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Max-k-CSPq

- n variables taking values in [q] = {0, . . . , q − 1}.
- m constraints (each on k variables)
- Satisfy as many as possible.

Unique Games

u v

- For a graph, given:
- Set of colors: [q]
- Constraints: one for each edge (u, v) ∈ E

(u,v) =
u

v
or
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- Each constraint is a bijection from [q] to [q].
Can in fact consider difference equations

xu − xv = cuv (mod q)
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Max-k-CSPq(f)

- Characterized by f : [q]k → {0, 1}.

- Each constraint is of the form

Ci ≡ f (xi1 + bi,1, . . . , xik + bi,k)

for i1, . . . , ik ∈ [n] and bi,1, . . . , bi,k ∈ [q]. (addition is mod q)

- Max-3-SAT: f ≡ OR. Each Ci is a clause. bi,1 = 1 if xi1 is negated
in clause Ci .

- Unique Games: f ≡ EQUAL. For i th constraint (u, v), let i1 = u,
i2 = v and let bi,2 − bi,1 = cuv

xu − xu = cuv ⇔ xi1 + bi,1 = xi2 + bi,2.
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Approximating Max-k-CSPq(f)

Relax the problem of finding maximum fraction of constraints
satisfiable.

≤ s > c

- Goal: Distinguish the cases OPT(Φ) ≤ s and OPT(Φ) > c.

- If for some γ ≤ 1, all pairs (γ · c, c) can be solved, then can
approximate within factor γ.



Approximating Max-k-CSPq(f)

Relax the problem of finding maximum fraction of constraints
satisfiable.

≤ s > c

- Goal: Distinguish the cases OPT(Φ) ≤ s and OPT(Φ) > c.

- If for some γ ≤ 1, all pairs (γ · c, c) can be solved, then can
approximate within factor γ.



Approximating Max-k-CSPq(f)

Relax the problem of finding maximum fraction of constraints
satisfiable.

≤ s > c

- Goal: Distinguish the cases OPT(Φ) ≤ s and OPT(Φ) > c.

- If for some γ ≤ 1, all pairs (γ · c, c) can be solved, then can
approximate within factor γ.



Approximating Max-k-CSPq(f)

Relax the problem of finding maximum fraction of constraints
satisfiable.

≤ s > c

- Goal: Distinguish the cases OPT(Φ) ≤ s and OPT(Φ) > c.

- If for some γ ≤ 1, all pairs (γ · c, c) can be solved, then can
approximate within factor γ.



Characterizing approximability

- Max-3-SAT [Håstad 97]: For all ε > 0, distinguishing
(7/8 + ε, 1− ε) is NP-hard (s < 7/8 is trivial).

≤ 7/8 + ε > 1− ε

- Unique Games Conjecture [Khot 02]: For all δ, ε > 0, there
exists q such that it is NP-hard to distinguish (δ, 1− ε) for UG
with domain [q].

≤ δ > 1− ε
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A dichotomy assuming the UGC

- [Raghavendra 08]: For all q, for all f , if a basic SDP cannot
distinguish (s, c) for Max-k-CSPq(f), then for all ε > 0, it is
NP-hard to distinguish (s + ε, c − ε) assuming the UGC.

- “All-or-nothing”: Either a simple algorithm (approximately
solvable in almost linear time) can distinguish (s, c) or it is
NP-hard to do so.

- Equivalent to UGC (because UG is a 2-CSP).
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An unconditional version for LPs [Ghosh T 17]

- For all q, for all f , if a basic LP cannot distinguish (s, c) for
Max-k-CSPq(f), then for all ε > 0, no LP of any polynomial
size in the Sherali-Adams hierarchy can distinguish
(s + ε, c − ε).

- [CLRS 13], [KMR 17]: If no polysize LP in Sherali-Adams
hierarchy can distinguish (s + ε, c − ε) then no polysize
extended formulation can distinguish (s + 2ε, c − 2ε).

