From Weak to Strong LP Gaps for all CSPs

Mrinalkanti Ghosh Madhur Tulsiani

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Max-k-CSP

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

- n Boolean variables.

- n Boolean variables.
- *m* constraints (each on *k* variables)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Max-k-CSP

- n Boolean variables.
- *m* constraints (each on *k* variables)
- Satisfy as many as possible.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

- *n* variables taking values in $[q] = \{0, \ldots, q-1\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- *m* constraints (each on *k* variables)
- Satisfy as many as possible.

- *n* variables taking values in $[q] = \{0, \ldots, q-1\}$.
- *m* constraints (each on *k* variables)
- Satisfy as many as possible.

- For a graph, given: - Set of colors: [q] - Constraints: one for each edge $(u, v) \in E$ $(u,v) = \begin{cases} \bullet^{u} & \text{or} & \bullet^{u} \\ \bullet^{v} & \text{or} & \bullet^{v} \\ \bullet^{v} & \text{or} & \bullet^{v} \end{cases}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- *n* variables taking values in $[q] = \{0, \ldots, q-1\}$.
- *m* constraints (each on *k* variables)
- Satisfy as many as possible.

Unique Games

- For a graph, given: - Set of colors: [q] - Constraints: one for each edge $(u, v) \in E$ $(u,v) = \begin{cases} \bullet^{u} & \bullet^{u} & \bullet^{u} \\ \bullet^{u} & \bullet^{v} & \bullet^{v} \end{cases}$
- Each constraint is a bijection from [q] to [q]. Can in fact consider difference equations

$$x_u - x_v = c_{uv} \pmod{q}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Characterized by $f:[q]^k o \{0,1\}.$

- Characterized by $f:[q]^k o \{0,1\}.$
- Each constraint is of the form

$$C_i \equiv f(x_{i_1} + b_{i,1}, \dots, x_{i_k} + b_{i,k})$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

for $i_1, \ldots, i_k \in [n]$ and $b_{i,1}, \ldots, b_{i,k} \in [q]$. (addition is mod q)

- Characterized by $f:[q]^k \to \{0,1\}.$
- Each constraint is of the form

$$C_i \equiv f(x_{i_1} + b_{i,1}, \dots, x_{i_k} + b_{i,k})$$

for $i_1, \ldots, i_k \in [n]$ and $b_{i,1}, \ldots, b_{i,k} \in [q]$. (addition is mod q)

- Max-3-SAT: $f \equiv OR$. Each C_i is a clause. $b_{i,1} = 1$ if x_{i_1} is negated in clause C_i .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Characterized by $f: [q]^k \to \{0,1\}.$
- Each constraint is of the form

$$C_i \equiv f(x_{i_1} + b_{i,1}, \ldots, x_{i_k} + b_{i,k})$$

for $i_1, \ldots, i_k \in [n]$ and $b_{i,1}, \ldots, b_{i,k} \in [q]$. (addition is mod q)

- Max-3-SAT: $f \equiv OR$. Each C_i is a clause. $b_{i,1} = 1$ if x_{i_1} is negated in clause C_i .
- Unique Games: $f \equiv EQUAL$. For i^{th} constraint (u, v), let $i_1 = u$, $i_2 = v$ and let $b_{i,2} b_{i,1} = c_{uv}$

$$x_u - x_u = c_{uv} \quad \Leftrightarrow \quad x_{i_1} + b_{i,1} = x_{i_2} + b_{i,2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Goal: Distinguish the cases $OPT(\Phi) \leq s$ and $OPT(\Phi) > c$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Goal: Distinguish the cases $OPT(\Phi) \le s$ and $OPT(\Phi) > c$.
- If for some $\gamma \leq 1$, all pairs $(\gamma \cdot c, c)$ can be solved, then can approximate within factor γ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Characterizing approximability

- Max-3-SAT [Håstad 97]: For all $\epsilon > 0$, distinguishing $(7/8 + \epsilon, 1 - \epsilon)$ is NP-hard (s < 7/8 is trivial).

