The limits and power of kernels

Simons Institute, Nov 2017
Optimization, statistics and uncertainty

Mikhail Belkin, Ohio State University,

Department of Computer Science and Engineering,
Department of Statistics,

Collaborators: Siyuan Ma, Raef Bassily, Chaoyue Liu

Machine Learning/Al 1s becoming a backbone
of commerce and society.

GoogleLeNet, Szegedy, et al 2014. ‘E Eg EE
14 4
e s Eﬁﬂsﬂﬂggﬂﬂﬁﬁﬂﬁﬁﬂﬂ‘
apjaajuiigiiggiiggglaatantyy BO 04
‘ gnfaattantyy 00 B8 ga. o0y
LI LI L H

The fog of war:
What 1s new and what i1s key?

Goal: a model for modern ML
competitive on modern data
analytically tractable
convex

This talk

Limits of kernels.
The power of kernels: making kernels competitive

on large data. [Ma, B. NIPS 2017]

Why 1s SGD so effective? Overfitting: a modern
innovation and a puzzle. [Ma, Bassily, B. NIPS 2017]
Modern behavior of kernels (once computation 1Is
addressed).

SGD

Overfitting
Acceleration/momentum infinite condition number.

[Liu, B. 2017]

Modern ML

Computation is key. f*" js found algorithmically.

Large data:

Map to (fast!) GPU (matrix X vector products)
- limits algorithms available
- limits # matrix X vector products

ERM algorithmic requirements:
small # of matrix X vector products

“Shallow’”’/kernel architectures

Feature map ¢: R —» % (Hilbert space)
Followed by linear regression/classification.

1
w* = argmin —
WEH N

z L ((w, p(x;)), ¥;)

Classiftier: y(x) =(w,¢(x;)) (regression / sign for classification)

Kernel methods. RKHS H 1s infinite dimension:
¢p:x > K(x,,) eH (K 1s psd kernel, e.g., Gaussian)

Output: y(x) = ¥, a; K(x;x)

Kernel learning for modern ML

Beautiful classical statistical/mathematical theory.

RKHS Theory [Aronszajn,.., 50s]
Splines [Parzen, Wahba,.., 1970-80s]
Kernel machines [Vapnik,.., 90s]

Perform well on small data/not as well on large data.
Intrinsic architectural limitation?

Issue: standard methods practical for large data/GPU have
low computational reach/fitting capacity for fixed
computational budget.

Addressing computational reach results In major
speed/accuracy iImprovements.

Kernel methods for big data

Regression/classification, square loss.
Ka =y
Direct inversion: cost n® (does not map to GPU).

Small data:
n=10%: n®=10'? FLOPs easy.
Big data:

n=10": n®=10%" FLOPS impossible! (uodern GPU ~10'* FLOPS/ CPU ~10'" max)

SGD is much
cheaper

Iterative: a® =D —p(Ka®Y —y) | [Richarsg
Cost n? per iteration. GPU compatible.
n=107: n?=10" FLOPS per iteration feasible.

But how many i1terations?

Simple 1-D example: Heaviside function

==Gradient descent (1 02 iterations), L2 loss = 6.63e-02
==Gradient descent (1 0° iterations), L2 loss = 4.84e-02

Nothing happens

after 1000000
iterations!

Real Data: gradient descent

MNIST-10k HINT-M-10k

N : :
Iter train test train test

10240 || 2.36e-3 | 3.64e-2 || 1.83e-2 | 3.14e-2

81920 || 2.17e-5 | 3.55e-2 || 4.21e-3 | 3.42e-2

Need > |0k iterations on |0k point dataset.
Worse than a direct method (n°)!

The BTimits of kernels

Theorem 1: Let K(x,z) be a smooth radial and let
Kf(x) := [K(x,2)f(2) du
Then AJ&C)<(?647”M, where C,C" do not depend on pu.

Corollary (approximation beats concentration): ITf u 1s
supported on a finite set of points (e.g., sampled
from density), eigenvalues of the corresponding kernel
matrix decay nearly exponentially.

Theorem 2: Fat shattering (V,)-dimension of function
reachable by t i1terations of gradient descent is at
most O(log?(t/y)) . (Does not require square loss).

[Ma, B. NIPS 2017, B. 2017.]

Related work: [Santin, Schaback, 16], [Schaback, Wendland, 02]

Eigenvalues (10g scale)

Ergenvalue decay

— MNIST
-~~~ SVHN |
----- CIFAR-10

500 400 600 800 1000 1200 1400 1600
Eigenvalue Index

Computational reach of Kernel GD

Theorem 3: Only very smooth functions can be ¢ —
approximated by a smooth kernel iIn t = Poly(1/e) number
of 1terations of gradient descent.

