
Provenance Analysis for First-Order Model Checking

Val Tannen, University of Pennsylvania

Joint work with Erich Grädel, RWTH Aachen University

Logical Structures in Computation Reunion Workshop

Simons Institute, December 11, 2017

1

Model Checking A |= ϕ

Model: A, a struc-
tured collection of
info items

Sentence: ϕ

True or False

Which info items in the model are used in checking ϕ ? (not difficult)

Why (in terms of model info) is ϕ true ? (alternative reasons?)

How is the model info used to check the truth of ϕ ? (we will clarify)

These are provenance questions.

2

Application confidence in A |= ϕ

Model: A, a struc-
tured collection of
info items

Sentence: ϕ

True with
confidence score ∈ (0, 1]

Assuming confidence scores for the info items in the model.

3

Application disclosure of A |= ϕ

Model: A, a struc-
tured collection of
info items

Sentence: ϕ

True with access level
∈ {P < C < S < T}

Assuming access levels for the info items in the model.

4

Application how many witnesses for A |= ϕ

Model: A, a struc-
tured collection of
info items

Sentence: ϕ

True witnessed by n > 0

(model-checking)
proof trees

In all three applications we interpret model-checking as shades of truth
in a specific commutative semiring.

5

Running Example of Model-Checking

In a digraph with edge relation E, the vertex x is “dominant”:

dominant(x) ≡ ∀y (x = y) ∨ [E(x, y) ∧ ¬E(y, x)]

The digraph does not have a dominant vertex: ϕ ≡ ∀x¬dominant(x)

ϕ ≡ ∀x ∃y denydom(x, y) ≡ ∀x ∃y (x 6= y) ∧ [¬E(x, y) ∨ E(y, x)] in NNF

Model (digraph) A:

a

b

c

6

Witnesses for A |= ϕ Proof Trees

a

b

c

a 6= b

E(b, a)

¬E(a, b) ∨ E(b, a)

denydom(a, b)

∃y denydom(a, y)

b 6= c

E(c, b)

¬E(b, c) ∨ E(c, b)

denydom(b, c)

∃y denydom(b, y)

c 6= a

E(a, c)

¬E(c, a) ∨ E(a, c)

denydom(c, a)

∃y denydom(c, y)

∀x∃y denydom(x, y)

7

Outline of the rest of the talk

1. First-order finite model checking interpreted in a commutative semiring.

2. Interpretations in a provenance semiring. Dual-indeterminate polynomials
for FOL provenance.

3. Provenance tracking assumptions and reverse analysis for first-order models.

4. Missing/wrong answers and integrity constraint failure. Repairs.

8

Commutative Semirings

Definition (K,+, ·, 0, 1) with 0 6= 1, is a semiring when (K,+, 0) is a commu-
tative monoid, (K, ·, 1) is a monoid, · distributes over + and 0 · a = a · 0 = 0.

The semiring is commutative when · is commutative.
The semiring is idempotent when + is idempotent.
Any distributive lattice is an idempotent commutative semiring.

+ interprets alternative use of information from a model.

· interprets joint use of information from a model.

Very roughly speaking:

• 0 ∈ K interprets false assertions.

• a ∈ K, a 6= 0 provides a “nuanced” interpretation for true assertions.

9

Examples of Commutative Semirings

1. B = (B,∨,∧,⊥,>) is the standard habitat of logical truth.

2. N = (N,+, ·, 0, 1) is used here for counting proof trees. Also used for bag
semantics in databases. Not idempotent.

3. T = (R∞+ ,min,+,∞, 0), the tropical semiring, idempotent but not a distribu-
tive lattice. Used in min-cost interpretations (e.g., shortest paths).

4. V = ([0, 1],max, ·, 0, 1) the Viterbi semiring, isomorphic to T via x 7→ e−x

and y 7→ − ln y. Habitat for maximum likelihood trajectory calculations in
HMM, also invoked in “possibilistic” uncertainty. Used here for confidence
scores.

10

More Examples of Commutative Semirings

5. A = ({P < C < S < T < 0},min,max, 0,P) is the access control semiring.

P is “public” S is “secret”
C is “confidential” T is “top secret”
0 is “so secret that nobody can access it!”

This is a distributive lattice (beware! the lattice order is the opposite of the
one we used in the definition).

6. F = ([0, 1],max,min, 0, 1), is called the fuzzy semiring. It is a distributive
lattice.

11

One Commutative Semiring to Rule Them All

7. N[X] = (N[X],+, ·, 0, 1)

multivariate polynomials in indeterminates from X

and with coefficients from N.

