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Model Checking A= @

Model: ‘A, a struc-
tured collection of

info items

Sentence: ©

True or False

Which info items in the model are used in checking ¢ ? (not difficult)
Why (in terms of model info) is ¢ true ? (alternative reasons?)
How is the model info used to check the truth of ¢ ? (we will clarify)

These are provenance questions.



Application confidencein 2 ~ ¢

Model: ‘A, a struc-
tured collection of

info items

Sentence:

True with
confidence score € (0, 1]

Assuming confidence scores for the info items in the model.



Application disclosure of 2 = ¢

Model: ‘A, a struc-
tured collection of

info items

Sentence:

True with access level
ce{P<C<S<T}

Assuming access levels for the info items in the model.



Application how many witnesses for 2 = ¢

Model: ‘A, a struc-
tured collection of

info items

Sentence:

True  witnessed by n > 0
(model-checking)
proof trees

In all three applications we interpret model-checking as  shades of truth
in a specific commutative semiring.



Running Example of Model-Checking

In a digraph with edge relation [/, the vertex x 1s “dominant™:

The digraph does not have a dominant vertex: ¢ = Va —dominant(z)

0 = Vrdy

dominant(x)

denydom(zx, y)

Model (digraph) 2I:

= Yy (z =

= Vo dy

y)VIE(x,y) AN-E(y, z)

(x #y) N [=E(x,y) vV E(y, z)]

in NNF



Witnesses for 2 = ¢ Proof Trees

E(b,a) E(c,b) E(a,c)

a#b  —FE(a,b)V Eb,a) b#c —FEbc)VECb c#a —FE(ca)V Ea,c)

denydom(a, b) denydom(b, ¢) denydom(c, a)

Jy denydom(a, y) Jy denydom(b, ) Jy denydom(c, y)

Vx Jy denydom(z, )



Outline of the rest of the talk

1. First-order finite model checking interpreted in a commutative semiring.

2. Interpretations in a provenance semiring. Dual-indeterminate polynomials
for FOL provenance.

3. Provenance tracking assumptions and reverse analysis for first-order models.

4. Missing/wrong answers and integrity constraint failure. Repairs.



Commutative Semirings

Definition (K,+,-,0,1) with 0 # 1, is a semiring when (K, +,0) is a commu-
tative monoid, (K, -, 1) is a monoid, - distributes over + and 0 - a = a - 0 = 0.

The semiring 1s commutative when - 1s commutative.
The semiring is idempotent when + is idempotent.
Any distributive lattice 1s an idempotent commutative semiring.

+ interprets alternative use of information from a model.
interprets joint use of information from a model.

Very roughly speaking:
e 0 € K interprets false assertions.

e o € K, a +# 0 provides a “nuanced” interpretation for true assertions.
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Examples of Commutative Semirings

1.B = (B, V,A, L, T)is the standard habitat of logical truth.

2.N = (N, +,-,0,1) is used here for counting proof trees. Also used for bag
semantics in databases. Not idempotent.

3. T = (RS°, min, +, 00, 0), the tropical semiring, idempotent but not a distribu-
tive lattice. Used in min-cost interpretations (e.g., shortest paths).

X

4.V = ([0,1], max, -,0,1) the Viterbi semiring, isomorphic to T via z — e~
and y — — Iny. Habitat for maximum likelihood trajectory calculations in
HMM, also invoked in “possibilistic” uncertainty. Used here for confidence
scores.
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More Examples of Commutative Semirings

5.A=({P <C<S<T<0},min, max, 0, P) is the access control semiring.

P is “public” S is “secret”
C is “confidential” T 1s “top secret”
0 1s “so secret that nobody can access it!”

This 1s a distributive lattice (beware! the lattice order i1s the opposite of the
one we used in the definition).