Contradicts

classical 1/€?
rate for GD?

Classification functions are generally not that
smooth.

Need %~ oi*
/1.

L

iterations for i’th direction.

EigenPro Kernel

Problem: fast eigenvalue decay.
Solution: construct a kernel with flatter spectrum.

Original kernel:

KGo2) =) de(@e?)
i=1

EigenPro kernel:

k 00
Keip(6,2) =) Denne@ei) +) Liei(@ei()
i=1

i=k+1

EigenPro kernel learning

I = = Spectrum of original kernel K
\ Spectrum of modified kernel PK

Ak+1'

k+1
Eigenvalue index

Fits first e, ..,e; In one i1teration.
Approximately A1,/1,,, acceleration for each i > k.

Computational reach after t i1terations

hattering dimension
log?(exp (k%) t)

All functions

Pegasos/GD/SGD

Fat shattering dimension
log?(t) (Gaussian)

Computational reach after t i1terations

All functions

Pegasos/GD/SGD

Exponentially increased reach per step.
What it the extra computational cost?

EigenPro: practical implementation

Preconditioned gradient descent.

Use RSVD or Nystrom to compute first k eigenvectors of K.

Preconditioner P i1s formed only once.
(No regularization?!)

Related work: [Fasshauer, McCourt, 12], [Erdogdu, Montanari, 15], [Gonen, et al, 16].

EigenPro: practical implementation 11

-5

i=1

W(t) — W(t_l) — nP(Kw(t_l) — y)
Important points:

= Low initial cost: P 1s estimated from a small subsample.
= Low overhead/iteration (~15-20% iIn practice).

Robustness: converges to the correct solution for any P.

A1
Ak+1

Potentially exponential acceleration

EigenPro: Stochastic Gradient Descent

Key to effective implementation.
Have to sacrifice some acceleration.

Theorem: minibatch size m.

A1

A (PKp) S Agyr1 +0

Ak+1

> When minibatch size m 1s small 1S the dominant term.

P
Vaks1

> Hence acceleration factor

epochs for different kernels

EigenPro acceleration

Gaussian Kernel

Laplace Kernel

Cauchy Kernel

Dataset Size EigenPro | Pegasos || EigenPro | Pegasos || EigenPro | Pegasos
MNIST | 6 x 10* 7 77 4 143 7 78
CIFAR-10 | 5 x 10* 5 56 13 136 6 107

SVHN | 7 x 10* 8 54 14 297 17 191
HINT-S | 5 x 10* 19 164 15 308 13 126

6x-35x acceleration factor.

Comparison with state-of-the-art

Dataset Size EigenPro (use 1 GTX Titan X) Reported results for other methods
' error GPU hours error description source
1.1 hours (189 epochs)
. 106) 0
vnisT | 1710° | 0.70% 48 0.72% | a4 AWS vCPUS PCG [ACW16]
less than 37.5 hours
.10° o 0 +
6.7-10° || 0.80% 0.8 085% | T oo [LML*14]
512 IBM
0 +
33.5% BlueGene/Q cores Ensemble [HAST14]
TIMIT | 2-10° 0 o 7.5 hours on
31.6% 3.9 33.5% 1024 AWS vCPUs BCD [TRVR16]
30.0% multiple AWS SparseKernel [MGL™17]
' e (learned features)
B2 i DNN [MGLT17] |
0.6 hours on . .
106) ~ 20°
SUSY | 4-10 19.8% 0.1 20% IBM POWERS Hierarchical [CAS16]

Better performance with (far) less computational budget.

This talk

Algorithmic requirements of modern ML.
Making kernels competitive on large data.

Why 1s SGD so effective? Overfitting: a modern
innovation and a puzzle.

Modern behavior of kernels (once computation 1is
addressed).

SGD
Overfitting
Acceleration

Modern ML

Major innovation: systematic overfitting
parameters >> # training data

From Canziani, et al., 2017.

Inception-v4
80 1
Inception-v3 [ResNet-152
s |ResNet-50 """R i VGG-16 VGG-19 The best way to solve the problem from
1 esNet- T ; ; ; ;
ResNet.34 practical standpoint is you build a very

big system. If you remove any of these

70 ResNet-18

Top-1 accuracy [%]

65 1

GooglLeNet
ENet

regularizations like dropout or L2,
basically you want to make sure you hit
the zero training error. Because If you

© BN-NIN don*"t, you somehow waste the capacity of
60 1 5M - 35M - 65M - 95M - 125M -155M the model.
BN-AlexNet Ruslan Salakhutdinov’s Simons tutorial,
551 AlexNet 2017.
50 . T ' . : , ; :
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Over-parametrization - interpolation.
All local minima (for the training data) are global?