- “All-or-not-much” for LPs: If a simple (linear size) LP cannot
do it, neither can any polysize LP extended formulation.
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(Linear) Extended formulations

- Defined by a feasible polytope P, and a way of encoding instances
Φ as a (linear) objective function wΦ.

- Introduce additional variables y . Optimize over polytope
P = {x | ∃y Ex + Fy = g , y ≥ 0} .

Image from [Fiorini-Rothvoss-Tiwari 2011]

Size equals #variables + #constraints.

- Optimize objective objective 〈wΦ, x〉 (depending on Φ) over P.
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Integer Program for CSPs

Variables: Z(i,b) for i ∈ [n] and b ∈ [q]

Constraints: (Z(i,b))2 = Z(i,b) ∀ i ∈ [n], b ∈ [q]∑
b∈[q]

Z(i,b) = 1 ∀ i ∈ [n]

Maximize: 1
m ·

∑
C

∑
α∈[q]SC

(∏
i∈SC

Z(i,αi )

)
· f (α + (bi,1, . . . , bi,k))
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The Sherali-Adams LP hierarchy (t levels)

Variables: X(S,α) for all |S| ≤ t and α ∈ [q]S . Represent Ẽ as

X(S,α) = Ẽ

[∏
i∈S

Z(i,αi )

]
≈ Prob. vars in S assigned according to α

X(S,α) ≥ 0

Consistency: For all j /∈ S,
∑

b∈[q] X(S∪{j},α◦b) = X(S,α)

X∅,∅ = 1

Linear Program: For variables X(S,α) ∈ [0, 1] satisfying consistency

Maximize 1
m ·

∑
C

∑
α∈[q]SC

X(SC ,α) · f (α + (bi,1, . . . , bi,k))
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[∏
i∈S

Z(i,αi )

]
≈ Prob. vars in S assigned according to α

X(S,α) ≥ 0

Consistency: For all j /∈ S,
∑

b∈[q] X(S∪{j},α◦b) = X(S,α)

X∅,∅ = 1

Linear Program: For variables X(S,α) ∈ [0, 1] satisfying consistency

Maximize 1
m ·

∑
C

∑
α∈[q]SC

X(SC ,α) · f (α + (bi,1, . . . , bi,k))



The Sherali-Adams LP hierarchy (t levels)
Variables: X(S,α) for all |S| ≤ t and α ∈ [q]S . Represent Ẽ as
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A local distribution view

Variables: X(S,α) for all |S| ≤ t and α ∈ [q]S . X(S,α) ≥ 0.

S
Distribution on [q]S

T
Distribution on [q]T

∑
b∈[q] X(S∪{j},α◦b) = X(S,α)

- Solution to LP defines local distributions consistent on intersections.

- nO(t) · qt variables.
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The basic LP

- Variables: X(SC ,α) for all constraints C and α ∈ [q]SC

X(SC ,α) ≈ Probability that vars in SC assigned according to α

Also define X(j,b) for each j ∈ [n], b ∈ [q].

- Consistency: ∀j ∈ SCi , ∀b ∈ [q],
∑

α∈[q]
SCi

α(j)=b

X(SCi ,α) = X(j,b)

C1 C2

- O(qk ·m + q · n) variables.
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A more precise version

- [Ghosh T 17]: For all q, for all f , if basic LP cannot
distinguish (s, c) for Max-k-CSPq(f), then for all ε > 0, no LP
given by t = Oε

(
log n

log log n

)
levels of the Sherali-Adams

hierarchy can distinguish (s + ε, c − ε).

- Using [CLRS 13, KMR 17]: For all ε > 0, no extended
formulation of size exp

(
Oε

(
(log n)2

(log log n)2

))
can distinguish

(s + ε, c − ε).

- “Escalate” a hard instance for basic LP to a hard instance for
Sherali-Adams.
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What is a hard instance (c = 1)

- Φ0 is a (c, s) hard instance of basic LP, for c = 1 if

- No assignment satisfies more than s fraction of constraints.

