Spectrahedra and directional derivatives of determinants

James Saunderson

Electrical and Computer Systems Engineering, Monash University, Australia

November 8, 2017

Hyperbolic polynomials

Spectrahedra

Directional derivatives

$$
E_{n-1}(X)=\left.\frac{d}{d t} \operatorname{det}(X+t l)\right|_{t=0}
$$

Hyperbolic polynomials

A polynomial p homogeneous of degree d in n variables is hyperbolic with respect to $e \in \mathbb{R}^{n}$ if

- $p(e) \neq 0$
- for all $x \in \mathbb{R}^{n}$, all roots of $t \mapsto p(x-t e)$ are real

$p(x, y, z)=-x^{2}-y^{2}+z^{2}$
$p(x, y, z)=-x^{4}-y^{4}+z^{4}$
hyperbolic w.r.t. $e=(0,0,1)$ not hyperbolic

Hyperbolicity cones

If p is hyperbolic w.r.t. $e \in \mathbb{R}^{n}$ define hyperbolicity cone as
$\Lambda_{+}(p, e)=\left\{x \in \mathbb{R}^{n}:\right.$ all roots of $t \mapsto p(x-t e)$ non-negative $\}$

Theorem (Gårding 1959)
If p is hyperbolic w.r.t. e then $\Lambda_{+}(p, e)$ is convex.

Example

$$
p(x, y, z)=-x^{2}-y^{2}+z^{2}
$$

- hyperbolic w.r.t. $e=(0,0,1)$
- Hyperbolicity cone is

Key examples

p has definite determinantal representation
$p(x)=\operatorname{det}\left(\sum_{i=1}^{n} A_{i} x_{i}\right)$

- A_{1}, \ldots, A_{n} are $d \times d$ symmetric matrices
- $\sum_{i=1}^{n} A_{i} e_{i} \succ 0$

Hyperbolicity cone is spectrahedron

$$
\Lambda_{+}(p, e)=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} A_{i} x_{i} \succeq 0\right\}
$$

Examples:

- Polyhedral cone: $p(x)=\prod_{i}\left(a_{i}^{T} x\right)$ with e in interior
- Positive semidefinite cone $p(X)=\operatorname{det}(X)$ with e pos def.

Hyperbolic programming

$$
\text { minimize }_{x}\langle c, x\rangle \text { subject to }\left\{\begin{array}{l}
A x=b \\
x \in \Lambda_{+}(p, e)
\end{array}\right.
$$

Theorem (Güler 1997)
$-\log _{e}(p)$ is a self-concordant barrier for $\Lambda_{+}(p, e)$
Special cases

- Linear programming
- Second-order cone programming
- Semidefinite programming

Is hyperbolic programming more general than semidefinite programming?

Derivative relaxations/Renegar derivatives

If p is hyperbolic w.r.t. e then directional derivative

$$
D_{e} p(x)=\left.\frac{d}{d t} p(x+t e)\right|_{t=0} \quad \text { is hyperbolic w.r.t. } e
$$

Derivative relaxations/Renegar derivatives

If p is hyperbolic w.r.t. e then directional derivative

$$
D_{e} p(x)=\left.\frac{d}{d t} p(x+t e)\right|_{t=0} \quad \text { is hyperbolic w.r.t. } e
$$

Geometrically: the derivative relaxation is bigger!

$$
\Lambda_{+}(p, e) \subseteq \Lambda_{+}\left(D_{e} p, e\right)
$$

Examples: elementary symmetric polynomials

If $e_{n}(x)=x_{1} x_{2} \cdots x_{n}$ then
$D_{1_{n}} e_{n}(x)=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} x_{1} \cdots x_{n}$
$=$ elementary sym. poly. of degree $n-1$ in n variables

$$
=e_{n-1}(x)
$$

Repeatedly differentiate in

- same direction \longrightarrow all elementary sym. poly.
- different directions \longrightarrow (essentially) permanent

Examples: elementary symmetric polynomials

If $e_{n}(x)=x_{1} x_{2} \cdots x_{n}$ then

$$
D_{1_{n}} e_{n}(x)=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} x_{1} \cdots x_{n}
$$

$=$ elementary sym. poly. of degree $n-1$ in n variables

$$
=e_{n-1}(x)
$$

Repeatedly differentiate in

- same direction \longrightarrow all elementary sym. poly.
- different directions \longrightarrow (essentially) permanent

$$
\begin{aligned}
D_{I_{n}} \operatorname{det}(X) & =\text { sum of }(n-1) \times(n-1) \text { principal minors of } X \\
& =E_{n-1}(X)=e_{n-1}(\lambda(X))
\end{aligned}
$$