$$\leq 7/8 + \epsilon \qquad > 1 - \epsilon$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Characterizing approximability

- Max-3-SAT [Håstad 97]: For all $\epsilon > 0$, distinguishing $(7/8 + \epsilon, 1 - \epsilon)$ is NP-hard (s < 7/8 is trivial).

$$\leq 7/8 + \epsilon \qquad > 1 - \epsilon$$

- Unique Games Conjecture [Khot 02]: For all $\delta, \epsilon > 0$, there exists q such that it is NP-hard to distinguish $(\delta, 1 - \epsilon)$ for UG with domain [q].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A dichotomy assuming the UGC

[Raghavendra 08]: For all q, for all f, if a basic SDP cannot distinguish (s, c) for Max-k-CSP_q(f), then for all ε > 0, it is NP-hard to distinguish (s + ε, c − ε) assuming the UGC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A dichotomy assuming the UGC

- [Raghavendra 08]: For all q, for all f, if a basic SDP cannot distinguish (s, c) for Max-k-CSP_q(f), then for all $\epsilon > 0$, it is NP-hard to distinguish $(s + \epsilon, c \epsilon)$ assuming the UGC.
- "All-or-nothing": Either a simple algorithm (approximately solvable in almost linear time) can distinguish (*s*, *c*) or it is NP-hard to do so.

A dichotomy assuming the UGC

- [Raghavendra 08]: For all q, for all f, if a basic SDP cannot distinguish (s, c) for Max-k-CSP_q(f), then for all $\epsilon > 0$, it is NP-hard to distinguish $(s + \epsilon, c \epsilon)$ assuming the UGC.
- "All-or-nothing": Either a simple algorithm (approximately solvable in almost linear time) can distinguish (*s*, *c*) or it is NP-hard to do so.

- Equivalent to UGC (because UG is a 2-CSP).

An unconditional version for LPs

 For all q, for all f, if a basic LP cannot distinguish (s, c) for Max-k-CSP_q(f), then for all ε > 0, no LP of any polynomial size in the Sherali-Adams hierarchy can distinguish (s + ε, c − ε). An unconditional version for LPs

- For all q, for all f, if a basic LP cannot distinguish (s, c) for Max-k-CSP_q(f), then for all ε > 0, no LP of any polynomial size in the Sherali-Adams hierarchy can distinguish (s + ε, c − ε).
- [CLRS 13], [KMR 17]: If no polysize LP in Sherali-Adams hierarchy can distinguish $(s + \epsilon, c \epsilon)$ then no polysize extended formulation can distinguish $(s + 2\epsilon, c 2\epsilon)$.

An unconditional version for LPs

- For all q, for all f, if a basic LP cannot distinguish (s, c) for Max-k-CSP_q(f), then for all ε > 0, no LP of any polynomial size in the Sherali-Adams hierarchy can distinguish (s + ε, c − ε).
- [CLRS 13], [KMR 17]: If no polysize LP in Sherali-Adams hierarchy can distinguish $(s + \epsilon, c \epsilon)$ then no polysize extended formulation can distinguish $(s + 2\epsilon, c 2\epsilon)$.
- "All-or-not-much" for LPs: If a simple (linear size) LP cannot do it, neither can any polysize LP extended formulation.

- Defined by a feasible polytope *P*, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .

- Defined by a feasible polytope *P*, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .
- Introduce additional variables y. Optimize over polytope

 $P = \{x \mid \exists y \ Ex + Fy = g, y \ge 0\}$.

Image from [Fiorini-Rothvoss-Tiwari 2011]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Defined by a feasible polytope *P*, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .
- Introduce additional variables y. Optimize over polytope

 $P = \{x \mid \exists y \ Ex + Fy = g, y \ge 0\}$.

Image from [Fiorini-Rothvoss-Tiwari 2011]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Defined by a feasible polytope *P*, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .
- Introduce additional variables y. Optimize over polytope

 $P = \{x \mid \exists y \ Ex + Fy = g, y \ge 0\}$.

