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many of today’s most
Interesting computations

are on individuals’ data
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many times, want to do
this subject to privacy

® |egal/regulatory requirements
® avoid subpoena
® public perception

® brand identity



Apple will not
See your data
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http://edge.alluremedia.com.au/m/l/2015/03/ApplePrivacy.jpg
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sometimes, privacy requirements
are clear and binding

® avoid subpoena
® public perception

® brand identity



this paper: how to understand the
best privacy we can give, subject to
accuracy constraints!?



today

= ormalizing privacy: differential privacy
® (private) Empirical risk minimization (ERM)

® Accuracy-First Private ERM



privacy: what to promise!

access to the output should
not enable one to learn much
more about an individual than
could be learned via the same
analysis omitting that individual
from the database
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what to promise!

think of output as randomized

promise: if you leave
the database, no
outcome will
change probabilit
by very much




statistical database model

® X set of possible entries/rows

one row per person

® database Dasetofrows: Dec X

cancer

12/1/51



analyst objective

® wishes to computeon De X

® fit a model, compute a statistic, share
“sanitized” data

® preserve privacy of individuals

® design randomized algorithm A mapping D into
outcome space, that masks small changes in D




neighboring databases

what’s a small change!?

require nearly identical behavior on neighboring
databases differing by the addition or removal
of a single row:

ID- Dl <1
for D.D’e X*



differential privacy
[DinurNissim03, DworkNissimMcSherrySmith06, Dwork06]

A randomized alg A : X~ — O is e-differentially

private if for every pair of neighboring data sets
D,D’ and for every event S C O:

Pr[A(D) € S| < e Pr[A(D) € §
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differential privacy
Pr[A(D) € S| < e Pr[A(D") € §
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differential privacy
Pr[A(D) € S| < e Pr[A(D") € §

frfatio bounded
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(e,0)-differential privacy
Pr[A(D) e S < e* Prl[A(D) € §] + 6

frfatio bounded

Pr [response]

Bad Responses:



post-processing

Any subsequent computations on the results of
a DP computation maintain the privacy
guarantee.



composition
[DworkKenthapadiMcSherryMironovNaor0é6,DworkLei09]

® |f run multiple DP algorithms, the ¢s and os
add up

® Allows simple privacy analysis of complex
algorithms

® Holds even if subsequent computations
chosen as function of previous results

® More subtle analysis gives even better
guarantees



Laplace mechanism

For numeric computations, direct noise

addition of a particular form and magnitude
preserves differential privacy
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today

® Formalizing privacy: differential privacy

=== (brivate) Empirical risk minimization (ERM)

® Accuracy-First Private ERM

24
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what do companies do
with our private data!’

® |earn to predict what you'll type
® |earn to predict what ads you'll click on

® |earn to predict what you'll buy
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what do companies do
with our private data!’

® |earn to predict what you'll type
® |earn to predict what ads you'll click on
® |earn to predict what you'll buy

Extrapolate from lots of data a rule that maps
individual behavior into a specific outcome

26



Empirical Risk
Minimization (ERM)

® Setting: there are true labels for points,
drawn from an underlying distribution

® | earner has access to a training set

® Pick a hypothesis (function mapping points
to labels) from among a given set, to
minimize mistakes on the training set
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prior work: private ERM

® output and objective perturbation [Chaudhuri
Monteleoni 2008, Chaudhuri Monteleoni Sarwate 201 |, Kifer
Smith Thakurta 2012, Rubeinstein Bartlett Huang Taft 2009]

® covariance perturbation [Smith Upadhyay Thakurta 2017]

® exponential mechanism [Bassily Smith Thakurta 2014,
McSherry Talwar 2007]

® stochastic gradient descent [Bassily Smith Thakurta 2014,
Duchi Jordan Wainwright 201 3, Jain Kothari Thakurta 2012,
Song Chaudhuri Sarwate 2013, Williams McSherry 2010]
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Accuracy-First Private
ERM: flip the theorem

® Flip existing “utility theorem” for existing
private ERM algorithm to solve for the
smallest epsilon (and other parameters)
consistent with accuracy requirement

® Run existing algorithm with resulting
epsilon

® Only prior theoretically sound approach
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Accuracy-First Private
ERM: flip the theorem

® Problem: utility theorems are worst-case
(algorithms are often providing much
better accuracy/privacy than they promise)

® Sloppy constants

® Specific dataset may allow for much
better privacy/utility tradeoff

30



Accuracy-First Private ERM: search
for the best possible epsilon

® |dea: try values of epsilon until find one that satisfies
accuracy constraint

® Problems:
® Search is data-dependent, so pays for every attempt

® Not a priori clear how to bound privacy loss with
usual notion

® search could run a long time (forever?)