[Kawaguchi, 16] [Soheil, et al, 16] [Bartlett, et al, 17] [Soltanolkotabi, et al, 17]..

Modern ML

1. Why are large models easy to optimize?

Very large models - over-parametrization - interpolation.
Will show small batch SGD i1s highly effective In the interpolated regime.

[Ma, B., Bassily, 2017]

2. Why do large models perform well?

Seems to contradict classical generalization results.

Cf. [zhang, et al, 2017].

model # params random crop weightdecay train accuracy test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
Inception 1,649,402 10 yes 100.0 26.03
no no 100.0 85.75

[CIFAR 10, from Zhang, et al, 2017]

We don’t know why (margins are probably not the whole story).

1
L™, 9) <=3 L{FPR (), 31)) + e/

Will show parallel experimental results for kernels In the convex setting.

Stochastic Gradient Descent

AIl major architectures use SGD.

*

w* = argmin L(w) = argmin~ X L;(w), Li(w) = (£, () —y)? (e-9.)

SGD Idea: optimize L;(w)sequentially (instead of L(w)).
However: each L;(w) only weakly related to L(w).

General analysis 1s complex. Need to control variance.

[Moulines, Bach, 2011], [Nedell, Srebro, Ward 2014]

But V;L;(w*) =0 - exponential convergence.

(cf. original Perceptron analysis, Kaczmarz 37)

Understanding SGD

Key: Interpolation - fast (exponential) convergence!
But how fast is fast? Can be analyzed explicitly.

Quadratic case (or close to a minimum):
E(|lweer —w*1?) < gmmE(l|lwe — w*||?)

g '(m) = arg mnin g(m,n)
Theorem 1 [optimality of m=1 for sequential computation].
1
9" (1) < g*(m)m

[Ma, Bassily, B., 2017]

Batch size for parallel computation

Theorem 2 [optimality for parallel computation]:

Minibatch size m = 2~
A1 (H)

parallel computation model.

iIs (nearly) optimal 1n low cost

10° A

H1)/E(m)

1'}1 4

ll]':l 4

1 1t 10# 103 10#
m

Consistent with “linear scaling rule” observed empirically in neural
nets [Goyal, et al, 17].

Empirical results: MNIST-10k.

m=1 m = 16 m = 256 m=mn= 10"

Niter L2 loss c-error L2 loss c-error L2 loss C-eITor L2 loss c-error
train test (test) train test (test) train test (test) train test (test)
1 3.93¢-1 | 3.92¢-1 | 89.91% || 4.38¢-1 | 4.36¢-1 | 63.86% || 4.24¢-1 | 4.24¢-1 | 50.62% || 4.07¢-1 | 4.07¢-1 | 38.50%
80 2.02¢e-1 | 2.00e-1 | 28.29% || 1.08e-1 | 1.08e-1 | 10.92% || 9.76e-2 | 991e-2 | 7.66% || 9.6le-2 | 9.74e-2 | 7.60%
1280 || 8.65¢-2 | 8.93¢-2 | 7.53% || 2.75¢-2 | 4.78e-2 | 3.30% || 2.64e-2 | 4.62¢-2 | 3.26% || 2.60e-2 | 4.59¢-2 | 3.26%
10240 || 3.44e-2 | 5.29e-2 | 3.13% || 2.42e-3 | 3.63e-2 | 2.49% || 2.48e-3 | 3.64e-2 | 2.48% || 2.36e-3 | 3.64e-2 | 2.39%
81920 || 2.27¢-3 | 3.64e-2 | 2.40% || 5.41e-5 | 3.55e-2 | 2.42% | 2.86e-5 | 3.55¢-2 | 2.41% || 2.17e-5 | 3.55¢-2 | 2.49%

Gradient computations to reach optimum (Gaussian kernel):

- 8x10*

1

16 — 1.6x10°
256 > 2.6 % 10°
10* - 1 %107

Saturation m = 5~10. Close to theoretical bound m =

Can we build
architectures for parallel
computation?

tr H

A1 (H)

~y
~y

3.5.

This talk

Algorithmic requirements of modern ML.
Making kernels competitive on large data.

Why 1s SGD so effective? Overfitting: a modern
innovation and a puzzle.

Modern behavior of kernels (once computation iIs
addressed).

