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Oxford English Dictionary: provenance, n
The fact of coming from some particular source or quarter; origin, derivation.

Erich Grädel Provenance Analysis and Games



Provenance analysis for first-order logic

We have seen in Val Tannen’s talk:

Provenance analysis can be generalized from positive query languages to
logics with full negation, especially full first-order logic.

Negation is handeled via transformation to negation normal form.

In the presence of negation, the semirings “to rule them all” are
N[X ,X ] := N[X ∪X ]/(XX) based on a self-inverse bijection X ↔ X

Applications to model updates, to explanations for missing or wrong
query answers, and to repairs for failing integrity constraints.
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Provenance in other settings than first-order logic

In this talk, we shall discuss further aspects:

Provenance for FO can also be understood as a provenance for the
associated model-checking games

Provenance for games is of independent interest, and provides relevant
insights into games beyond the question who wins.

Games for first-order logic are acyclic and have only finite plays. With
the appropriate choice of semirings, provenance analysis can be
generalized to games that admit infinite plays.

Provenance analysis for LFP.
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Provenance for finite games

Acyclic two player-game G = (V,V0,V1,T,E) with V =V0∪V1∪T
Vσ : positions of Player σ , T : terminal positions, E ⊆V ×V : moves

Valuations fσ : T → K of terminal positions and hσ : E→ K \{0} of moves
in a semiring K.
- fσ (t) describes the value of the terminal position v for Player σ .

fσ (t) = 0 means that t is a losing position
- hσ (vw) describes the value (or cost) for Player σ of a move from v to w.

(Values of moves may be irrelevant. In that case, set hσ (vw) = 1.)

Extension to valuations fσ : V → K for all positions. A move from v to w
contributes to fσ (v) the value hσ (vw) · fσ (w).

fσ (v) =

{
∑w∈vE hσ (vw) · fσ (w) if v ∈Vσ

∏w∈vE hσ (vw) · fσ (w) if v ∈V1−σ
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Reachability games and contradictory valuations

For acyclic game graphs G = (V,V0,V1,T,E), and semiring valuations
fσ : V → K, Player σ has a winning strategy for the reachability objective
T \ f−1

σ (0) from all positions v with fσ (v) 6= 0.

On a set U ⊆V the valuations f0, f1 are
- contradictory if either f0(u) = 0 or f1(u) = 0 for all u ∈U ,
- weakly contradictory if just f0(u) · f1(u) = 0 ,
- strongly contradictory if, in addition, f0(u)+ f1(u) 6= 0.

If f0 and f1 are (weakly) contradictory on the the terminal positions of G ,
then they are (weakly) contradictory on all positions of G .
For positive semirings, also strongly contradictory valuations on the terminal
positions extend to strongly contradictory ones on all positions.

For the Boolean semiring B= ({0,1},∨,∧,0,1) this is just the determinacy
of reachability games on well-founded game graphs.
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Applications for different semirings

(1) The tropical semiring and the cost of strategies. On G , let f0 : T → R+

and h0 : E→ R+ be cost functions for Player 0 on the terminal positions and
the moves.

The cost of a play π = v0v1 . . .vm for Player 0 is defined as
c(π) := ∑

m−1
i=0 h0(vivi+1)+ f0(vm).

The cost of a strategy from v is the sum of the costs of all plays from v that are
admitted by the strategy.

Proposition. The cost of an optimal strategy from v in a game G with basic
cost functions f0 : T → R+ and h0 : E→ R+ is given by the valuation f0(v)
computed in the tropical semiring (R∞

+,min,+,∞,0).
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Applications for different semirings

(2) The access control semiring A= ({P< C< S< T< 0},min,max,0,P).
Let f0 : T → A and h0 : E→ A\{0} define access levels for the terminal
positions and the moves.

The valuation f0(v) ∈ A then describes the minimal clearance level that
Player 0 needs to win from position v.

(3) Confidence scores. Based on confidences fσ : T → [0,1] that Player σ

puts into t being a winning position for her, compute confidence scores fσ (v)
to describe the confidence of Player σ that she can win from v, as semiring
valuations in the Viterbi semiring V= ([0,1],max, · ,0,1).
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Counting winning strategies

Let N[T ] be the semiring of polynomials over indeterminates t ∈ T .
For a game G , let fσ : V → N[T ] be the valuation induced by fσ (t) = t.
We can write fσ (v) as a sum of monomials t j1

1 · · · t
jk
k .