Image from [Fiorini-Rothvoss-Tiwari 2011]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Size equals #variables + #constraints.

- Defined by a feasible polytope *P*, and a way of encoding instances Φ as a (linear) objective function w_{Φ} .
- Introduce additional variables y. Optimize over polytope

 $P = \{x \mid \exists y \ Ex + Fy = g, y \ge 0\}$.

Image from [Fiorini-Rothvoss-Tiwari 2011]

A D N A 目 N A E N A E N A B N A C N

P

Size equals #variables + #constraints.

- Optimize objective objective $\langle w_{\Phi}, x \rangle$ (depending on Φ) over *P*.

Integer Program for CSPs

Variables:
$$Z_{(i,b)}$$
 for $i \in [n]$ and $b \in [q]$

Constraints:
$$(Z_{(i,b)})^2 = Z_{(i,b)}$$
 $\forall i \in [n], b \in [q]$
$$\sum_{b \in [q]} Z_{(i,b)} = 1 \quad \forall i \in [n]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Integer Program for CSPs

Variables:
$$Z_{(i,b)}$$
 for $i \in [n]$ and $b \in [q]$

Constraints:
$$(Z_{(i,b)})^2 = Z_{(i,b)} \quad \forall \ i \in [n], b \in [q]$$

$$\sum_{b \in [q]} Z_{(i,b)} = 1 \quad \forall \ i \in [n]$$
Maximize: $\frac{1}{m} \cdot \sum_{C} \sum_{\alpha \in [q]^{S_C}} \left(\prod_{i \in S_C} Z_{(i,\alpha_i)}\right) \cdot f(\alpha + (b_{i,1}, \dots, b_{i,k}))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Variables: $X_{(S,\alpha)}$ for all $|S| \leq t$ and $\alpha \in [q]^S$. Represent $\widetilde{\mathbb{E}}$ as

 $\begin{array}{ll} X_{(S,\alpha)} &=& \widetilde{\mathbb{E}} \left[\prod_{i \in S} Z_{(i,\alpha_i)} \right] \approx \mbox{ Prob. vars in } S \mbox{ assigned according to } \alpha \\ X_{(S,\alpha)} &\geq & 0 \end{array}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Variables: $X_{(S,\alpha)}$ for all $|S| \leq t$ and $\alpha \in [q]^S$. Represent $\widetilde{\mathbb{E}}$ as

 $\begin{array}{ll} X_{(S,\alpha)} &=& \widetilde{\mathbb{E}} \left[\prod_{i \in S} Z_{(i,\alpha_i)} \right] \approx \mbox{ Prob. vars in } S \mbox{ assigned according to } \alpha \\ X_{(S,\alpha)} &\geq & 0 \end{array}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Variables: $X_{(S,\alpha)}$ for all $|S| \leq t$ and $\alpha \in [q]^S$. Represent $\widetilde{\mathbb{E}}$ as

 $\begin{array}{lll} X_{(S,\alpha)} & = & \widetilde{\mathbb{E}} \left[\prod_{i \in S} Z_{(i,\alpha_i)} \right] & \approx & \text{Prob. vars in } S \text{ assigned according to } \alpha \\ X_{(S,\alpha)} & \geq & 0 \end{array}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consistency: For all $j \notin S$, $\sum_{b \in [q]} X_{(S \cup \{j\}, \alpha \circ b)} = X_{(S, \alpha)}$ $X_{\emptyset, \emptyset} = 1$
The Sherali-Adams LP hierarchy (*t* levels)

Variables: $X_{(S,\alpha)}$ for all $|S| \leq t$ and $\alpha \in [q]^S$. Represent $\widetilde{\mathbb{E}}$ as

