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many of today’s most 
interesting computations
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• legal/regulatory requirements

• avoid subpoena

• public perception

• brand identity

many times, want to do 
this subject to privacy
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source: http://edge.alluremedia.com.au/m/l/2015/03/ApplePrivacy.jpg
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well-studied optimization problem: 
meet privacy requirements while 

minimally impacting accuracy
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…but often not



this paper: how to understand the 
best privacy we can give, subject to 
accuracy constraints?
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• Formalizing privacy: differential privacy

• (private) Empirical risk minimization (ERM)

• Accuracy-First Private ERM

today
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privacy: what to promise?

access to the output should 
not enable one to learn much 
more about an individual than 
could be learned via the same 
analysis omitting that individual 
from the database
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what to promise?

18%
11

name DOB sex weight smoker lung 
cancer

John Doe 12/1/51 M 185 Y N
Jane Smith 3/3/46 F 140 N N
Ellen Jones 4/24/59 F 160 Y Y
Jennifer Kim 3/1/70 F 135 N N
Rachel Waters 9/5/43 F 140 N N
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5 8 18 24 32

what to promise?

think of output as randomized

promise: if you leave 
the database, no 
outcome will 
change probability 
by very much
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• X set of possible entries/rows

one row per person

• database D a set of rows; D ∈ X*

statistical database model
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• wishes to compute on D ∈ X*

• fit a model, compute a statistic, share 
“sanitized” data

• preserve privacy of individuals

• design randomized algorithm A mapping D into 
outcome space, that masks small changes in D

analyst objective
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what’s a small change?

require nearly identical behavior on neighboring 
databases differing by the addition or removal 
of a single row:

||D - D’||1 ≤ 1 

for D,D’ ∈ X*

neighboring databases
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differential privacy
[DinurNissim03, DworkNissimMcSherrySmith06, Dwork06] 
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A randomized alg A : X* → O is ε-differentially 
private if for every pair of neighboring data sets 
D,D’ and for every event S ⊆O:

Pr[A(D) ∈ S] ≤ eε Pr[A(D’) ∈ S]



differential privacy
[DinurNissim03, DworkNissimMcSherrySmith06, Dwork06] 
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eε ~ (1 + ε)

A randomized alg A : X* → O is ε-differentially 
private if for every pair of neighboring data sets 
D,D’ and for every event S ⊆O:

Pr[A(D) ∈ S] ≤ eε Pr[A(D’) ∈ S]



differential privacy 
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differential privacy 

C. Dwork

Pr[A(D) ∈ S] ≤ eε Pr[A(D’) ∈ S]



(ε,δ)-differential privacy

C. Dwork

Pr[A(D) ∈ S] ≤ eε Pr[A(D’) ∈ S] + δ



Any subsequent computations on the results of 
a DP computation maintain the privacy 
guarantee.

post-processing



• If run multiple DP algorithms, the εs and δs 
add up

• Allows simple privacy analysis of complex 
algorithms

• Holds even if subsequent computations 
chosen as function of previous results

• More subtle analysis gives even better 
guarantees

composition
[DworkKenthapadiMcSherryMironovNaor06,DworkLei09]



For numeric computations, direct noise 
addition of a particular form and magnitude 
preserves differential privacy

Laplace mechanism



• Formalizing privacy: differential privacy

• (private) Empirical risk minimization (ERM)

• Accuracy-First Private ERM

today
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• learn to predict what you’ll type

• learn to predict what ads you’ll click on

• learn to predict what you’ll buy

• …

what do companies do 
with our private data?
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Extrapolate from lots of data a rule that maps 
individual behavior into a specific outcome



• Setting: there are true labels for points, 
drawn from an underlying distribution

• Learner has access to a training set

• Pick a hypothesis (function mapping points 
to labels) from among a given set, to 
minimize mistakes on the training set