SGD
Overfitting
Acceleration

Overfitting with kernels

parameters = # training data

N pochs ' Primal
EigenPro (k = 160) Pegasos 1
C-€ITor L2 loss C-€ITor];// . pare e .

train test train | test | train test trail_ interpolate using

T | 0.92% | 2.08% | 2.40-2 | 3.20-2 | 5.12% | 5.21% | 6.9e-2 | pyStandard methods
5} 0.10% | 1.44% | 8.6e-3 | 2.4e-2 | 2.36% | 2.84% | 4.0e-2 [/ _=¢-2
10 0.01%) | 11.23% | [§4.3e-3}| 2.2¢-2 | 1.58% | 2.32% 3.1e—2/ 3.6e-2
20 0.0% 1| [1.20%)| |§1.8¢-3}| 2.1e-2 | 0.90% | 1.93% ||2.3e-2|| 3.1e-2
40 0.0% 1.20%| [16.1e-4}| 2.1e-2 | 0.39% | 1.65% ||1.6e-2|| 2.7e-2
80 0.0% 1.23% | |12.2¢e-4}| 2.1e-2 | 0.14% | 1.41% ||9.7e-3 || 2.4e-2
160 0.0% 1.21% | |18.0e-51| 2.1e-2 | 0.03% | 1.24% ||5.1e-3|| 2.2¢-2
320 0.0% 1.23% | |§3.0e-5 &le—Q 0.01% | 1.23% ||2.2e-3 || 2.1e-2
[MNIST, Ma, B., 2017]

Overfitting

Performs

well!

Interpolation

Kernel overfitting/interpolation

(EigenPro) Result
- Dataset | Size Kernel e c-error L2 loss
Why do ove rfl tted epochs train test train test
(i nte rpo I ated) mode I S 1-10° | Gaussian 10 0.02% | 0.76% | 9.5e¢-4 | 4.1e-3
MNIST 6) 3 0.0% | 0.77% | 7.3e-4 | 3.8e-3
perform so well? 2. 107 Laplace 10 0.0% | 0.80% | 6.66-6 | 3.7¢-3
Gaussian 10 1.6% | 31.6% | 9.0e-4
6 3 1.1% | 32.0% | 8.0e-4
TIMIT 4 11071y place 0 0.0% | 31.6% | 8.2¢5
20 0.0% | 31.6% | 2.3e-5

We still don’t know.

Moreover, Laplace kernel take ~3x iterations to
fit random labels.

However: Same as reported for RelLU nets.
1. Not a unique feature of [zhang, et al, 17].
deep architectures.

2. Can be examined 1In a
convex analytical setting.

This talk

Algorithmic requirements of modern ML.
Making kernels competitive on large data.

Why 1s SGD so effective? Overfitting: a modern
innovation and a puzzle.

Modern behavior of kernels (once computation iIs
addressed).

SGD
Overfitting
Acceleration

Accelerated/momentum/Nesterov methods

Almost as widely used as SGD.

W(t) — W(t_l) — an(W(t_l)) — 771Vf(W(t_2))

Nesterov acceleration [Nesterov, 83].

Far easier to analyze in the kernel case!
Reduces to optimality of certain polynomials.

Richarson second-order, Chebyshev semi-iterative method, etc..
[Golub, Varga, 1961]

Accelerated methods for kernels

Classical analyses do not quite work: assume fTinite
condition number. Infinite theoretically, beyond numerical
precision In practice.

Actually often true
even for linear

regression.
Theorem: =
1. Nesterov, Richardson?, Chebyshev /j
converge for mis-specified condition ///f
parameter . R ‘%

2. For small eigenvalues -
Chebyshev > (faster) Richardson? > Nesterov > GD.

[Liu, B. 2017]

Parting Thoughts

Classical kernel methods as a convex
model for modern ML.

Once computation i1s addressed, competitive
performance and “modern” behavior.

Design kernels for (parallel?) computation.
SGD very effective for over-parametrized
methods.

But why do over-parametrized methods
generali1ze?

Infinite condition numbers are everywhere.

Approximation vs optimization vs
statistics?

	 The limits and power of kernels����Simons Institute, Nov 2017�Optimization, statistics and uncertainty�
	Slide Number 2
	Slide Number 3
	This talk
	Modern ML
	“Shallow”/kernel architectures
	Kernel learning for modern ML
	Kernel methods for big data
	Simple 1-D example: Heaviside function
	Real Data: gradient descent
	The limits of kernels
	Eigenvalue decay
	Computational reach of Kernel GD
	EigenPro Kernel
	EigenPro kernel learning
	All functions
	All functions
	EigenPro: practical implementation
	EigenPro: practical implementation II
	EigenPro: Stochastic Gradient Descent
	EigenPro acceleration
	Comparison with state-of-the-art
	This talk
	Modern ML
	Modern ML
	Stochastic Gradient Descent
	Understanding SGD
	Batch size for parallel computation
	Empirical results: MNIST-10k.
	This talk
	Overfitting with kernels
	Kernel overfitting/interpolation
	This talk
	Accelerated/momentum/Nesterov methods
	Accelerated methods for kernels
	Parting Thoughts