 $\begin{array}{lll} X_{(S,\alpha)} & = & \widetilde{\mathbb{E}} \left[\prod_{i \in S} Z_{(i,\alpha_i)} \right] \\ \approx & \text{Prob. vars in } S \text{ assigned according to } \alpha \\ X_{(S,\alpha)} & \geq & 0 \end{array}$

Consistency: For all
$$j \notin S$$
, $\sum_{b \in [q]} X_{(S \cup \{j\}, \alpha \circ b)} = X_{(S, \alpha)}$
 $X_{\emptyset, \emptyset} = 1$

Linear Program: For variables $X_{(S,\alpha)} \in [0,1]$ satisfying consistency

Maximize
$$\frac{1}{m} \cdot \sum_{C} \sum_{\alpha \in [q]^{S_C}} X_{(S_C, \alpha)} \cdot f(\alpha + (b_{i,1}, \dots, b_{i,k}))$$

Variables: $X_{(S,\alpha)}$ for all $|S| \leq t$ and $\alpha \in [q]^S$. $X_{(S,\alpha)} \geq 0$.

Variables: $X_{(S,\alpha)}$ for all $|S| \leq t$ and $\alpha \in [q]^S$. $X_{(S,\alpha)} \geq 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Variables: $X_{(S,\alpha)}$ for all $|S| \leq t$ and $\alpha \in [q]^{S}$. $X_{(S,\alpha)} \geq 0$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Variables: $X_{(S,\alpha)}$ for all $|S| \leq t$ and $\alpha \in [q]^{S}$. $X_{(S,\alpha)} \geq 0$.

- Solution to LP defines local distributions consistent on intersections.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Variables: $X_{(S,\alpha)}$ for all $|S| \leq t$ and $\alpha \in [q]^{S}$. $X_{(S,\alpha)} \geq 0$.

- Solution to LP defines local distributions consistent on intersections.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $n^{O(t)} \cdot q^t$ variables.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

- Variables: $X_{(S_C,\alpha)}$ for all constraints C and $\alpha \in [q]^{S_C}$

 $X_{(S_{C},\alpha)} \approx$ Probability that vars in S_{C} assigned according to α

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Also define $X_{(j,b)}$ for each $j \in [n], b \in [q]$.

- Variables: $X_{(S_c,\alpha)}$ for all constraints C and $\alpha \in [q]^{S_c}$

 $X_{(S_{c},\alpha)} \approx$ Probability that vars in S_{c} assigned according to α

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Also define $X_{(j,b)}$ for each $j \in [n], b \in [q]$.

- Consistency:
$$\forall j \in S_{C_i}, \ \forall b \in [q], \quad \sum_{\substack{\alpha \in [q]}{S_{C_i}}} X_{(S_{C_i},\alpha)} = X_{(j,b)}$$

- Variables: $X_{(S_c,\alpha)}$ for all constraints C and $\alpha \in [q]^{S_c}$

 $X_{(S_{c},\alpha)} \approx$ Probability that vars in S_{c} assigned according to α

Also define $X_{(j,b)}$ for each $j \in [n], b \in [q]$.

- Consistency: $\forall j \in S_{C_i}, \ \forall b \in [q], \quad \sum_{\substack{\alpha \in [q]^{S_{C_i}} \\ \alpha(j)=b}} X_{(S_{C_i},\alpha)} = X_{(j,b)}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Variables: $X_{(S_c,\alpha)}$ for all constraints C and $\alpha \in [q]^{S_c}$

 $X_{(S_{c},\alpha)} \approx$ Probability that vars in S_{c} assigned according to α

Also define $X_{(j,b)}$ for each $j \in [n], b \in [q]$.

- Consistency: $\forall j \in S_{C_i}, \ \forall b \in [q], \quad \sum_{\substack{\alpha \in [q]^{S_{C_i}} \\ \alpha(j)=b}} X_{(S_{C_i},\alpha)} = X_{(j,b)}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- $O(q^k \cdot m + q \cdot n)$ variables.

