL transformations are specified by elementary mappings
- Nikolaou et al. studied bag semantics of ontology-based data access
 - Data integration with constraints expressible in description logics
 - Considered i-certain answers only

BACK-UP SLIDES

Complexity of Certain Answers

Theorem: There is a full mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ and a Boolean conjunctive query q such that i-QA(\mathbf{M} ,q) and c-QA(\mathbf{M} ,q) are coNP-complete.

Proof: Reduction from POSITIVE NOT-ALL-EQUAL 3SAT (a.k.a., 3-HYPERGRAPH 2-COLORABILITY)

- $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, where Σ consists of
 - $\ \forall x \ \forall t \ \forall f \ (V(x,t,f) \rightarrow A(x,t) \land A(x,f))$
 - $\ \forall x \ \forall y \ \forall z \ (C(x,y,z) \rightarrow C'(x,y,z)).$
- q: $\exists x \exists y \exists z \exists v(C'(x,y,z) \land A(x,v) \land A(y,v) \land A(z,v)).$

Complexity of Certain Answers

Theorem: There is an elementary mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ and a Boolean conjunctive query q such that i-QA(\mathbf{M} ,q) is coNP-complete.

Proof: Reduction from POSITIVE NOT-ALL-EQUAL 3SAT

- $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$, where Σ consists of
 - $\forall x (P(x) \rightarrow \exists y T'(x,x,y))$
 - $\forall x (P(x) \rightarrow \exists z T'(x,z,x))$
 - $\begin{array}{rl} & \forall x \; \forall y \; \forall z \; (W(x,y,z) \rightarrow W'(x,y,z)), \; \text{where} \\ & W \in \{\mathsf{R}, \, \mathsf{S}_{\mathsf{f}}, \, \mathsf{C}, \, \mathsf{T}\}. \end{array}$

• q: $\exists x \exists y \exists z \exists v (C'(x,y,z) \land \theta(x,v) \land \theta(y,v) \land \theta(z,v)).$