Each monomial t j1
1 · · · t

jk
k in fσ (v) indicates a strategy of Player σ from v

whose set of possible outcomes is precisely {t1, . . . , tk}, and precisely ji plays
that are compatible with that strategy have the outcome ti.

Fix any reachability objective W ⊆ T . Let fσ (v) = f W
σ (v)+gW

σ (v) where
f W
σ (v) is the sum of those monomials that only contain indeterminates in W .

Theorem. Player σ has a strategy to reach W from v if, and only if,
f W
σ (v) 6= 0. Moreover, if f W

σ (v) = ∑ j∈J c jM j (where M j are monomials with
indeterminates in W ), then ∑ j∈J c j is the number of distinct strategies from v
that Player σ has for the reachability objective W .
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Provenance analysis for first-order logic

Let A be a finite universe and τ a finite relational vocabulary.

LitA(τ) := AtomsA(τ)∪NegAtomsA(τ)∪{a
6=
= b : a,b ∈ A}

A K-interpretation for A and τ is a function π : LitA(τ)→ K that maps
equalities and inequalities to their truth values.

If, for all atoms Ra, either π(Ra) = 0 or π(¬Ra) = 0, (“consistency”), and,
moreover, π(Ra)+π(¬Ra) 6= 0 (“completeness”), then π specifies
(provenance information for) a unique structure Aπ .

Otherwise, π gives provenance information for a whole class of structures.

In Val’s talk, we have seen how to extend π to a K-interpretation
π : FO(τ)→ K giving provenance values π[[ϕ]] ∈ K to all ϕ ∈ FO(τ).

This extension can also be understood in game-theoretic terms.
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Provenance analysis via model-checking games

The standard model-checking game for ψ ∈ FO(τ) and a finite structure A,
has a game graph G (A,ψ) that only depends on ψ and the universe A.

A K-interpretation π : LitA(τ)→ K provides valuations fσ : T → K of the
terminal positions of G (A,ψ).

These valuations extend to valuations fσ : V → K of all positions of G (A,ψ),
and in particular of the initial position ψ itself.

Proposition. For all positions ϕ of the game G (A,ψ),

π[[ϕ]] = f0(ϕ) and π[[¬ϕ]] = f1(ϕ).

In particular, if the K-interpretation π defines a unique structure Aπ , then
Aπ |= ψ ⇐⇒ f0(ψ) 6= 0, and the provenance information f0(ψ) reveals
information about the number and properties of the strategies of Verifier to
establish the the truth of ψ in Aπ .
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Modal logic (ML)

ϕ ::= Pi | ϕ ∨ϕ | ϕ ∧ϕ | ¬ϕ | ♦ϕ |�ϕ

evaluated on transition systems A= (V,E,(Pi)i∈I) with E ⊆V ×V and Pi ⊆V .
A,v |= ϕ: ϕ holds at state v in the transition system A.

LitV , the set of modal literals for V , contains the atoms Piv and Evw, for
v,w ∈V , and their negations ¬Piv and ¬Evw.

A modal K-interpretation for V is a function π : LitV → K. Similar to the case
of FO, it extends to a K-valuation π : ML×V → K:

π[[♦ϕ,v]] := ∑
w∈vE

π(Evw) ·π[[ϕ,w)]] π[[�ϕ,v]] := ∏
w∈vE

π(Evw) ·π[[ϕ,w]]
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Modal logic, games, and the modal fragment of FO

Proposition. Modal K-valuations π : ML×V → K coincide with the game
valuations for the natural model-checking games for modal logic.

On the other side, modal K-valuations do in general not coincide with
K-interpretations for the standard translation of ML into (the modal fragment
of) FO, taking ψ ∈ML to ψ∗(x) ∈ FO such that A,v |= ψ ⇐⇒ A |= ψ∗(v).