Inaccurate pictorial representations

Extended Formulations

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Inaccurate pictorial representations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

A more precise version

- [Ghosh T 17]: For all q, for all f, if basic LP cannot distinguish (s, c) for Max-k-CSP_q(f), then for all $\epsilon > 0$, no LP given by $t = O_{\epsilon} \left(\frac{\log n}{\log \log n}\right)$ levels of the Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$.

A more precise version

- [Ghosh T 17]: For all q, for all f, if basic LP cannot distinguish (s, c) for Max-k-CSP_q(f), then for all $\epsilon > 0$, no LP given by $t = O_{\epsilon} \left(\frac{\log n}{\log \log n}\right)$ levels of the Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$.

A D N A 目 N A E N A E N A B N A C N

- Using [CLRS 13, KMR 17]: For all $\epsilon > 0$, no extended formulation of size exp $\left(O_{\epsilon}\left(\frac{(\log n)^2}{(\log \log n)^2}\right)\right)$ can distinguish $(s + \epsilon, c - \epsilon)$.

A more precise version

- [Ghosh T 17]: For all q, for all f, if basic LP cannot distinguish (s, c) for Max-k-CSP_q(f), then for all $\epsilon > 0$, no LP given by $t = O_{\epsilon} \left(\frac{\log n}{\log \log n}\right)$ levels of the Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$.
- Using [CLRS 13, KMR 17]: For all $\epsilon > 0$, no extended formulation of size exp $\left(O_{\epsilon}\left(\frac{(\log n)^2}{(\log \log n)^2}\right)\right)$ can distinguish $(s + \epsilon, c \epsilon)$.
- "Escalate" a hard instance for basic LP to a hard instance for Sherali-Adams.

- Φ_0 is a (c, s) hard instance of basic LP, for c = 1 if

- Φ_0 is a (c, s) hard instance of basic LP, for c = 1 if
 - No assignment satisfies more than *s* fraction of constraints.

(ロ)、

- Φ_0 is a (c, s) hard instance of basic LP, for c = 1 if
 - No assignment satisfies more than s fraction of constraints.
 - All local distributions on constraints are supported only on satisfying assignments.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Φ_0 is a (c, s) hard instance of basic LP, for c = 1 if
 - No assignment satisfies more than s fraction of constraints.
 - All local distributions on constraints are supported only on satisfying assignments.

- Using Φ_0 , create a (level-*t*) hard instance Φ where
 - No assignment satisfies more than s fraction of constraints.

- Φ_0 is a (c, s) hard instance of basic LP, for c = 1 if
 - No assignment satisfies more than s fraction of constraints.
 - All local distributions on constraints are supported only on satisfying assignments.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Using Φ_0 , create a (level-*t*) hard instance Φ where
 - No assignment satisfies more than *s* fraction of constraints.
 - There exist local distributions on all subsets S, $|S| \le t$, consistent on all intersections.

- Φ_0 is a (c, s) hard instance of basic LP, for c = 1 if
 - No assignment satisfies more than *s* fraction of constraints.
 - All local distributions on constraints are supported only on satisfying assignments.

- Using Φ_0 , create a (level-*t*) hard instance Φ where
 - No assignment satisfies more than *s* fraction of constraints.
 - There exist local distributions on all subsets S, $|S| \le t$, consistent on all intersections.
 - Distribution on *S* only supported on assignments satisfying (almost) all constraints in *S*.

- Use hard instance (say Φ_0) for basic LP as a "template" to produce a hard instance Φ for Sherali-Adams.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Use hard instance (say Φ_0) for basic LP as a "template" to produce a hard instance Φ for Sherali-Adams.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Instance Φ looks "easily satisfiable" locally.

- Use hard instance (say Φ_0) for basic LP as a "template" to produce a hard instance Φ for Sherali-Adams.
- Instance Φ looks "easily satisfiable" locally.
- Think of instance as (hyper)graph. Each constraint adds a hyperedge. Locally like (hyper)trees.