Empirical Risk 
Minimization (ERM)
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• output and objective perturbation [Chaudhuri 
Monteleoni 2008, Chaudhuri Monteleoni Sarwate 2011, Kifer 
Smith Thakurta 2012, Rubeinstein Bartlett Huang Taft 2009]

• covariance perturbation [Smith Upadhyay Thakurta 2017]

• exponential mechanism [Bassily Smith Thakurta 2014, 
McSherry Talwar 2007]

• stochastic gradient descent [Bassily Smith Thakurta 2014, 
Duchi Jordan Wainwright 2013, Jain Kothari Thakurta 2012, 
Song Chaudhuri Sarwate 2013, Williams McSherry 2010]

prior work: private ERM
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• Flip existing “utility theorem” for existing 
private ERM algorithm to solve for the 
smallest epsilon (and other parameters) 
consistent with accuracy requirement

• Run existing algorithm with resulting 
epsilon

• Only prior theoretically sound approach

Accuracy-First Private 
ERM: flip the theorem
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• Problem: utility theorems are worst-case 
(algorithms are often providing much 
better accuracy/privacy than they promise)

• Sloppy constants

• Specific dataset may allow for much 
better privacy/utility tradeoff

Accuracy-First Private 
ERM: flip the theorem
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• Idea: try values of epsilon until find one that satisfies 
accuracy constraint

• Problems:

• Search is data-dependent, so pays for every attempt

• Not a priori clear how to bound privacy loss with 
usual notion

• search could run a long time (forever?)

• selected privacy parameter is function of the data

Accuracy-First Private ERM: search 
for the best possible epsilon
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• Formalizing privacy: differential privacy

• (private) Empirical risk minimization (ERM)

• Accuracy-First Private ERM

today
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• A principled version of “epsilon search”

• Give a meta-method for this search 
applicable to several classes of private 
learning algorithms

Accuracy-First Private 
ERM: this paper
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• Initially, compute very private hypothesis

• Degrade the privacy guarantee by doubling until the 
accuracy guarantee is met

High-level approach
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• Initially, compute very private hypothesis

• Degrade the privacy guarantee by doubling until the 
accuracy guarantee is met

• To not pay extra, use correlated noise across rounds, so 
can “subtract” noise from previous round to get next

• New algorithm to minimize costs of checking whether 
accuracy guarantee is met

• Pay only privacy cost of final hypothesis (earlier 
attempts are free) + checking

High-level approach

34



Ex post privacy
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Doesn’t satisfy a priori ε-DP for any fixed ε, but 
if terminates after k rounds, seems to satisfy 
bounded “ex post” privacy loss
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Doesn’t satisfy a priori ε-DP for any fixed ε, but 
if terminates after k rounds, seems to satisfy 
bounded “ex post” privacy loss

c.f. privacy odometers [Rogers Roth Ullman 
Vadhan 2016]

Ex post privacy

35



Ex post privacy

36

Definition. The ex-post privacy loss of a randomized 
algorithm A : X* → O on outcome o is the maximum 
over pairs of neighboring data sets D,D’ of 

log(Pr[A(D) = o] / Pr[A(D’) = o]) 

Definition. Consider function E:O → (R≥0 ∪ {∞}) on 

the outcome of algorithm A : X* → O . Given outcome  
o = A(D) we say A satisfies E(o) ex-post differential 
privacy if for all o ∈ O, Loss(o) ≤ E(o).



• Algorithm: continuous random walk starting 
at private data v, s.t. marginal distribution at 
each point in time is Laplace centered at v, 
with variance increasing over time. 

• More private points can be derived from 
less private ones

• Reverse process

Correlated noise: key idea 
[Koufogiannis Han Pappas 2017] 
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• Existing algorithm AboveThreshold takes 
dataset and sequence of (adaptively chosen) 
queries, and privately outputs first query to 
exceed a given threshold. Pays much less 
than the composition of the queries.