This is the commutative semiring freely generated by the set X .

It’s used for a general form of provenance [Green, Karvounarakis & T. PODS’07].
We call the elements of X provenance tokens.

Proposition For any commutative semiring K, any f : X → K extends
uniquely to a semiring homomorphism f ∗ : N[X]→ K.

12

K-Interpretations (I)

Finite relational vocabulary. Finite set A 6= ∅ set of ground values.

FactsA all ground relational atoms (facts) R(a).
NegFactsA all negated facts ¬R(a).

LitA = FactsA ∪ NegFactsA

Definition K-interpretation where K commutative semiring:

starts with π : LitA → K

and is extended to all formulae/sentences π : FOL→ K as follows:

13

K-Interpretations (II)

valuation ν : Vars→ A

π[[R(x)]]ν = π(R(ν(x)) π[[¬R(x)]]ν = π(¬R(ν(x))

π[[x op y]]ν = if ν(x) op ν(y) then 1 else 0 π[[ϕ ∧ ψ]]ν = π[[ϕ]]ν · π[[ψ]]ν

π[[ϕ ∨ ψ]]ν = π[[ϕ]]ν + π[[ψ]]ν π[[∃xϕ]]ν =
∑

a∈A π[[ϕ]]ν[x 7→a]

π[[∀xϕ]]ν =
∏

a∈A π[[ϕ]]ν[x7→a] π[[¬ϕ]]ν = π[[nnf(¬ϕ)]]ν

The symbol op stands for either = or 6=.

Proposition It suffices to consider formulae in NNF: π[[ϕ]]ν = π[[nnf(ϕ)]]ν.

14

Indeed. . .

Let A be a finite FO model with universe A.

Define π
A

: LitA → B:

π
A
(L) = > iff A |= L

Proposition For any FO sentence ϕ

π
A
[[ϕ]] = > iff A |= ϕ

Define π
#A

: LitA → N:

π
#A

(L) =

{
1 if A |= L

0 otherwise

Proposition For any FO sentence ϕ, π
#A

[[ϕ]] is the number of (model-checking)
proof trees that witness A |= ϕ.

15

A Provenance-Tracking Interpretation (I)

Previous example plus annotation of the edges:

a

b

c

p q

r

st

X = {r, s, t} is a set of provenance tokens. Define π : LitA → N[X]:

π(L) =

p if L = E(a, b)

q if L = E(b, c)

r if L = E(a, c)

s if L = E(c, b)

t if L = E(b, a)

=

{
1 if L = ¬E(c, a)

0 otherwise

Annotation is 1: assume always available without tracking!

16

A Provenance-Tracking Interpretation (II)

a

b

c

p q

r

st

Compute π[[∀x¬dominant(x)]] = π[[∀x ∃y (x 6= y) ∧ [¬E(x, y) ∨ E(y, x)]]] =

= (0 + (0 + t) + (0 + 0)) · ((0 + p) + 0 + (0 + s)) · ((1 + r) + (0 + q) + 0)

t · (p + s) · (1 + r + q) = pt + st + prt + rst + pqt + qst

monomials ∼ proof trees that witnesses A |= ϕ. We saw rst before.
¬E(c, a) also holds, used in two proof trees, but we don’t track it.
Difficulties tracking tokens through contradictions!

17

Positive and Negative Provenance Tokens

Use X to annotate FactsA. Use X̄ for NegFactsA. X̄ ∩X = ∅.
One-to-one correspondence X ←→ X̄; p←→ p̄ complementary tokens.

Define N[X, X̄] as the quotient of N[X ∪ X̄] by the congruence generated by
the equalities p · p̄ = 0 .

Subset of the polynomials in N[X ∪ X̄], namely those such that no monomial
contains complementary tokens: dual(-indeterminate) polynomials.

The following is the universality property of this construction:

Proposition For any commutative semiring K, any f : X ∪ X̄ → K such
that ∀p ∈ X f (p) · f (p̄) = 0 extends uniquely to a semiring homomorphism
f ∗ : N[X, X̄]→ K.

