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Machine Learning/AI is becoming a backbone 
of commerce and society. 

The fog of war:

What is new and what is key?

GoogleLeNet, Szegedy, et al 2014.



Goal: a model for modern ML 

 competitive on modern data  

 analytically tractable

 convex



This talk

1. Limits of kernels.

2. The power of kernels: making kernels competitive 

on large data. [Ma, B. NIPS 2017] 

3. Why is SGD so effective? Overfitting: a modern 
innovation and a puzzle. [Ma, Bassily, B. NIPS 2017]

4. Modern behavior of kernels (once computation is 
addressed).

 SGD

 Overfitting

 Acceleration/momentum infinite condition number.

[Liu, B. 2017]



Modern ML

Computation is key. 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 is found algorithmically.

Large data:

Map to (fast!) GPU (matrix x vector products)

 limits algorithms available

 limits # matrix x vector products

ERM algorithmic requirements: 

small # of matrix x vector products



“Shallow”/kernel architectures

Feature map 𝜙𝜙: ℝ𝑑𝑑 → ℋ (Hilbert space) 

Followed by linear regression/classification.

𝑤𝑤∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑤𝑤∈ℋ

1
𝑛𝑛
�𝐿𝐿 〈𝑤𝑤,𝜙𝜙 𝑥𝑥𝑖𝑖 〉, 𝑦𝑦𝑖𝑖

Classifier: 𝑦𝑦 𝑥𝑥 = 〈𝑤𝑤,𝜙𝜙 𝑥𝑥𝑖𝑖 〉 (regression / sign for classification)

Kernel methods. RKHS ℋ is infinite dimension:

𝜙𝜙: 𝑥𝑥 → 𝐾𝐾 𝑥𝑥,⋅ ∈ ℋ (𝐾𝐾 is psd kernel, e.g., Gaussian)

Output: y 𝑥𝑥 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥



Kernel learning for modern ML

Beautiful classical statistical/mathematical theory. 

RKHS Theory [Aronszajn,…, 50s]

Splines [Parzen, Wahba,…, 1970-80s]

Kernel machines [Vapnik,…, 90s]

Perform well on small data/not as well on large data.

Intrinsic architectural limitation?

Issue: standard methods practical for large data/GPU have 
low computational reach/fitting capacity for fixed 
computational budget. 

Addressing computational reach results in major 
speed/accuracy improvements.



Kernel methods for big data

Regression/classification, square loss.

𝐾𝐾 𝛼𝛼∗ = 𝑦𝑦
Direct inversion: cost 𝑛𝑛3 (does not map to GPU).

Small data:

n = 104 : n3 = 1012 FLOPs easy.

Big data: 

n = 107: n3 = 1021 FLOPS impossible! (Modern GPU ~1013 FLOPs/ CPU ~1011 max)

Iterative: 𝛼𝛼(𝑡𝑡) = 𝛼𝛼(𝑡𝑡−1) − 𝜂𝜂 𝐾𝐾𝛼𝛼 𝑡𝑡−1 − 𝑦𝑦 . [Richarson, Landweber, GD,…]

Cost 𝑛𝑛2 per iteration. GPU compatible.

n = 107: n2 = 1014 FLOPS per iteration feasible. 

But how many iterations?

SGD is much 
cheaper



Simple 1-D example: Heaviside function

Nothing happens 
after 1000000 

iterations! 



Real Data: gradient descent

Need >10k iterations on 10k point dataset. 
Worse than a direct method (𝑛𝑛3)!



The limits of kernels

Theorem 1: Let 𝐾𝐾 𝑥𝑥, 𝑧𝑧 be a smooth radial and let 

𝒦𝒦𝑓𝑓 𝑥𝑥 ∶= ∫ 𝐾𝐾 𝑥𝑥, 𝑧𝑧 𝑓𝑓 𝑧𝑧 𝑑𝑑𝑑𝑑

Then 𝜆𝜆𝑖𝑖 𝒦𝒦 < 𝐶𝐶 𝑒𝑒−𝐶𝐶′𝑖𝑖1/𝑑𝑑
, where 𝐶𝐶,𝐶𝐶𝐶 do not depend on 𝑑𝑑. 