• For us, “queries” depend on the data, so 
naively would need to publish (and pay for) 
them all

Checking algorithm: key 
ideas

38



• Our approach applies to any ERM 
technique that can be described as a post-
processing of a Laplace mechanism, e.g.,

• output perturbation (add Laplace noise 
to result)

• covariance perturbation (perturb 
covariance matrix of data, then optimize 
using noisy data)

Applicable algorithms
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• Our approach massively outperforms 
inverting the theory curve

• Also improves on a baseline “epsilon-
doubling” approach 

Empirical results: 
summary
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• Empirically, privacy loss from “testing” 
hypotheses significantly larger than from 
“generating” them. Loose analysis? (e.g., 
currently using a theoretical bound on the 
maximum norm of any hypothesis to 
compute the sensitivity of queries)

• InteractiveAboveThreshold for (ε,δ)-
differential privacy

Future directions
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Algorithm 3 Covariance Perturbation with Noise-Reduction: CovNR(D, {"1, . . . ,"T },↵,�)
Input: private data set D = (X,y), accuracy parameter ↵, privacy levels "1 < "2 < . . . < "

T

, and
failure probability �

Instantiate InteractiveAboveThreshold: A = IAT(D,"0,�↵/2,�, ·) with "0 = 16�(log(2T /�))/↵
and � = (

p
1/�+1)2/(n)

Let C = {a 2 Rp | kak2 
p
1/�} and ✓

⇤ = argmin
✓2C L(✓)

Compute noisy data:

{Zt} =NR((X|X),2, {"1/2, . . . ,"T /2}), {zt} =NR((X|Y ),2, {"1/2, . . . ,"T /2})
for t = 1, . . . ,T : do

✓

t = argmin
✓2C

1
2n

⇣
✓

|
Z

t

✓ � 2hzt,✓i
⌘
+
�k✓k22

2
(1)

Let f t(D) = L(✓⇤,D)�L(✓t

,D); Query A with query f

t to check accuracy
if A returns (t, f t) then Output (t,✓t) . Accurate hypothesis found.

Output: (?,✓⇤)

Theorem 3.2. The instantiation of CovNR(D, {"1, . . . ,"T },↵,�) outputs a hypothesis ✓p

that with prob-
ability 1�� satisfies L(✓

p

)�L(✓⇤)  ↵. Moreover, it is E-ex-post di↵erentially private, where the privacy
loss function E : (([T ][{?})⇥Rp)! (R�0[{1}) is defined as E((k, ·)) = "0+"k for any k ,?, E((?, ·)) =1,

and "0 =
16(
p
1/�+1)2 log(2T /�)

n↵

is the privacy loss incurred by IAT.

3.2 Output Perturbation for Logistic Regression

Next, we show how to combine the output perturbationmethodwith noise reduction for the ridge re-
gression problem.4 In this setting, the input data consists of n labeled examples (X1, y1), . . . , (Xn

,y

n

),
such that for each i, X

i

2 Rp, kX
i

k1  1, and y

i

2 {�1,1}. The goal is to train a linear classifier given
by a weight vector ✓ for the examples from the two classes. We consider the logistic loss function:
`(✓, (X

i

,y

i

)) = log(1 + exp(�y
i

✓

|
X

i

)), and the empirical loss is

L(✓,D) =
1
n

nX

i=1

log(1 + exp(�y
i

✓

|
X

i

)) +
�k✓k22

2
.

The output perturbation method is straightforward: we simply add Laplace noise to perturb
each coordinate of the optimal solution ✓

⇤. The following is the formal guarantee of output
perturbation. Our analysis deviates slightly from the one in [4] since we are adding Laplace noise
(see the appendix).

