
The limits and power of kernels

Simons Institute, Nov 2017
Optimization, statistics and uncertainty

Mikhail Belkin, Ohio State University,
Department of Computer Science and Engineering,

Department of Statistics,

Collaborators: Siyuan Ma, Raef Bassily, Chaoyue Liu

Machine Learning/AI is becoming a backbone
of commerce and society.

The fog of war:

What is new and what is key?

GoogleLeNet, Szegedy, et al 2014.

Goal: a model for modern ML

 competitive on modern data

 analytically tractable

 convex

This talk

1. Limits of kernels.

2. The power of kernels: making kernels competitive

on large data. [Ma, B. NIPS 2017]

3. Why is SGD so effective? Overfitting: a modern
innovation and a puzzle. [Ma, Bassily, B. NIPS 2017]

4. Modern behavior of kernels (once computation is
addressed).

 SGD

 Overfitting

 Acceleration/momentum infinite condition number.

[Liu, B. 2017]

Modern ML

Computation is key. 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 is found algorithmically.

Large data:

Map to (fast!) GPU (matrix x vector products)

 limits algorithms available

 limits # matrix x vector products

ERM algorithmic requirements:

small # of matrix x vector products

“Shallow”/kernel architectures

Feature map 𝜙𝜙: ℝ𝑑𝑑 → ℋ (Hilbert space)

Followed by linear regression/classification.

𝑤𝑤∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑤𝑤∈ℋ

1
𝑛𝑛
�𝐿𝐿 〈𝑤𝑤,𝜙𝜙 𝑥𝑥𝑖𝑖 〉, 𝑦𝑦𝑖𝑖

Classifier: 𝑦𝑦 𝑥𝑥 = 〈𝑤𝑤,𝜙𝜙 𝑥𝑥𝑖𝑖 〉 (regression / sign for classification)

Kernel methods. RKHS ℋ is infinite dimension:

𝜙𝜙: 𝑥𝑥 → 𝐾𝐾 𝑥𝑥,⋅ ∈ ℋ (𝐾𝐾 is psd kernel, e.g., Gaussian)

Output: y 𝑥𝑥 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥

Kernel learning for modern ML

Beautiful classical statistical/mathematical theory.

RKHS Theory [Aronszajn,…, 50s]

Splines [Parzen, Wahba,…, 1970-80s]

Kernel machines [Vapnik,…, 90s]

Perform well on small data/not as well on large data.

Intrinsic architectural limitation?

Issue: standard methods practical for large data/GPU have
low computational reach/fitting capacity for fixed
computational budget.

Addressing computational reach results in major
speed/accuracy improvements.

Kernel methods for big data

Regression/classification, square loss.

𝐾𝐾 𝛼𝛼∗ = 𝑦𝑦
Direct inversion: cost 𝑛𝑛3 (does not map to GPU).

Small data:

n = 104 : n3 = 1012 FLOPs easy.

Big data:

n = 107: n3 = 1021 FLOPS impossible! (Modern GPU ~1013 FLOPs/ CPU ~1011 max)

Iterative: 𝛼𝛼(𝑡𝑡) = 𝛼𝛼(𝑡𝑡−1) − 𝜂𝜂 𝐾𝐾𝛼𝛼 𝑡𝑡−1 − 𝑦𝑦 . [Richarson, Landweber, GD,…]

Cost 𝑛𝑛2 per iteration. GPU compatible.

n = 107: n2 = 1014 FLOPS per iteration feasible.

But how many iterations?

SGD is much
cheaper

Simple 1-D example: Heaviside function

Nothing happens
after 1000000

iterations!

Real Data: gradient descent

Need >10k iterations on 10k point dataset.
Worse than a direct method (𝑛𝑛3)!

The limits of kernels

Theorem 1: Let 𝐾𝐾 𝑥𝑥, 𝑧𝑧 be a smooth radial and let

𝒦𝒦𝑓𝑓 𝑥𝑥 ∶= ∫ 𝐾𝐾 𝑥𝑥, 𝑧𝑧 𝑓𝑓 𝑧𝑧 𝑑𝑑𝑑𝑑

Then 𝜆𝜆𝑖𝑖 𝒦𝒦 < 𝐶𝐶 𝑒𝑒−𝐶𝐶′𝑖𝑖1/𝑑𝑑
, where 𝐶𝐶,𝐶𝐶𝐶 do not depend on 𝑑𝑑.