18

A Better Interpretation (I)

a

b

c

p̄ q̄

r

st

Define π : LitA → N[X, X̄]:

π(L) =

0 if L = E(a, b)

p̄ if L = ¬E(a, b)

0 if L = E(b, c)

q̄ if L = ¬E(b, c)

r if L = E(a, c)

0 if L = ¬E(a, c)

=

s if L = E(c, b)

0 if L = ¬E(c, b)

t if L = E(b, a)

0 if L = ¬E(b, a)

0 for the other positive facts

1 for the other negative facts

19

A Better Interpretation (II)

Compute π[[∀x¬dominant(x)]] = π[[∀x ∃y (x 6= y) ∧ [¬E(x, y) ∨ E(y, x)]]] =

= (0 + (p̄ + t) + (0 + 0)) · ((0 + 0) + 0 + (q̄ + s)) · ((1 + r) + (0 + 0) + 0)

= (p̄ + t) · (q̄ + s) · (1 + r) = p̄q̄ + p̄s + q̄t + st + p̄q̄r + p̄rs + q̄rt + rst

Again monomials correspond to proof trees that witness A |= ϕ.

Finally, we can track the provenance of negative facts.

This interpretation defines a unique model. It is not “flexible” enough finding
other models with desirable properties.

20

Multi-Model Interpretations

Definition An interpretation π : LitA → N[X, X̄] is model-compatible if for
any fact R(a) one of the following three holds:

1. ∃x ∈ X s.t. π(R(a)) = x and π(¬R(a)) = x̄ , or

2. π(R(a)) = 0 and π(¬R(a)) = 1, or

3. π(R(a)) = 1 and π(¬R(a)) = 0

Specification of provenance tracking assumptions.

Such π is “compatible” with at least one model (hence the name),
but, in general, with multiple models.

This is not a bug but a feature (!) that supports reverse provenance analysis as
well as model update.

21

Example of Provenance Tracking Assumptions

Define π : LitA → N[X, X̄]:

π(L) =

p if L = E(a, b)

p̄ if L = ¬E(a, b)

q if L = E(b, c)

q̄ if L = ¬E(b, c)

r if L = E(a, c)

r̄ if L = ¬E(a, c)

=

s if L = E(c, b)

s̄ if L = ¬E(c, b)

t if L = E(b, a)

t̄ if L = ¬E(b, a)

0 for the other positive facts

1 for the other negative facts

a

b

c

p, p̄ q, q̄

r, r̄

s, s̄t, t̄

22

A Multi-Model Polynomial

This π is model-compatible.

Compute π[[∀x¬dominant(x)]] = π[[∀x ∃y (x 6= y) ∧ [¬E(x, y) ∨ E(y, x)]]] =

= (p̄ + r̄ + t) · (p + q̄ + s + t̄) · (1 + q + r + s̄)

The resulting polynomial has 48− 4− 3− 3− 4 = 34 monomials.
It describes the 34 distinct proof trees that witness . . . what?

Compute π[[∃x dominant(x)]] = prt̄ + p̄qs̄t

Two monomials. They correspond to distinct models!

23

What a Model-Compatible Interpretation Wants

Definition (again) An interpretation π : LitA → N[X, X̄] is truth-compatible
if for any fact R(a) one of the following three holds:

1. ∃z ∈ X ∪ X̄ s.t. π(R(a)) = z and π(¬R(a)) = z̄ , or

2. π(R(a)) = 0 and π(¬R(a)) = 1, or

3. π(R(a)) = 1 and π(¬R(a)) = 0

Mustπ = {L ∈ LitA | π(L) = 1}

Modπ = {A | A |= Mustπ} (When A ∈ Modπ we say A compatible with π.)

Mayπ = {L ∈ LitA | π(L) ∈ X ∪ X̄}

24

What Makes It All Work

π : LitA → N[X, X̄] model-compatible ϕ ∈ FOL.

Proposition The provenance polynomial π[[ϕ]]

describes all the proof trees that verify ϕ using premises from Mustπ ∪Mayπ:

Monomial mxm1
1 · · · x

mk
k represents m distinct proof trees

that use mi times L where π(L) = xi.

In particular, the sum of the monomial coefficients in π[[ϕ]] counts the number
of these proof trees.

25

Soundness and Completeness of Provenance Tracking

Corollary π : LitA → N[X, X̄] truth-compatible and ϕ ∈FOL. Then,

(i) ϕ is Modπ-satisfiable iff π[[ϕ]] 6= 0, and

(ii) ϕ is Modπ-valid iff π[[¬ϕ]] = 0

Satisfiability and validity restricted to the class Modπ of models that agree with
some provenance tracking assumptions. In particular all the models have uni-
verse A.

This kind of satisfiability (hence validity) is decidable.

26

Back to a Single Model

Definition π model-compatible and A ∈ Modπ. The specialization of π wrt A:

π|
A
(L) =

{
π(L) if A |= L

0 otherwise

Corollary π model-compatible, A ∈ Modπ, ϕ ∈FOL s.t. A |= ϕ.