- Use hard instance (say Φ_0) for basic LP as a "template" to produce a hard instance Φ for Sherali-Adams.
- Instance Φ looks "easily satisfiable" locally.
- Think of instance as (hyper)graph. Each constraint adds a hyperedge. Locally like (hyper)trees.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Trees are easy.

- Will use (s, c) hard instance Φ_0 for basic LP as template.

- Will use (s, c) hard instance Φ_0 for basic LP as template.
- Consider a bucket of variables B_r for every variable x_r in Φ_0 . $|B_r| = n$.

- Will use (s, c) hard instance Φ₀ for basic LP as template.
- Consider a bucket of variables B_r for every variable x_r in Φ_0 . $|B_r| = n$.
- Repeat *m* times:
 - Sample $C \sim \Phi_0$. Let $C \equiv f(x_{i_1} + b_{i,1}, \dots, x_{i_k} + b_{i,k}).$

- Will use (s, c) hard instance Φ_0 for basic LP as template.
- Consider a bucket of variables B_r for every variable x_r in Φ_0 . $|B_r| = n$.
- Repeat *m* times:
 - Sample $C \sim \Phi_0$. Let $C \equiv f(x_{i_1} + b_{i,1}, \dots, x_{i_k} + b_{i,k}).$
 - Pick jth variable uniformly from bucket B_{ij}. Let z_{ij} be the sampled variable from this bucket.

- Will use (s, c) hard instance Φ_0 for basic LP as template.
- Consider a bucket of variables B_r for every variable x_r in Φ_0 . $|B_r| = n$.
- Repeat *m* times:
 - Sample $C \sim \Phi_0$. Let $C \equiv f(x_{i_1} + b_{i,1}, \dots, x_{i_k} + b_{i,k}).$
 - Pick jth variable uniformly from bucket B_{ij}. Let z_{ij} be the sampled variable from this bucket.

(日) (四) (日) (日) (日)

- Include constraint $f(z_{i_1} + b_{i,1}, \ldots, z_{i_k} + b_{i,k}).$

- Will use (s, c) hard instance Φ_0 for basic LP as template.
- Consider a bucket of variables B_r for every variable x_r in Φ_0 . $|B_r| = n$.
- Repeat *m* times:
 - Sample $C \sim \Phi_0$. Let $C \equiv f(x_{i_1} + b_{i,1}, \dots, x_{i_k} + b_{i,k}).$
 - Pick jth variable uniformly from bucket B_{ij}. Let z_{ij} be the sampled variable from this bucket.
 - Include constraint $f(z_{i_1} + b_{i,1}, \dots, z_{i_k} + b_{i,k}).$
- Similar constructions used by [GL 15], [KTW 14]

Bounding $OPT(\Phi)$

- Fix an assignment σ to all vars in new instance Φ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Bounding $OPT(\Phi)$

- Fix an assignment σ to all vars in new instance Φ
- Let D_r be the empirical distribution on [q] for variables in B_r .

- Fix an assignment σ to all vars in new instance Φ
- Let D_r be the empirical distribution on [q] for variables in B_r .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Fix an assignment σ to all vars in new instance Φ
- Let D_r be the empirical distribution on [q] for variables in B_r .
- Let x_r be a var in constraint $C \in \Phi_0$. A random copy of C sees a value for this variable independently distributed with D_r .

(日) (四) (日) (日) (日)

- Fix an assignment σ to all vars in new instance Φ
- Let D_r be the empirical distribution on [q] for variables in B_r .
- Let x_r be a var in constraint $C \in \Phi_0$. A random copy of C sees a value for this variable independently distributed with D_r .
- For a fixed σ ,

 \mathbb{E}_{Φ} [Fraction of sat. constraints in Φ]

equals fraction satisfied in Φ_0 by rounding each x_r independently from D_r ($\leq s$).