® selected privacy parameter is function of the data
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today

® Formalizing privacy: differential privacy

® (private) Empirical risk minimization (ERM)

=y A ccuracy-First Private ERM
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Accuracy-First Private
ERM: this paper

® A principled version of “epsilon search”

® Give a meta-method for this search

applicable to several classes of private
learning algorithms

33



Righ-level approach

® |nitially, compute very private hypothesis

® Degrade the privacy guarantee by doubling until the
accuracy guarantee is met

34



Righ-level approach

® |nitially, compute very private hypothesis

® Degrade the privacy guarantee by doubling until the
accuracy guarantee is met

® Jo not pay extra, use correlated noise across rounds, so
can “subtract” noise from previous round to get next

34



Righ-level approach

® |nitially, compute very private hypothesis

® Degrade the privacy guarantee by doubling until the
accuracy guarantee is met

® Jo not pay extra, use correlated noise across rounds, so
can “subtract” noise from previous round to get next

® New algorithm to minimize costs of checking whether
accuracy guarantee is met

34



Righ-level approach

® |nitially, compute very private hypothesis

® Degrade the privacy guarantee by doubling until the
accuracy guarantee is met

® Jo not pay extra, use correlated noise across rounds, so
can “subtract” noise from previous round to get next

® New algorithm to minimize costs of checking whether
accuracy guarantee is met

® Pay only privacy cost of final hypothesis (earlier
attempts are free) + checking

34
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if terminates after k rounds, seems to satisfy
bounded “ex post” privacy loss
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EX post privacy

Doesn’t satisfy a priori e-DP for any fixed ¢, but

if terminates after k rounds, seems to satisfy
bounded “ex post” privacy loss

c.f. privacy odometers [Rogers Roth Ullman
Vadhan 201 6]
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Ex post privacy
Definition. The ex-post privacy loss of a randomized

algorithm A : X' — O on outcome o is the maximum

over pairs of neighboring data sets 1,1’ of

log(Pr|A(D) = of / PrlA(D") = o)

Definition. Consider function £:O — (Rxp u {00}) on
the outcome of algorithm A : X~ — O .Given outcome
o = A(D) we say A satisfies F(o) ex-post differential
privacy if for all 0 € O, Loss(o) < E(o).

36



Correlated noise: key idea
[Koufogiannis Han Pappas 2017]

® Algorithm: continuous random walk starting
at private data v, s.t. marginal distribution at

each point in time is Laplace centered at v,
with variance increasing over time.

® More private points can be derived from
less private ones

® Reverse process




Checking algorithm: key
ideas

® Existing algorithm AboveThreshold takes
dataset and sequence of (adaptively chosen)
queries, and privately outputs first query to
exceed a given threshold. Pays much less
than the composition of the queries.

® For us, ‘queries”’ depend on the data, so
naively would need to publish (and pay for)
them all
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Applicable algorithms

® Our approach applies to any ERM
technique that can be described as a post-
processing of a Laplace mechanism, e.g.,

® output perturbation (add Laplace noise
to result)

® covariance perturbation (perturb
covariance matrix of data, then optimize
using noisy data)
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Empirical results:
summary

® Our approach massively outperforms
inverting the theory curve

® Also improves on a baseline “epsilon-
doubling” approach
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CovarPert theory
+ QutputPert theory
NoiseReduction

INpUt o (excess error guarantee)

(a) Linear (ridge) regression,
vs theory approach.
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(b) Regularized logistic regression,
vs theory approach.




Comparison to Doubling
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(c) Linear (ridge) regression,
vs DouBLINGMETHOD.
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(d) Regularized logistic regression,
vs DouBLINGMETHOD.




Future directions

® Empirically, privacy loss from “testing”
hypotheses significantly larger than from
“generating” them. Loose analysis? (e.g.,
currently using a theoretical bound on the
maximum norm of any hypothesis to
compute the sensitivity of queries)

® InteractiveAboveThreshold for (€,0)-
differential privacy
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Theorem 3.2. The instantiation of CovNR(D, {¢y,..., e}, a,y) outputs a hypothesis 6, that with prob-
ability 1 —y satisfies L(6,) — L(60%) < a. Moreover, it is E-ex-post differentially private, where the privacy
loss function £: (([T]U{L})xRP) — (RsqU{oo}) is defined as E((k,-)) = eg+&x forany k =1, E((L,-)) = oo,

and &g = 16(\/1/_A+}1);10g(2w7/) is the privacy loss incurred by IAT.

Theorem 3.4. The instantiation of OuTpPuTNR(D, €¢,{€1,..., €7}, ¢, v) is E-ex-post differentially private
and outputs a hypothesis 6, that with probability 1 -y satisfies L(6,) — L(60) < &, where the privacy loss
function £: (([T]U{L}) xRP) — (R U {o0}) is defined as E((k,-)) = €9 + € for any k =1, E((L,)) = oo,

32log(2T/y)y/2log2/A . : .
and €y < o8l /ZO)( %82/ is the privacy loss incurred by IAT.

Theorem A.1. For any sequence of 1-sensitive queries fi,..., fr such InteractiveAboveThreshold is
(a, B)-accurate for

8A(log(T) +log(2/v))
€

a =
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Figure 2: Empirical accuracies. The dashed line shows the requested accuracy level, while the
others plot the actual accuracy achieved. Due most likely due to a pessimistic analysis and the need
to set a small testing threshold, accuracies are significantly better than requested for both methods.



Figure 3: Privacy breakdowns. Shows the amount of empirical privacy loss due to computing the

ex-post privacy loss e
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(b) Regularized logistic regression.

hypotheses themselves and the losses due to testing their accuracies.
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(b) Regularized logistic regression.

Figure 4: L, norms of final hypotheses. Shows the average L, norm of the output 6 for each
method, versus the theoretical maximum of 1/V in the case of ridge regression and 4/21og(2)/A in

the case of regularized logistic regression.