6. F = (]0,1], max, min, 0, 1), is called the fuzzy semiring. It is a distributive
lattice.
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One Commutative Semiring to Rule Them All

7. N[X] = (N[X], +,-,0,1)

multivariate polynomials in indeterminates from X
and with coefficients from N.

This is the commutative semiring freely generated by the set X.

It’s used for a general form of provenance [Green, Karvounarakis & T. PODS’07].
We call the elements of X provenance tokens.

Proposition For any commutative semiring i, any f : X — K extends
uniquely to a semiring homomorphism f* : N[.X| — K.

12



K-Interpretations (I)
Finite relational vocabulary. Finite set A # () set of ground values.

Facts,  all ground relational atoms (facts) R(a).

NegFacts, all negated facts —R(a).
Lit4 = Facts4 U NegFacts 4
Definition /K -interpretation where & commutative semiring:

starts with 7 : Lity — K

and 1s extended to all formulae/sentences 7 : FOL — K as follows:
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K-Interpretations (II)

valuation v : Vars — A

m[Rx)], = m(R(v(x)) r[-R(x)], = 7(=R(v(x))
mlzopyl, = if v(z)op v(y) then Telse 0 wlp AY], = =gl - 7],
mleVyl, = wlel, + 7], m[3z ol = D ea Tlelema)

mlvz oy = 1lieamlelvizma ml-ely = wlnnf(=¢)],
The symbol op stands for either = or .

Proposition It suffices to consider formulae in NNF:  7[p], = w[nnf(yp)]..
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Indeed...

Let 2 be a finite FO model with universe A.

Define 7, : Lity — B:
T (L) = T iff AL
Proposition For any FO sentence ¢

male] = T it Alg

Define Ty Lity — N:

L) — {1 if A = L

0 otherwise

Proposition For any FO sentence ¢, 7 #Q[[[gp]] 1s the number of (model-checking)
proof trees that witness 2 = .
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A Provenance-Tracking Interpretation (I)

Previous example plus annotation of the edges:

| (a,b)
¢ itL=Ebo 1 it L==F(ca)
(L) = qr if L= FE(a,c) = . |
0 otherwise
s if L =FE(c,b)
t if L=F(,a)

Annotation is 1: assume always available without tracking!
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A Provenance-Tracking Interpretation (II)

Compute 7[Vz —~dominant(z)] = 7|V dy (v # y) A [-E(x,y)V E(y,x)]] =

= 0+0+t)+(0+0) - (0+p)+0+(0+s)) - ((1+7)+(0+¢q)+0)

t - (p+s) - (1+r+q) = pt+st+prt+rst+ pqt+ gst

monomials ~ proof trees that witnesses 2 = . We saw rst before.
—F(c, a) also holds, used in two proof trees, but we don’t track it.

Difficulties tracking tokens through contradictions!
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Positive and Negative Provenance Tokens

Use X to annotate Factsy. Use X for NegFacts,. X NX = 0.
One-to-one correspondence X <— X; p «— p complementary tokens.

Define N[X, X] as the quotient of N[X U X] by the congruence generated by

the equalities

p-p=0.

Subset of the polynomials in N[X U X], namely those such that no monomial
contains complementary tokens: dual(-indeterminate) polynomials.

The following 1s the universality property of this construction:

Proposition For any commutative semiring X, any f : X U X — K such

that Vp € X

fp)- f(p) =0

f*N[X, X] — K.

extends uniquely to a semiring homomorphism
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A Better Interpretation

(D

Define 7 : Lity — N[X, X|:

.

I !

O S Ky

if L = F(a,b)
if L =-F(a,b)
if L =F(b,c)
if L =-FE(b,c)
if L = F(a,c)
if L =-F(a,c)
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if L =F(c,b)
if L =-F(c,b)
if L =F(b,a)
if L =-FE(b,a)

for the other positive facts

for the other negative facts



A Better Interpretation (II)

Compute 7[Vz —~dominant(z)] = 7w[Vx Iy (v # y) A [~E(x,y)V E(y, z)]] =

= 04+(p+t)+(0+0) - (0+0)+0+(g+s)) - (1+7)+(0+0)+0)

= (p+1t) - (G+s) - (L+7) = [pg+ ps+ qt + st + pqr + prs + qrt + rst

Again monomials correspond to proof trees that witness 2 |= .