(日) (四) (日) (日) (日)

- Fix an assignment σ to all vars in new instance Φ
- Let D_r be the empirical distribution on [q] for variables in B_r .
- Let x_r be a var in constraint $C \in \Phi_0$. A random copy of C sees a value for this variable independently distributed with D_r .
- For a fixed σ ,

 \mathbb{E}_{Φ} [Fraction of sat. constraints in Φ]

equals fraction satisfied in Φ_0 by rounding each x_r independently from D_r ($\leq s$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Concentration and union bound.

- Random hypergraphs have no cycles of size $O(\log n)$. Locally like trees.

- Random hypergraphs have no cycles of size O(log n). Locally like trees.
- Each hyperedge e in a tree comes from a constraint in Φ_0 . Comes with a given distribution on e (from basic LP).

(日)

- Random hypergraphs have no cycles of size O(log n). Locally like trees.
- Each hyperedge e in a tree comes from a constraint in Φ_0 . Comes with a given distribution on e (from basic LP).
- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

- Random hypergraphs have no cycles of size O(log n). Locally like trees.
- Each hyperedge e in a tree comes from a constraint in Φ_0 . Comes with a given distribution on e (from basic LP).
- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

- Random hypergraphs have no cycles of size O(log n). Locally like trees.
- Each hyperedge e in a tree comes from a constraint in Φ_0 . Comes with a given distribution on e (from basic LP).
- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

- Random hypergraphs have no cycles of size O(log n). Locally like trees.
- Each hyperedge e in a tree comes from a constraint in Φ_0 . Comes with a given distribution on e (from basic LP).
- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

- Random hypergraphs have no cycles of size O(log n). Locally like trees.
- Each hyperedge e in a tree comes from a constraint in Φ_0 . Comes with a given distribution on e (from basic LP).
- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

- Does not depend on choice of root.

- Random hypergraphs have no cycles of size O(log n). Locally like trees.
- Each hyperedge e in a tree comes from a constraint in Φ_0 . Comes with a given distribution on e (from basic LP).
- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).
- Does not depend on choice of root.
- May not be consistent between tree and disconnected sub-forest.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Random hypergraphs have no cycles of size O(log n). Locally like trees.
- Each hyperedge e in a tree comes from a constraint in Φ_0 . Comes with a given distribution on e (from basic LP).
- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).
- Does not depend on choice of root.
- May not be consistent between tree and disconnected sub-forest.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Is consistent on a subtree.

- Random hypergraphs have no cycles of size O(log n). Locally like trees.
- Each hyperedge e in a tree comes from a constraint in Φ_0 . Comes with a given distribution on e (from basic LP).
- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).
- Does not depend on choice of root.
- May not be consistent between tree and disconnected sub-forest.

(日) (四) (日) (日) (日)

- Is consistent on a subtree.

 Idea: Given set S ⊆ V, break S into low-diameter components. Connect all paths in each component - always a tree, never a forest.

・ロト ・ 理 ト ・ ヨ ト ・

- Idea: Given set S ⊆ V, break S into low-diameter components. Connect all paths in each component - always a tree, never a forest.
- Propagate on each component tree.

・ロト ・回ト ・ヨト ・ヨ

- Idea: Given set S ⊆ V, break S into low-diameter components. Connect all paths in each component - always a tree, never a forest.
- Propagate on each component tree.
- If *T* ⊂ *S*, distribution on components of *T* induced by *S* should be same as obtained by partitioning *T*.

イロト イボト イヨト イヨト 三日

- Idea: Given set S ⊆ V, break S into low-diameter components. Connect all paths in each component - always a tree, never a forest.
- Propagate on each component tree.
- If *T* ⊂ *S*, distribution on components of *T* induced by *S* should be same as obtained by partitioning *T*.

イロト イボト イヨト イヨト 三日

- Cut only few edges.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- [CMM 07]: Define a metric *ρ* on random (hyper)graph *H*

$$(\rho(u, v))^2 \approx 1 - (1 - \mu)^{d_H(u, v)}$$

 ρ embeds in ℓ_2 on small sets S (for small enough μ).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- [CMM 07]: Define a metric *ρ* on random (hyper)graph *H*

 $(\rho(u, v))^2 \approx 1 - (1 - \mu)^{d_H(u, v)}$

 ρ embeds in ℓ_2 on small sets *S* (for small enough μ).