Corollary (approximation beats concentration): If 𝑑𝑑 is
supported on a finite set of points (e.g., sampled
from density), eigenvalues of the corresponding kernel
matrix decay nearly exponentially.

Theorem 2: Fat shattering (𝑉𝑉𝛾𝛾)-dimension of function
reachable by t iterations of gradient descent is at
most O(log𝑑𝑑(𝑡𝑡/𝛾𝛾)) . (Does not require square loss).

[Ma, B. NIPS 2017, B. 2017.]

Related work: [Santin, Schaback, 16], [Schaback, Wendland, 02]

Eigenvalue decay

Computational reach of Kernel GD

Theorem 3: Only very smooth functions can be 𝜖𝜖 −
approximated by a smooth kernel in 𝑡𝑡 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦(1/𝜖𝜖) number
of iterations of gradient descent.

Classification functions are generally not that
smooth.

Need
𝜆𝜆1
𝜆𝜆𝑖𝑖
≈ 𝑒𝑒𝑖𝑖1/𝑑𝑑

iterations for 𝑖𝑖’th direction.

Contradicts
classical 1/𝜖𝜖2
rate for GD?

EigenPro Kernel

Problem: fast eigenvalue decay.

Solution: construct a kernel with flatter spectrum.

Original kernel:

𝐾𝐾 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖=1

∞

𝜆𝜆𝑖𝑖𝑒𝑒𝑖𝑖 𝑥𝑥 𝑒𝑒𝑖𝑖 𝑧𝑧

EigenPro kernel:

𝐾𝐾𝐸𝐸𝑖𝑖𝐸𝐸 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑘𝑘+1𝑒𝑒𝑖𝑖 𝑥𝑥 𝑒𝑒𝑖𝑖 𝑧𝑧 + �
𝑖𝑖=𝑘𝑘+1

∞

𝜆𝜆𝑖𝑖𝑒𝑒𝑖𝑖 𝑥𝑥 𝑒𝑒𝑖𝑖 𝑧𝑧

EigenPro kernel learning

Fits first 𝑒𝑒1, … , 𝑒𝑒𝑘𝑘 in one iteration.

Approximately 𝜆𝜆1/𝜆𝜆𝑘𝑘+1 acceleration for each 𝑖𝑖 > 𝑘𝑘.

All functions

Pegasos/GD/SGD

Computational reach after t iterations

EigenPro

Fat shattering dimension
log𝑑𝑑(𝑡𝑡) (Gaussian)

Fat shattering dimension
log𝑑𝑑(exp(𝑘𝑘1/𝑑𝑑) 𝑡𝑡)

All functions

Pegasos/GD/SGD

Computational reach after t iterations

EigenPro

Exponentially increased reach per step.
What it the extra computational cost?

EigenPro: practical implementation

Preconditioned gradient descent.

𝑃𝑃 = 𝐼𝐼 −�
𝑖𝑖=1

𝑘𝑘

1 −
𝜆𝜆𝑘𝑘+1
𝜆𝜆𝑖𝑖

𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑇𝑇

𝑤𝑤(𝑡𝑡) = 𝑤𝑤(𝑡𝑡−1) − 𝜂𝜂𝑃𝑃(𝐾𝐾𝑤𝑤(𝑡𝑡−1) − 𝑦𝑦)

Use RSVD or Nystrom to compute first 𝑘𝑘 eigenvectors of 𝐾𝐾.

Preconditioner 𝑃𝑃 is formed only once.

(No regularization!)

Related work: [Fasshauer, McCourt, 12], [Erdogdu, Montanari, 15], [Gonen, et al, 16].

EigenPro: practical implementation II

𝑃𝑃 = 𝐼𝐼 −�
𝑖𝑖=1

𝑘𝑘

1 −
𝜆𝜆𝑘𝑘+1
𝜆𝜆𝑖𝑖

𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑇𝑇

𝑤𝑤(𝑡𝑡) = 𝑤𝑤(𝑡𝑡−1) − 𝜂𝜂𝑃𝑃(𝐾𝐾𝑤𝑤(𝑡𝑡−1) − 𝑦𝑦)

Important points:

 Low initial cost: 𝑃𝑃 is estimated from a small subsample.

 Low overhead/iteration (~15-20% in practice).

Robustness: converges to the correct solution for any 𝑃𝑃.

Potentially exponential acceleration
𝜆𝜆1
𝜆𝜆𝑘𝑘+1

.

EigenPro: Stochastic Gradient Descent

Key to effective implementation.

Have to sacrifice some acceleration.