Finally, we can track the provenance of negative facts.

This interpretation defines a unique model. It is not “flexible” enough finding
other models with desirable properties.
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Multi-Model Interpretations

Definition An interpretation 7 : Lity — N[X, X] is model-compatible if for
any fact R(a) one of the following three holds:

l.dx € X s.it. n(R(a)) =xand n(—R(a)) =2, or

2. m(R(a)) =0and 7(—~R(a)) =1, or

3. 7(R(a)) =1and 7(—R(a)) =0

Specification of provenance tracking assumptions.

Such 7 1s “compatible” with at least one model (hence the name),
but, in general, with multiple models.

This 1s not a bug but a feature (!) that supports reverse provenance analysis as
well as model update.
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Example of Provenance Tracking Assumptions

Define 7 : Lity — N[X, X|:

.

p if L= FE(a,b)
p if L=-FE(a,b)
q if L=FE(@,c)
q if L=-FE(,c)
r it L= FE(a,c)

if L =-F(a,c)

=

.t

S+~ ) W

— O T

.

if L =F(c,b)
if L =-F(c,b)
if L =FE(@,a)

if L =-FE(b,a)
for the other positive facts

for the other negative facts



A Multi-Model Polynomial

This 7 1s model-compatible.

Compute 7[Vz —~dominant(z)] = [V Iy (v # y) A [~E(x,y)V E(y,z)]] =

= (p+74+t)-(p+qg+s+t)-(14+qg+r+3)

The resulting polynomial has 48 — 4 — 3 — 3 — 4 = 34 monomuals.

It describes the 34 distinct proof trees that witness ... what?

Compute 7[3x dominant(x)] = prt + pgst

Two monomials. They correspond to distinct models!
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What a Model-Compatible Interpretation Wants

Definition (again) An interpretation 7 : Lity — N[X, X] is truth-compatible
if for any fact R(a) one of the following three holds:

1.32 € XU X st n(R(a)) = zand m(—R(a)) = z, or
2. m(R(a)) =0and 7(—R(a)) =1, or
3. 7(R(a)) = 1 and 7(—R(a)) =0

Must, = {L € Lity | (L) = 1}
Mod, = {2 | 2l = Must,;} (When 2l € Mod, we say 2 compatible with 7.)

May, = {L € Lity | 7(L) € X U X}
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What Makes It All Work

7 : Lit4 — N[X, X| model-compatible ¢ € FOL.

Proposition The provenance polynomial  7[y]
describes all the proof trees that verify ¢ using premises from Must, U May_:

k

Monomial mai"---xz,* represents m distinct proof trees

that use m; times L where (L) = x;.

In particular, the sum of the monomial coefficients in 7[¢]| counts the number
of these proof trees.
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Soundness and Completeness of Provenance Tracking

Corollary 7 : Lity — N[X, X| truth-compatible and ¢ €FOL. Then,

(i) ¢ is Mod,-satisfiable iff || # 0, and
(ii) ¢ is Mod,-valid iff 7[-¢] = 0

Satisfiability and validity restricted to the class Mod,. of models that agree with
some provenance tracking assumptions. In particular all the models have uni-
verse A.

This kind of satisfiability (hence validity) is decidable.
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Back to a Single Model

Definition 7 model-compatible and 2l € Mod,.. The specialization of 7 wrt 2I:

ol (L) {W(L) if A = L

0 otherwise

Corollary 7 model-compatible, 2 € Mod,, ¢ €FOL s.t. 2 = .

Then, 7|,[¢] # 0 and every monomialin 7|,[¢] alsoappearsin 7[p], with
the same coefficient.