Corollary (approximation beats concentration): If 𝑑𝑑 is 
supported on a finite set of points (e.g., sampled 
from density), eigenvalues of the corresponding kernel 
matrix decay nearly exponentially. 

Theorem 2: Fat shattering (𝑉𝑉𝛾𝛾 )-dimension of function 
reachable by t iterations of gradient descent is at 
most O(log𝑑𝑑(𝑡𝑡/𝛾𝛾)) . (Does not require square loss). 

[Ma, B. NIPS 2017, B. 2017.]

Related work: [Santin, Schaback, 16], [Schaback, Wendland, 02]



Eigenvalue decay



Computational reach of Kernel GD

Theorem 3: Only very smooth functions can be 𝜖𝜖 −
approximated by a smooth kernel in 𝑡𝑡 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦(1/𝜖𝜖) number 
of iterations of gradient descent.

Classification functions are generally not that 
smooth.

Need 
𝜆𝜆1
𝜆𝜆𝑖𝑖
≈ 𝑒𝑒𝑖𝑖1/𝑑𝑑

iterations for 𝑖𝑖’th direction. 

Contradicts 
classical 1/𝜖𝜖2
rate for GD?



EigenPro Kernel

Problem: fast eigenvalue decay.

Solution: construct a kernel with flatter spectrum.

Original kernel:

𝐾𝐾 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖=1

∞

𝜆𝜆𝑖𝑖𝑒𝑒𝑖𝑖 𝑥𝑥 𝑒𝑒𝑖𝑖 𝑧𝑧

EigenPro kernel:

𝐾𝐾𝐸𝐸𝑖𝑖𝐸𝐸 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑘𝑘+1𝑒𝑒𝑖𝑖 𝑥𝑥 𝑒𝑒𝑖𝑖 𝑧𝑧 + �
𝑖𝑖=𝑘𝑘+1

∞

𝜆𝜆𝑖𝑖𝑒𝑒𝑖𝑖 𝑥𝑥 𝑒𝑒𝑖𝑖 𝑧𝑧



EigenPro kernel learning

Fits first 𝑒𝑒1, … , 𝑒𝑒𝑘𝑘 in one iteration.

Approximately 𝜆𝜆1/𝜆𝜆𝑘𝑘+1 acceleration for each 𝑖𝑖 > 𝑘𝑘.



All functions

Pegasos/GD/SGD

Computational reach after t iterations

EigenPro

Fat shattering dimension 
log𝑑𝑑(𝑡𝑡) (Gaussian)

Fat shattering dimension 
log𝑑𝑑(exp(𝑘𝑘1/𝑑𝑑) 𝑡𝑡)



All functions

Pegasos/GD/SGD

Computational reach after t iterations

EigenPro

Exponentially increased reach per step. 
What it the extra computational cost?



EigenPro: practical implementation

Preconditioned gradient descent.

𝑃𝑃 = 𝐼𝐼 −�
𝑖𝑖=1

𝑘𝑘

1 −
𝜆𝜆𝑘𝑘+1
𝜆𝜆𝑖𝑖

𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑇𝑇

𝑤𝑤(𝑡𝑡) = 𝑤𝑤(𝑡𝑡−1) − 𝜂𝜂𝑃𝑃(𝐾𝐾𝑤𝑤(𝑡𝑡−1) − 𝑦𝑦)

Use RSVD or Nystrom to compute first 𝑘𝑘 eigenvectors of 𝐾𝐾.

Preconditioner 𝑃𝑃 is formed only once.

(No regularization!)

Related work: [Fasshauer, McCourt, 12], [Erdogdu, Montanari, 15], [Gonen, et al, 16].



EigenPro: practical implementation II

𝑃𝑃 = 𝐼𝐼 −�
𝑖𝑖=1

𝑘𝑘

1 −
𝜆𝜆𝑘𝑘+1
𝜆𝜆𝑖𝑖

𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑇𝑇

𝑤𝑤(𝑡𝑡) = 𝑤𝑤(𝑡𝑡−1) − 𝜂𝜂𝑃𝑃(𝐾𝐾𝑤𝑤(𝑡𝑡−1) − 𝑦𝑦)

Important points:

 Low initial cost: 𝑃𝑃 is estimated from a small subsample.