Indeed, this translation maps �ϕ to (�ϕ)∗(x) = ∀y(¬Exy∨ϕ∗(y)). But

π[[�ϕ,v]] = ∏
w∈vE

π(Evw) ·π[[ϕ,w]], whereas

π[[(�ϕ)∗(v)]] = ∏
w∈V

(π(¬Evw)+π[[ϕ∗(w)]])

These values coincide only in special cases, for instance if π(Evw) and
π(¬Evw) only take values 0,1, and 1 is an absorbing element in the semiring
K, i.e. if 1+a = 1, for all a ∈ K.
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The guarded fragment of first-order logic

GF⊆ FO: fragment with interesting algorithmic and model-theoretic
properties. It permits only guarded quantification

(∃y .α)ϕ and (∀y .α)ϕ

where α is an atomic formula that must contain all free variables of ϕ .

Natural model-checking game: If ψ = (Qy .α)ϕ then moves from ψ(a) to
ϕ(b) must be witnessed by a true instantiation of the guard α .

A K-interpretation π : LitA(τ)→ K provides valuations for terminal positions
and guarded quantification moves of a GF-game. This induces a valuation
f0(ϕ) ∈ K for every position ψ in the game. Set π[[ψ]] := f0(ψ).

As in the case of modal logic, the standard translation of GF into usual
first-order syntax taking (∀y .α)ϕ to ∀y(¬α ∨ϕ) produces formulae that may
have different provenance values in K.
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where α is an atomic formula that must contain all free variables of ϕ .

Natural model-checking game: If ψ = (Qy .α)ϕ then moves from ψ(a) to
ϕ(b) must be witnessed by a true instantiation of the guard α .

A K-interpretation π : LitA(τ)→ K provides valuations for terminal positions
and guarded quantification moves of a GF-game. This induces a valuation
f0(ϕ) ∈ K for every position ψ in the game. Set π[[ψ]] := f0(ψ).

As in the case of modal logic, the standard translation of GF into usual
first-order syntax taking (∀y .α)ϕ to ∀y(¬α ∨ϕ) produces formulae that may
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Provenance for reachability games with cycles

Let G = (V,V0,V1,T,E) be a finite, not necessarily acyclic, game graph.

Given a valuation fσ : T → K in a semiring K for the terminal nodes, the rules
defining valuations for the other nodes have now to be read as an equation
system in indeterminates Xv (for v ∈V ):

Xv = fσ (v) for v ∈ T

Xv = ∑
w∈vE

hσ (vw) ·Xw if v ∈Vσ

Xv = ∏
w∈vE

hσ (vw) ·Xw if v ∈V1−σ

To make sure that a solution of such a system exists, we assume that the
semiring K is naturally ordered and ω-continuous.
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ω-continuous semirings

A semiring is naturally ordered if a≤ b :⇔∃x(a+ x = b) is a partial order.

A semiring K is ω-continuous if it is naturally ordered and every ω-chain
a0 < a1 < .. . has a supremum supi<ω ai, such that the associated countable
summation operator ∑i<ω bi := supi<ω(b0 + · · ·+bi) is compatible with the
operations of K.

A formal power series f ∈ K[[X ]] in variables X = (X1, . . . ,Xn) is a possibly
infinite sum of monomials c ·Xe1

1 . . .Xen
n .

Let F = ( f1 . . . fn) be a system of formal power series fi ∈ K[[X ]]. If K is
ω-continuous, then by Kleene’s Fixed-Point Theorem, the equation system
F(X) = X has a least fixed-point solution lfp(F) which is the supremum of the
Kleene approximants Fk, defined by F0 = 0, Fk+1 = F(Fk).
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Semirings of power series

Notice that (N,+, · ,0,1) is not ω-continuous, but its completion N∞ is.
The completion of N[X ] is not N∞[X ] but the semiring of (possibly infinite)
formal power series, denoted N∞[[X ]].

Example. s v w t

Equation system for valuation of Player 0: Xv = s+Xw and Xw = t ·Xv

Solution in N∞[[s, t]]: f (v) = s · (1+ t + t2 + · · ·) and f (w) = s · (t + t2 + · · ·)

Evaluation.
• f (v)(0, t) = f (w)(0, t) = 0

Neither from v nor from w, Player 0 has a strategy to reach t.
• f (v)(s,0) = s but f (w)(s,0) = 0:

Player 0 has a strategy to reach s from v, but not from w.
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Counting strategies

Again, valuations in N∞[[X ]] give more information than just who wins.

Example. s v w t

For every n < ω , the monomial s · tn in f (v) = s · (1+ t + t2 + · · ·) tells us that
Player 0 has precisely one strategy from v that admits n+1 consistent plays,
one of which has outcome s, and the other n have outcome t.