Theorem: minibatch size 𝑚𝑚.

𝜆𝜆1 𝑃𝑃𝐾𝐾𝑚𝑚 ≲ 𝜆𝜆𝑘𝑘+1 + 𝑂𝑂
𝜆𝜆𝑘𝑘+1
𝑚𝑚

 When minibatch size 𝑚𝑚 is small
𝜆𝜆𝑘𝑘+1
𝑚𝑚

is the dominant term.

 Hence acceleration factor
𝜆𝜆1 𝑚𝑚
√𝜆𝜆𝑘𝑘+1

.

EigenPro acceleration

epochs for different kernels

6x-35x acceleration factor.

Comparison with state-of-the-art

Better performance with (far) less computational budget.

This talk

1. Algorithmic requirements of modern ML.

2. Making kernels competitive on large data.

3. Why is SGD so effective? Overfitting: a modern
innovation and a puzzle.

4. Modern behavior of kernels (once computation is
addressed).

 SGD

 Overfitting

 Acceleration

Modern ML

Major innovation: systematic overfitting

parameters >> # training data

Over-parametrization interpolation.

All local minima (for the training data) are global?

[Kawaguchi, 16] [Soheil, et al, 16] [Bartlett, et al, 17] [Soltanolkotabi, et al, 17]…

From Canziani, et al., 2017.

The best way to solve the problem from
practical standpoint is you build a very
big system. If you remove any of these
regularizations like dropout or L2,
basically you want to make sure you hit
the zero training error. Because if you
don't, you somehow waste the capacity of
the model.

Ruslan Salakhutdinov’s Simons tutorial,
2017.

Modern ML

1. Why are large models easy to optimize?

Very large models over-parametrization interpolation.

Will show small batch SGD is highly effective in the interpolated regime.

[Ma, B., Bassily, 2017]

2. Why do large models perform well?

Seems to contradict classical generalization results.

Cf. [Zhang, et al, 2017].

We don’t know why (margins are probably not the whole story).

Will show parallel experimental results for kernels in the convex setting.

[CIFAR 10, from Zhang, et al, 2017]

𝐸𝐸(𝐿𝐿(𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸,𝑦𝑦)) ≤
1
𝑛𝑛
�𝐿𝐿 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) + 𝑐𝑐/𝑛𝑛

Stochastic Gradient Descent

All major architectures use SGD.

𝑤𝑤∗ = argmin
w

𝐿𝐿 𝑤𝑤 = argmin
w

1
𝑛𝑛
∑𝐿𝐿𝑖𝑖 𝑤𝑤 , 𝐿𝐿𝑖𝑖 𝑤𝑤 = 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 (e.g.)

SGD Idea: optimize 𝐿𝐿𝑖𝑖 𝑤𝑤 sequentially (instead of 𝐿𝐿 𝑤𝑤).

However: each 𝐿𝐿𝑖𝑖 𝑤𝑤 only weakly related to 𝐿𝐿 𝑤𝑤 .

General analysis is complex. Need to control variance.

[Moulines, Bach, 2011], [Nedell, Srebro, Ward 2014]

But ∀𝑖𝑖 𝐿𝐿𝑖𝑖 𝑤𝑤∗ = 0 → exponential convergence.

(cf. original Perceptron analysis, Kaczmarz 37)

Understanding SGD

Key: Interpolation fast (exponential) convergence!

But how fast is fast? Can be analyzed explicitly.

Quadratic case (or close to a minimum):

𝐸𝐸 ||𝑤𝑤𝑡𝑡+1 − 𝑤𝑤∗||2 ≤ 𝑎𝑎 𝑚𝑚, 𝜂𝜂 𝐸𝐸 ||𝑤𝑤𝑡𝑡 − 𝑤𝑤∗||2

𝑎𝑎∗ 𝑚𝑚 = arg min
𝜂𝜂

𝑎𝑎 𝑚𝑚, 𝜂𝜂

Theorem 1 [optimality of 𝑚𝑚 = 1 for sequential computation].

𝑎𝑎∗ 1 ≤ 𝑎𝑎∗ 𝑚𝑚
1
𝑚𝑚

[Ma, Bassily, B., 2017]

Batch size for parallel computation

Theorem 2 [optimality for parallel computation]:

Minibatch size 𝑚𝑚 = 𝑡𝑡𝑡𝑡 𝐻𝐻
𝜆𝜆1(𝐻𝐻)

is (nearly) optimal in low cost

parallel computation model.