 Low overhead/iteration (~15-20% in practice). 

Robustness: converges to the correct solution for any 𝑃𝑃.

Potentially exponential acceleration 
𝜆𝜆1
𝜆𝜆𝑘𝑘+1

.



EigenPro: Stochastic Gradient Descent

Key to effective implementation. 

Have to sacrifice some acceleration.

Theorem: minibatch size 𝑚𝑚.

𝜆𝜆1 𝑃𝑃𝐾𝐾𝑚𝑚 ≲ 𝜆𝜆𝑘𝑘+1 + 𝑂𝑂
𝜆𝜆𝑘𝑘+1
𝑚𝑚

 When minibatch size 𝑚𝑚 is small 
𝜆𝜆𝑘𝑘+1
𝑚𝑚

is the dominant term.

 Hence acceleration factor 
𝜆𝜆1 𝑚𝑚
√𝜆𝜆𝑘𝑘+1

. 



EigenPro acceleration

# epochs for different kernels

6x-35x acceleration factor.



Comparison with state-of-the-art

Better performance with (far) less computational budget.



This talk

1. Algorithmic requirements of modern ML.

2. Making kernels competitive on large data.

3. Why is SGD so effective? Overfitting: a modern 
innovation and a puzzle. 

4. Modern behavior of kernels (once computation is 
addressed).

 SGD

 Overfitting

 Acceleration 



Modern ML 

Major innovation: systematic overfitting

# parameters >> # training data

Over-parametrization  interpolation. 

All local minima (for the training data) are global? 

[Kawaguchi, 16] [Soheil, et al, 16] [Bartlett, et al, 17] [Soltanolkotabi, et al, 17]…

From Canziani, et al., 2017. 

The best way to solve the problem from 
practical standpoint is you build a very 
big system. If you remove any of these 
regularizations like dropout or L2, 
basically you want to make sure you hit 
the zero training error. Because if you 
don't, you somehow waste the capacity of 
the model.

Ruslan Salakhutdinov’s Simons tutorial, 
2017. 



Modern ML 

1. Why are large models easy to optimize? 

Very large models  over-parametrization  interpolation. 

Will show small batch SGD is highly effective in the interpolated regime.

[Ma, B., Bassily, 2017]

2. Why do large models perform well? 

Seems to contradict classical generalization results. 

Cf. [Zhang, et al, 2017]. 

We don’t know why (margins are probably not the whole story).

Will show parallel experimental results for kernels in the convex setting. 

[CIFAR 10, from Zhang, et al, 2017]

𝐸𝐸(𝐿𝐿(𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸,𝑦𝑦)) ≤
1
𝑛𝑛
�𝐿𝐿 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 ) + 𝑐𝑐/𝑛𝑛



Stochastic Gradient Descent

All major architectures use SGD. 

𝑤𝑤∗ = argmin
w

𝐿𝐿 𝑤𝑤 = argmin
w

1
𝑛𝑛
∑𝐿𝐿𝑖𝑖 𝑤𝑤 , 𝐿𝐿𝑖𝑖 𝑤𝑤 = 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 (e.g.)

SGD Idea: optimize 𝐿𝐿𝑖𝑖 𝑤𝑤 sequentially (instead of 𝐿𝐿 𝑤𝑤 ).

However: each 𝐿𝐿𝑖𝑖 𝑤𝑤 only weakly related to 𝐿𝐿 𝑤𝑤 . 

General analysis is complex. Need to control variance. 

[Moulines, Bach, 2011], [Nedell, Srebro, Ward 2014]

But ∀𝑖𝑖 𝐿𝐿𝑖𝑖 𝑤𝑤∗ = 0 → exponential convergence.  

(cf. original Perceptron analysis, Kaczmarz 37)



Understanding SGD

Key: Interpolation  fast (exponential) convergence!  

But how fast is fast? Can be analyzed explicitly.

Quadratic case (or close to a minimum):

𝐸𝐸 ||𝑤𝑤𝑡𝑡+1 − 𝑤𝑤∗||2 ≤ 𝑎𝑎 𝑚𝑚, 𝜂𝜂 𝐸𝐸 ||𝑤𝑤𝑡𝑡 − 𝑤𝑤∗||2

𝑎𝑎∗ 𝑚𝑚 = arg min
𝜂𝜂

𝑎𝑎 𝑚𝑚, 𝜂𝜂

Theorem 1 [optimality of 𝑚𝑚 = 1 for sequential computation].