Then, π|
A
[[ϕ]] 6= 0 and every monomial in π|

A
[[ϕ]] also appears in π[[ϕ]], with

the same coefficient.

Moreover, π|
A
[[ϕ]] describes all the proof trees that witness A |= ϕ. In

particular, the sum of all the monomial coefficients in π|
A
[[ϕ]] counts the number

of distinct such proof trees.

27

Model Update

Given A, update to A′.

Here is how we update the provenance:

1. Choose model-compatible π such that A ∈ Modπ.
Make sure you annotate with tokens the literals that you aim to update.

2. Apply the update to π, setting provenance tokens to 0/1. Obtain π′.

3. Compute the specialization π′|
A′

.

28

Missing Query Answers [with Jane Xu, Waley Zhang and Abdu Alawini; Penn]

a

b

c

p̄ q

r

s̄t

Query: dominant(x) = ∀y (x = y) ∨ [E(x, y) ∧ ¬E(y, x)]

b is an answer for the query; provenance of dominant(b) is p̄qs̄t.

Missing answer: WHY IS a NOT AN ANSWER?

Provenance of dominant(a) is 0, no help.

Instead, compute the provenance of ¬dominant(a)!

29

Missing Query Answers: Explanations and Repairs

¬dominant(a) = ∃y (a 6= y) ∧ [¬E(a, y) ∨ E(y, a)]

Has provenance p̄ + t.

Explanation:

• cause: p̄ 6= 0 (absence of edge E(a, b))

• another cause: t 6= 0 (presence of edge E(b, a))

Repair: p̄ = t = 0 (insert E(a, b) and delete E(b, a))

(Negative token set to 0: fact insertion.
Positive token set to 0: fact deletion.)

30

Integrity Constraint Failure [also with Jane Xu, Waley Zhang and Abdu Alawini; Penn]

Change things a bit:

a

b

c

p̄ q̄

r

st

Integrity constraint (IC): “AT LEAST ONE VERTEX IS DOMINANT”

∃x dominant(x)

WHY IS THE IC FAILING? Has provenance 0, not helpful.

Compute provenance p of ¬[∃x dominant(x)] then “solve” p = 0.

p = (p̄ + t) · (q̄ + s) · (1 + r)

31

Integrity Constraint Failure: Repairs and Explanations (I)

and-or tree of solutions to p = (p̄ + t) · (q̄ + s) · (1 + r) = 0 :

or

and and and

p̄ = 0 t = 0 q̄ = 0 s = 0 1 = 0 r = 0

Each solution corresponds to a different repair: {p̄ = t = 0} or {q̄ = s = 0}.

In general, exponential # of minimal repairs
however and-or tree is polysize (data complexity).

Proposition Any minimal repair is a subset of a repair represented in the tree.

32

Integrity Constraint Failure: Repairs and Explanations (II)

For explanations, dualize the tree:

and

or or or

p̄ 6= 0 t 6= 0 q̄ 6= 0 s 6= 0 1 6= 0 r 6= 0

Four minimal explanations:

{p̄ 6= 0, q̄ 6= 0} {p̄ 6= 0, s 6= 0} {t 6= 0, q̄ 6= 0} {t 6= 0, s 6= 0}

33

Choose Among Repairs Based on Cost

Update, for each repair, the provenance q of IC π[[∃x dominant(x)]]

(use a model-compatible interpretation that includes all tokens in all repairs)

q = prt̄ + p̄qs̄t

Apply each repair (specialize wrt corresponding models):
{p̄ = t = 0} 7→ prt̄

{q̄ = s = 0} 7→ p̄qs̄t

Assumptions: cost of one insertion: α cost of one deletion: β;
Cost of pos/neg facts in the model initially:
cost(p̄) = cost(q̄) = γ cost(s) = cost(t) = δ cost(r) = ε

cost(prt̄) = α + ε + β cost(p̄qs̄t) = γ + α + β + δ

If ε < γ + δ the first repair is cheaper.
In general we evaluate polynomials in the tropical semring T.

34

“Semiring Provenance for First-Order Model Checking”, Erich Grädel and Val
Tannen, arXiv:1712.01980 [cs.LO], Dec. 2017.

“Provenance Analysis for Missing Answers and Integrity Repairs”, Jane Xu, Wa-
ley Zhang, Abdu Alawini, and Val Tannen, submitted.

What’s next?

Extensions to games, and to fixed-point logics, and henceforth to verification
logics. Joint work ongoing with Erich Grädel.

Computational question: finding minimal cost repairs. NP-hard problem, look-
ing for approximation techniques.

Other applications (networks and databases, workflows, verification). Work
ongoing at Penn.

35