 [CMM 07]: Define a metric ρ on random (hyper)graph H

 $(\rho(u, v))^2 \approx 1 - (1 - \mu)^{d_H(u, v)}$

 ρ embeds in ℓ_2 on small sets *S* (for small enough μ).

- [CMM 07]: Define a metric ρ on random (hyper)graph H

 $(\rho(u, v))^2 \approx 1 - (1 - \mu)^{d_H(u, v)}$

 ρ embeds in ℓ_2 on small sets S (for small enough μ).

 [CMM 07]: Define a metric ρ on random (hyper)graph H

 $(\rho(u,v))^2 \approx 1 - (1-\mu)^{d_H(u,v)}$

 ρ embeds in ℓ_2 on small sets S (for small enough μ).

 [CMM 07]: Define a metric ρ on random (hyper)graph H

 $(\rho(u,v))^2 \approx 1 - (1-\mu)^{d_H(u,v)}$

 ρ embeds in ℓ_2 on small sets S (for small enough μ).

- [CCGGP 98]: Low-diameter decomposition of ℓ_2 embedding.
- Easy to check partitioning is consistent on subsets (ℓ_2 distances determine configuration).

(日) (四) (日) (日) (日)

- Low-diameter decomposition in \mathbb{R}^d cuts each edge with probability $O(\sqrt{\mu \cdot d}).$

- Low-diameter decomposition in \mathbb{R}^d cuts each edge with probability $O(\sqrt{\mu \cdot d}).$
- For |S| = t, ℓ_2 embedding is in \mathbb{R}^t . Probability of cutting an edge is $O(\sqrt{\mu \cdot t})$. Limits t to $O(\frac{\log n}{\log \log n})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Low-diameter decomposition in \mathbb{R}^d cuts each edge with probability $O(\sqrt{\mu \cdot d}).$
- For |S| = t, ℓ_2 embedding is in \mathbb{R}^t . Probability of cutting an edge is $O(\sqrt{\mu \cdot t})$. Limits t to $O(\frac{\log n}{\log \log n})$.

- [JL 84]: Random Gaussian projection in $O(\log t)$ dimensions approximately preserves all distances with high probability.

- Low-diameter decomposition in \mathbb{R}^d cuts each edge with probability $O(\sqrt{\mu \cdot d}).$
- For |S| = t, ℓ_2 embedding is in \mathbb{R}^t . Probability of cutting an edge is $O(\sqrt{\mu \cdot t})$. Limits t to $O(\frac{\log n}{\log \log n})$.
- [JL 84]: Random Gaussian projection in $O(\log t)$ dimensions approximately preserves all distances with high probability.
- For sets *S* and *T*, can one consistently discard bad Gaussian projections?

- Extend the result to $n^{\Omega(1)}$ levels of the SA hierarchy. Will give a size bound of $\exp(n^{\Omega(1)})$ on extended formulation size using [KMR17].

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Extend the result to $n^{\Omega(1)}$ levels of the SA hierarchy. Will give a size bound of $\exp(n^{\Omega(1)})$ on extended formulation size using [KMR17].
- "All-or-nothing" for Sum-of-Squares SDP hierarchy. Would give strong evidence for the UGC. Even results for specific CSPs would be interesting ($k \ge 3$?).

- Extend the result to $n^{\Omega(1)}$ levels of the SA hierarchy. Will give a size bound of $\exp(n^{\Omega(1)})$ on extended formulation size using [KMR17].
- "All-or-nothing" for Sum-of-Squares SDP hierarchy. Would give strong evidence for the UGC. Even results for specific CSPs would be interesting ($k \ge 3$?).
- Can one avoid loss of ϵ in c when c = 1 (relevant for refutation)? Exact refutation addressed by [TZ 16].

Thank You

Questions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