𝑎𝑎∗ 1 ≤ 𝑎𝑎∗ 𝑚𝑚
1
𝑚𝑚

[Ma, Bassily, B., 2017]



Batch size for parallel computation

Theorem 2 [optimality for parallel computation]: 

Minibatch size 𝑚𝑚 = 𝑡𝑡𝑡𝑡 𝐻𝐻
𝜆𝜆1(𝐻𝐻)

is (nearly) optimal in low cost 

parallel computation model.  

Consistent with “linear scaling rule” observed empirically in neural 
nets [Goyal, et al, 17].

𝑚𝑚 =
𝑡𝑡𝑎𝑎 𝐻𝐻
𝜆𝜆1(𝐻𝐻)

Saturation



Empirical results: MNIST-10k.

Gradient computations to reach optimum (Gaussian kernel):

𝑚𝑚 = 1 → 8 ∗ 104
𝑚𝑚 = 16 → 1.6 ∗ 105
𝑚𝑚 = 256 → 2.6 ∗ 106
𝑚𝑚 = 104 → 1 ∗ 107

Saturation 𝑚𝑚 = 5~10.  Close to theoretical bound 𝑚𝑚 = 𝑡𝑡𝑡𝑡 𝐻𝐻

𝜆𝜆1(𝐻𝐻)
≈ 3.5.

Can we build 
architectures for parallel 

computation?



This talk

1. Algorithmic requirements of modern ML.

2. Making kernels competitive on large data.

3. Why is SGD so effective? Overfitting: a modern 
innovation and a puzzle. 

4. Modern behavior of kernels (once computation is 
addressed).

 SGD

 Overfitting

 Acceleration 



Overfitting with kernels  

[MNIST, Ma, B., 2017]Overfitting Interpolation

Hard to 
interpolate using 
standard methods

Performs 
well!

# parameters = # training data



Kernel overfitting/interpolation

Why do overfitted
(interpolated) models 
perform so well?

We still don’t know. 

However: 

1. Not a unique feature of 
deep architectures.

2. Can be examined in a 
convex analytical setting.

Moreover, Laplace kernel take ~3x iterations to 
fit random labels. 

Same as reported for ReLU nets. 

[Zhang, et al, 17]. 



This talk

1. Algorithmic requirements of modern ML.

2. Making kernels competitive on large data.

3. Why is SGD so effective? Overfitting: a modern 
innovation and a puzzle. 

4. Modern behavior of kernels (once computation is 
addressed).

 SGD

 Overfitting

 Acceleration



Accelerated/momentum/Nesterov methods

Almost as widely used as SGD.

𝑤𝑤(𝑡𝑡) = 𝑤𝑤(𝑡𝑡−1) − 𝜂𝜂𝛻𝛻𝑓𝑓 𝑤𝑤 𝑡𝑡−1 − 𝜂𝜂1𝛻𝛻𝑓𝑓 𝑤𝑤 𝑡𝑡−2

Nesterov acceleration [Nesterov, 83].

Far easier to analyze in the kernel case! 

Reduces to optimality of certain polynomials. 

Richarson second-order, Chebyshev semi-iterative method, etc…

[Golub, Varga, 1961]



Accelerated methods for kernels

Classical analyses do not quite work: assume finite 
condition number. Infinite theoretically, beyond numerical 
precision in practice.

Theorem: 

1. Nesterov, Richardson2, Chebyshev

converge for mis-specified condition 

parameter.

2. For small eigenvalues

Chebyshev > (faster) Richardson2 > Nesterov > GD.

[Liu, B. 2017]

Actually often true 
even for linear 

regression.



Parting Thoughts

 Classical kernel methods as a convex 
model for modern ML.
 Once computation is addressed, competitive 

performance and “modern” behavior.

 Design kernels for (parallel?) computation. 

 SGD very effective for over-parametrized 
methods.

 But why do over-parametrized methods 
generalize?

 Infinite condition numbers are everywhere.

 Approximation vs optimization vs 
statistics?
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