Theorem 3.3. Fix any " > 0. Let r = 2
p
p

n�"

. For any input dataset D, consider the mechanism that
first computes ✓

⇤ = argmin
✓2Rp

L(✓), then outputs ✓

p

= ✓

⇤ + b, where b is a random vector with

4We study the ridge regression problem for concreteness. Our method works for any ERM problem with strongly
convex loss functions.
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its entries drawn i.i.d. from Lap (r). Then M satisfies "-di↵erential privacy, and ✓

p

has excess risk

E
b

h
L(✓

p

)�L(✓⇤)
i
 2
p
2p

n�"

+ 4p2

n

2
�"

2 .

Given the output perturbation method, we can simply apply the noise reduction method
NR to the optimal hypothesis ✓

⇤ to generate a sequence of noisy hypotheses. We will again
use InteractiveAboveThreshold to check the excess risk of the hypotheses. The full algorithm
OutputNR follows the same structure in Algorithm 3, and we defer the formal description to the
appendix.

Theorem 3.4. The instantiation of OutputNR(D,"0, {"1, . . . ,"T },↵,�) is E-ex-post di↵erentially private
and outputs a hypothesis ✓

p

that with probability 1�� satisfies L(✓
p

)�L(✓⇤)  ↵, where the privacy loss
function E : (([T ][ {?})⇥Rp)! (R�0 [ {1}) is defined as E((k, ·)) = "0 + "

k

for any k ,?, E((?, ·)) =1,

and "0  32log(2T /�)
p
2log2/�

n↵

is the privacy loss incurred by IAT.

Proof sketch of Theorems 3.2 and 3.4. The accuracy guarantees for both algorithms follow from an
accuracy guarantee of the IAT algorithm (a variant on the standard AboveThreshold bound) and
the fact that we output ✓⇤ if IAT identifies no accurate hypothesis. For the privacy guarantee, first
note that any prefix of the noisy hypotheses ✓1

, . . . ,✓

t satisfies "
t

-di↵erential privacy because of
our instantiation of the Laplace mechanism (see the appendix for the `1 sensitivity analysis) and
noise-reduction method NR. Then the ex-post privacy guarantee directly follows Lemma 2.8.

4 Experiments

To evaluate the methods described above, we conducted empirical evaluations in two settings. We
used ridge regression to predict (log) popularity of posts on Twitter in the dataset of [1], with p = 77
features and subsampled to n =100,000 data points. Logistic regression was applied to classifying
network events as innocent or malicious in the KDD-99 Cup dataset [12], with 38 features and
subsampled to 100,000 points. Details of parameters and methods appear in the appendix.

In each case, we tested the algorithm’s average ex-post privacy loss for a range of input accuracy
goals ↵, fixing a modest failure probability � = 0.1 (and we observed that excess risks were
concentrated well below ↵/2, suggesting a pessimistic analysis). The results show our meta-method
gives a large improvement over the “theory” approach of simply inverting utility theorems for
private ERM algorithms. (In fact, the utility theorem for the popular private stochastic gradient
descent algorithm does not even give meaningful guarantees for the ranges of parameters tested;
one would need an order of magnitude more data points, and even then the privacy losses are
enormous, perhaps due to loose constants in the analysis.)

To gauge the more modest improvement over DoublingMethod, note that the variation in the
privacy risk factor e" can still be very large; for instance, in the ridge regression setting of ↵ = 0.05,
Noise Reduction has e" ⇡ 10.0 while DoublingMethod has e" ⇡ 495; at ↵ = 0.075, the privacy risk
factors are 4.65 and 56.6 respectively.

Interestingly, for our meta-method, the contribution to privacy loss from “testing” hypotheses
(the InteractiveAboveThreshold technique) was significantly larger than that from “generating”
them (NoiseReduction). One place where the InteractiveAboveThreshold analysis is loose is in
using a theoretical bound on the maximum norm of any hypothesis to compute the sensitivity of
queries. The actual norms of hypotheses tested was significantly lower which, if taken as guidance

9

A Missing Details and Proofs

A.1 AboveThreshold

Proof of Lemma 2.8. Let D,D

0 be neighboring databases. We will instead analyze the algorithm
that outputs the entire prefix f1, . . . , ft when stopping at time t. Because IAT is a post-processing of
this algorithm, and privacy can only be improved under post-processing, this su�ces to prove the
theorem. We wish to show for all outcomes o = (t, f1, . . . , ft):

Pr[IAT(D) = (t, f1, f2, . . . , ft)]  e

"

A

+"
t Pr

⇥
IAT(D0) = (t, f1, f2, . . . , ft)

⇤
.