- All local distributions on constraints are supported only on
satisfying assignments.

C1 C2

- Using Φ0, create a (level-t) hard instance Φ where
- No assignment satisfies more than s fraction of constraints.

- There exist local distributions on all subsets S, |S| ≤ t,
consistent on all intersections.

- Distribution on S only supported on assignments satisfying
(almost) all constraints in S.
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Intuition for the proof

- Use hard instance (say Φ0) for basic LP as a “template” to
produce a hard instance Φ for Sherali-Adams.

- Instance Φ looks “easily satisfiable” locally.

- Think of instance as (hyper)graph. Each constraint adds a
hyperedge. Locally like (hyper)trees.

- Trees are easy.
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The gap construction

B1 B2 B3 B4 B5

- Will use (s, c) hard instance Φ0 for basic
LP as template.

- Consider a bucket of variables Br for every
variable xr in Φ0. |Br | = n.

- Repeat m times:

- Sample C ∼ Φ0. Let
C ≡ f (xi1 + bi,1, . . . , xik + bi,k).

- Pick j th variable uniformly from
bucket Bij . Let zij be the sampled
variable from this bucket.

- Include constraint
f (zi1 + bi,1, . . . , zik + bi,k).

- Similar constructions used by [GL 15],
[KTW 14]
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Bounding OPT(Φ)

D1 D2 D3 D4 D5(
2
3 , 1

3

)

- Fix an assignment σ to all vars in new
instance Φ

- Let Dr be the empirical distribution on [q]
for variables in Br .

- Let xr be a var in constraint C ∈ Φ0. A
random copy of C sees a value for this
variable independently distributed with Dr .

- For a fixed σ,

EΦ [Fraction of sat. constraints in Φ]

equals fraction satisfied in Φ0 by rounding
each xr independently from Dr (≤ s).

- Concentration and union bound.
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Propagation on trees

- Random hypergraphs have no cycles of
size O(log n). Locally like trees.

- Each hyperedge e in a tree comes from a
constraint in Φ0. Comes with a given
distribution on e (from basic LP).

- Propagate to child conditioned on parent.
Can be done by consistency on variables
(vertices).

- Does not depend on choice of root.

- May not be consistent between tree and
disconnected sub-forest.

- Is consistent on a subtree.
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Breaking up the graph

- Idea: Given set S ⊆ V , break S
into low-diameter components.
Connect all paths in each
component - always a tree, never a
forest.

- Propagate on each component
tree.

- If T ⊂ S, distribution on
components of T induced by S
should be same as obtained by
partitioning T .

- Cut only few edges.
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Subset consistent partioning schemes

- [CMM 07]: Define a metric ρ on
random (hyper)graph H

(ρ(u, v))2 ≈ 1− (1− µ)dH (u,v)

ρ embeds in `2 on small sets S (for
small enough µ).

- [CCGGP 98]: Low-diameter
decomposition of `2 embedding.

- Easy to check partitioning is
consistent on subsets (`2 distances
determine configuration).
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The dimensionality problem

- Low-diameter decomposition in Rd cuts each edge with probability
O(
√
µ · d).

- For |S| = t, `2 embedding is in Rt . Probability of cutting an edge is
O(
√
µ · t). Limits t to O( log n

log log n ).

- [JL 84]: Random Gaussian projection in O(log t) dimensions
approximately preserves all distances with high probability.

- For sets S and T , can one consistently discard bad Gaussian
projections?
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Open Problems

- Extend the result to nΩ(1) levels of the SA hierarchy. Will give a size
bound of exp(nΩ(1)) on extended formulation size using [KMR17].

- “All-or-nothing” for Sum-of-Squares SDP hierarchy. Would give
strong evidence for the UGC. Even results for specific CSPs would
be interesting (k ≥ 3?).

- Can one avoid loss of ε in c when c = 1 (relevant for refutation)?
Exact refutation addressed by [TZ 16].
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Thank You

Questions?