Moreover, 7|,[¢] describes all the proof trees that witness A = ¢. In
particular, the sum of all the monomial coefficientsin |,[¢] counts the number
of distinct such proof trees.
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Model Update

Given 2, update to ',

Here 1s how we update the provenance:

1. Choose model-compatible 7 such that 2 € Mod.,.
Make sure you annotate with tokens the literals that you aim to update.

2. Apply the update to 7, setting provenance tokens to 0/1. Obtain 7’

3. Compute the specialization 7’| .
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Missing Query Answers [with Jane Xu, Waley Zhang and Abdu Alawini; Penn]

Query: dominant(z) = Yy (z =y) V [E(x,y) A ~E(y, z)]

b is an answer for the query; provenance of dominant(b) is pqst.
Missing answer: WHY IS @ NOT AN ANSWER?

Provenance of dominant(a) is 0, no help.

Instead, compute the provenance of =dominant(a)!
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Missing Query Answers: Explanations and Repairs
—dominant(a) = Jy (a # y) A [E(a,y) V E(y,a)]

Has provenance p + 1.

Explanation:

e cause: p # 0 (absence of edge F(a,b))
e another cause: ¢ # 0 (presence of edge F(b, a))

Repair: p=1¢=0 (insert £(a,b) and delete F(b, a))

(Negative token set to O: fact insertion.
Positive token set to O: fact deletion.)
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Integrity Constraint Failure [also with Jane Xu, Waley Zhang and Abdu Alawini; Penn]

Change things a bit:

Integrity constraint (IC): “AT LEAST ONE VERTEX IS DOMINANT”

3z dominant(xz)

WHY IS THE IC FAILING? Has provenance 0, not helpful.

Compute provenance p of —|3x dominant(x)| then “solve” p = 0.

p=(@+t)-(g+s)-(1+7)
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Integrity Constraint Failure: Repairs and Explanations (I)

and-or tree of solutionsto p = (p+1t)-(Gg+s)-(1+7) =0

Each solution corresponds to a different repair: {p =t =0} or {g=s=0}.

In general, exponential # of minimal repairs
however and-or tree is polysize (data complexity).

Proposition Any minimal repair is a subset of a repair represented in the tree.
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Integrity Constraint Failure: Repairs and Explanations (II)

For explanations, dualize the tree:

p # 0 t#0 q#0 s #0 1#0 r # 0
Four minimal explanations:

{p#0,g#0} {p#0,s#0} {t#0,q#0} {t#0,5#0}
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Choose Among Repairs Based on Cost

Update, for each repair, the provenance q of IC 7|3z dominant(x)]

(use a model-compatible interpretation that includes all tokens in all repairs)
q = prt+ pqst

Apply each repair (specialize wrt corresponding models):

{p=t=0} — prt

g=s=0y — pgst

Assumptions: cost of one insertion: « cost of one deletion: [3;

Cost of pos/neg facts in the model initially:
cost(p) = cost(q) =  cost(s) = cost(t) =0 cost(r) =€

cost(prt) =a+e+ cost(pqst) =v+a+ B +6
If € < v+ 0 the first repair is cheaper.
In general we evaluate polynomials in the tropical semring T.
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“Semiring Provenance for First-Order Model Checking”, Erich Gridel and Val
Tannen, arXiv:1712.01980 [cs.LO], Dec. 2017.

“Provenance Analysis for Missing Answers and Integrity Repairs”, Jane Xu, Wa-
ley Zhang, Abdu Alawini, and Val Tannen, submitted.

What’s next?

Extensions to games, and to fixed-point logics, and henceforth to verification
logics. Joint work ongoing with Erich Gridel.

Computational question: finding minimal cost repairs. NP-hard problem, look-
ing for approximation techniques.

Other applications (networks and databases, workflows, verification). Work
ongoing at Penn.
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