Consistent with “linear scaling rule” observed empirically in neural
nets [Goyal, et al, 17].

𝑚𝑚 =
𝑡𝑡𝑎𝑎 𝐻𝐻
𝜆𝜆1(𝐻𝐻)

Saturation

Empirical results: MNIST-10k.

Gradient computations to reach optimum (Gaussian kernel):

𝑚𝑚 = 1 → 8 ∗ 104
𝑚𝑚 = 16 → 1.6 ∗ 105
𝑚𝑚 = 256 → 2.6 ∗ 106
𝑚𝑚 = 104 → 1 ∗ 107

Saturation 𝑚𝑚 = 5~10. Close to theoretical bound 𝑚𝑚 = 𝑡𝑡𝑡𝑡 𝐻𝐻

𝜆𝜆1(𝐻𝐻)
≈ 3.5.

Can we build
architectures for parallel

computation?

This talk

1. Algorithmic requirements of modern ML.

2. Making kernels competitive on large data.

3. Why is SGD so effective? Overfitting: a modern
innovation and a puzzle.

4. Modern behavior of kernels (once computation is
addressed).

 SGD

 Overfitting

 Acceleration

Overfitting with kernels

[MNIST, Ma, B., 2017]Overfitting Interpolation

Hard to
interpolate using
standard methods

Performs
well!

parameters = # training data

Kernel overfitting/interpolation

Why do overfitted
(interpolated) models
perform so well?

We still don’t know.

However:

1. Not a unique feature of
deep architectures.

2. Can be examined in a
convex analytical setting.

Moreover, Laplace kernel take ~3x iterations to
fit random labels.

Same as reported for ReLU nets.

[Zhang, et al, 17].

This talk

1. Algorithmic requirements of modern ML.

2. Making kernels competitive on large data.

3. Why is SGD so effective? Overfitting: a modern
innovation and a puzzle.

4. Modern behavior of kernels (once computation is
addressed).

 SGD

 Overfitting

 Acceleration

Accelerated/momentum/Nesterov methods

Almost as widely used as SGD.

𝑤𝑤(𝑡𝑡) = 𝑤𝑤(𝑡𝑡−1) − 𝜂𝜂𝛻𝛻𝑓𝑓 𝑤𝑤 𝑡𝑡−1 − 𝜂𝜂1𝛻𝛻𝑓𝑓 𝑤𝑤 𝑡𝑡−2

Nesterov acceleration [Nesterov, 83].

Far easier to analyze in the kernel case!

Reduces to optimality of certain polynomials.

Richarson second-order, Chebyshev semi-iterative method, etc…

[Golub, Varga, 1961]

Accelerated methods for kernels

Classical analyses do not quite work: assume finite
condition number. Infinite theoretically, beyond numerical
precision in practice.

Theorem:

1. Nesterov, Richardson2, Chebyshev

converge for mis-specified condition

parameter.

2. For small eigenvalues

Chebyshev > (faster) Richardson2 > Nesterov > GD.

[Liu, B. 2017]

Actually often true
even for linear

regression.

Parting Thoughts

 Classical kernel methods as a convex
model for modern ML.
 Once computation is addressed, competitive

performance and “modern” behavior.

 Design kernels for (parallel?) computation.

 SGD very effective for over-parametrized
methods.

 But why do over-parametrized methods
generalize?

 Infinite condition numbers are everywhere.

 Approximation vs optimization vs
statistics?

	 The limits and power of kernels����Simons Institute, Nov 2017�Optimization, statistics and uncertainty�
	Slide Number 2
	Slide Number 3
	This talk
	Modern ML
	“Shallow”/kernel architectures
	Kernel learning for modern ML
	Kernel methods for big data
	Simple 1-D example: Heaviside function
	Real Data: gradient descent
	The limits of kernels
	Eigenvalue decay
	Computational reach of Kernel GD
	EigenPro Kernel
	EigenPro kernel learning
	All functions
	All functions
	EigenPro: practical implementation
	EigenPro: practical implementation II
	EigenPro: Stochastic Gradient Descent
	EigenPro acceleration
	Comparison with state-of-the-art
	This talk
	Modern ML
	Modern ML
	Stochastic Gradient Descent
	Understanding SGD
	Batch size for parallel computation
	Empirical results: MNIST-10k.
	This talk
	Overfitting with kernels
	Kernel overfitting/interpolation
	This talk
	Accelerated/momentum/Nesterov methods
	Accelerated methods for kernels
	Parting Thoughts