By evaluating these formal power series in the tropical semiring, the Viterbi
semiring, or the access control semiring, we obtain information about the cost
of optimal strategies, and the confidence of winning or the required clearance
levels for winning reachability games.
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Least fixed-point logic

LFP extends FO by least and greatest fixed-points for monotone definable
operators. It is a logic of great importance in finite model theory.

On ordered finite structures, LFP captures PTIME. (Immerman, Vardi)

posLFP is the fragment of LFP that makes use of least fixed points only
(which may appear only positively). posLFP is at the bottom level of the
alternation hierarchy of LFP. In general, and for instance on (N,+, ·), this
hierarchy is strict.

Theorem (Immerman) On finite structures, LFP ≡ posLFP.

The model checking games for general LFP-formulae are parity games, which
are not known to solvable in polynomial time. However, the model-checking
games for posLFP are reachability games.
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Provenance for positive least fixed-point logic

For a finite universe A and a finite relational vocabulary, consider a
K-interpretation π : LitA(τ)→ K into an ω-continuous semiring K.

Goal: Extend π to a K-interpretation π : posLFP(τ)→ K

The model-checking game G (A,ψ) for a posLFP-sentence ψ and a structure
A, is a reachability game whose game graph G only depends on ψ and the
universe A.

π : LitA(τ)→ K provides a valuation f0 : T → K of the terminal positions of
G . It extends to a least fixed-point solution f0 : V → K of the equation system
describing the game valuation for Player 0 of all positions of G (A,ψ), and in
particular of the initial position ψ itself. Now set π(ψ) := f0(ψ).

For a general form of provenance for posLFP, use the semirings N∞[[X ,X ]].
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Beyond pos LFP

How to deal with full LFP? By moving to formulae in negation normal form,
we have to take care of greatest fixed points. However, their existence (and
meaning) is unclear in arbitrary ω-continuous semirings. (At least to me!)

A semiring is absorptive if a+ab = a for all a,b. Hence a < 1 and ab < a.

Consider monomials over a finite set X of provenance tokens, with exponents
in N∞. Absorption ordering: xi1

1 · · ·xim
m ≤ x j1

1 · · ·x
jm
m ⇐⇒ ik ≥ jk for all k.

Absorptive polynomials over X are antichains of monomials (which are
always finite). They form a semiring S∞[X ].

Proposition. S∞[X ] is a complete lattice with respect to the natural order.

Hence the Tarski-Knaster fixed-point theory applies to S∞[X ], and we can
inductively define provenance values in S∞[X ] for arbitrary LFP-formulae.
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Absorptive strategies

We have seen that with any strategy S , we can associate a monomial MS

over the set of terminal positions. The value of a strategy is the product over
the values of the plays it admits. Nonterminating plays have value 0.

Absorption: S �S ′ if MS ≥MS ′

This means: for any outcome t, S admits less plays with outcome t than S ′.

In a game G , a strategy S from v is absorption-dominant if it is not absorbed
by any other strategy from v (of the same player).

Lemma. Every absorption-dominant strategy is positional.

The converse is not true.

Theorem. Let G be a reachability game. The provenance values in S∞[T ] at v
give the values of all absorption-dominant strategies from v.
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Reachability versus safety games

Example. s v w t

Equation system for valuation of Player 0: Xv = s+Xw and Xw = t ·Xv

Least fixed point solution in S∞[s, t]: f (v) = s and f (w) = st.
The positional strategy to move always to s absorbs all other strategies!

But what if we analyse this game as a safety game:
- The value of a non-terminating play is 1, not 0.
- We have to compute greatest fixed-point solutions of the equation system.

Greatest fixed point solution in S∞[s, t]: f (v) = s+ t∞ and f (w) = st + t∞

For safety, Player 0 has two absorptive strategies: move to s, or move to w.
From v the first one admits a unique play with outcome s, the second one
admits infinitely many plays with outcome t (and one non-terminating play).
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Work in Progress

Provenance analysis for more general infinite games, in particular for
parity games.

For such games, it does not suffice to track terminal positions.
Instead track the moves, to get provenance values that tell you which moves
are used, and how often, by a strategy.

Hierarchical equations systems, with interleaving least and greatest fixed
points, are used to compute provenance values for parity games.

Where are the limits of this approach?

Algorithmic questions
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