We have directly from the privacy guarantee of InteractiveAboveThreshold that for every fixed
sequence of queries f1, . . . , ft :

Pr[IAT(D) = t | f1, . . . , ft]  e

"

A Pr
⇥
IAT(D0) = t | f1, . . . , ft⇤ (2)

because the guarantee of InteractiveAboveThreshold is quantified over all data-independent
sequences of queries f1, . . . , fT , and by definition of the algorithm, the probability of stopping at
time t is independent of the identity of any query f

0
t

for t0 > t.
Now we can write:

Pr[IAT(D) = t, f1, . . . ft] = Pr[IAT(D) = t | f1, . . . ft]Pr[M(D) = f1, . . . ft] .

By assumption, M is prefix-private, in particular, for fixed t and any f1, . . . , ft :

Pr[M(D) = f1, . . . ft]  e

"

t Pr
⇥
M(D0) = f1, . . . ft

⇤

Thus,

Pr[IAT(D) = t, f1, . . . ft]
Pr[IAT(D0) = t, f1, . . . ft]

=
Pr[IAT(D) = t | f1, . . . ft]
Pr[IAT(D0) = t|f1, . . . , ft]

Pr[M(D) = f1, . . . ft]
Pr[M(D0) = f1, . . . ft]

 e

"

A · e"t = e

"

A

+"
t

,

as desired.

We also include the following utility theorem. We say that an instantiation of Interactive-
AboveThreshold is (↵,�) accurate with respect to a threshold W and stream of queries f1, . . . fT if
except with probability at most � , the algorithm outputs a query f

t

only if f
t

(D) �W �↵.
Theorem A.1. For any sequence of 1-sensitive queries f1, . . . , fT such InteractiveAboveThreshold is
(↵,�)-accurate for

↵ =
8�(log(T ) + log(2/�))

"

.

A.2 Doubling Method

We now formally describe the DoublingMethod discussed in Section 1 and Section 3, and give
a formal ex-post privacy analysis. Let ✓⇤ = argmin

✓2Rp

L(✓). DoublingMethod accepts a list of
privacy levels "1 < "2 < . . . < "

T

, where "
i

= 2"
i�1. We show in Claim B.1 that 2 is the optimal factor

to scale " by. It also takes in a failure probability � , and a black-box private ERM mechanism M

that has the following guarantee: Fixing a dataset D, M takes as input D and a privacy level "
i

, and
generates an "

i

-di↵erentially private hypothesis ✓
i

, such that the query f

i(D) = L(D,✓⇤)�L(D,✓

i

)
has `1 sensitivity at most �.
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(a) Linear (ridge) regression. (b) Regularized logistic regression.

(c) Linear (ridge) regression. (d) Regularized logistic regression.

Figure 2: Empirical accuracies. The dashed line shows the requested accuracy level, while the
others plot the actual accuracy achieved. Due most likely due to a pessimistic analysis and the need
to set a small testing threshold, accuracies are significantly better than requested for both methods.
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(a) Linear (ridge) regression. (b) Regularized logistic regression.

Figure 3: Privacy breakdowns. Shows the amount of empirical privacy loss due to computing the
hypotheses themselves and the losses due to testing their accuracies.

(a) Linear (ridge) regression. (b) Regularized logistic regression.

Figure 4: L2 norms of final hypotheses. Shows the average L2 norm of the output ✓̂ for each
method, versus the theoretical maximum of 1/

p
� in the case of ridge regression and

p
2log(2)/� in

the case of regularized logistic regression.
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