Repeat to get all elementary sym. poly. in eigenvalues

Lax conjecture

Lax Conjecture: Every hyperbolic polynomial in 3 variables has definite determinantal representation.
Helton-Vinnikov Theorem: the Lax Conjecture is true

Generalized Lax conjecture

Lax Conjecture: Every hyperbolic polynomial in 3 variables has definite determinantal representation. Helton-Vinnikov Theorem: the Lax Conjecture is true

Generalized Lax Conjecture:
Every hyperbolicity cone is a spectrahedron.

Generalized Lax conjecture

Lax Conjecture: Every hyperbolic polynomial in 3 variables has definite determinantal representation.
Helton-Vinnikov Theorem: the Lax Conjecture is true

Generalized Lax Conjecture:

Every hyperbolicity cone is a spectrahedron.
Algebraic version:
If p is hyperbolic w.r.t. e then there exists q such that

- $q p$ has a definite determinantal representation
- hyp. cone of $q \supseteq$ hyp. cone of p.

Generalized Lax conjecture

Lax Conjecture: Every hyperbolic polynomial in 3 variables has definite determinantal representation. Helton-Vinnikov Theorem: the Lax Conjecture is true

```
Generalized Lax Conjecture:
Every hyperbolicity cone is a spectrahedron.
```

Algebraic version:
If p is hyperbolic w.r.t. e then there exists q such that

- $q p$ has a definite determinantal representation
- hyp. cone of $q \supseteq$ hyp. cone of p.
definite determinantal rep. \Longrightarrow cone spectrahedral \Longrightarrow cone projected spectrahedral

Lax-type problems for derivatives

Lax conjecture for derivatives
If $\Lambda_{+}(p, e)$ is a spectrahedron then

$$
\Lambda_{+}\left(D_{e} p, e\right) \text { is a spectrahedron. }
$$

Would imply hyperbolicity cones are spectrahedra for

- permanents, mixed discriminants
- elementary symmetric polynomials (in eigenvalues)

Lax-type problems for derivatives

Lax conjecture for derivatives
If $\Lambda_{+}(p, e)$ is a spectrahedron then

$$
\Lambda_{+}\left(D_{e} p, e\right) \text { is a spectrahedron. }
$$

Would imply hyperbolicity cones are spectrahedra for

- permanents, mixed discriminants
- elementary symmetric polynomials (in eigenvalues)

Theorem (S. 2017)
If p has a definite determinantal representation then
$\Lambda_{+}\left(D_{e} p, e\right)$ is a spectrahedron.

Spectrahedral descriptions

Hyperbolicity cones known to be spectrahedra

- Sanyal (2013): $\Lambda_{+}\left(e_{n-1}, \mathbf{1}_{n}\right)$ of size $n-1$
- Brändén (2014): $\Lambda_{+}\left(e_{k}, \mathbf{1}_{n}\right)$ of size $O\left(n^{k-1}\right)$
- Amini (2016):
hyp. cones assoc. with multivariate matching polynomials
- Kummer (2016):
hyperbolicity cone of specialized Vámos polynomial

(Projected) spectrahedral descriptions

Hyperbolicity cones known to be spectrahedra

- Sanyal (2013): $\Lambda_{+}\left(e_{n-1}, \mathbf{1}_{n}\right)$ of size $n-1$
- Brändén (2014): $\Lambda_{+}\left(e_{k}, \mathbf{1}_{n}\right)$ of size $O\left(n^{k-1}\right)$
- Amini (2016):
hyp. cones assoc. with multivariate matching polynomials
- Kummer (2016):
hyperbolicity cone of specialized Vámos polynomial

Hyperbolicity cones known to be projected spectrahedra

- Zinchenko (2008): $\Lambda_{+}\left(e_{n-1}, \mathbf{1}_{n}\right)$
- Parrilo, S. (2015): $\Lambda_{+}\left(E_{k}, I_{n}\right)$ of size $O\left(n^{2} \min \{k, n-k\}\right)$
- Netzer, Sanyal (2015): Smooth hyperbolicity cones

Example: Sanyal's representation

$$
\begin{aligned}
& \text { Spanning tree polynomial: } \\
& \qquad x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4}
\end{aligned}
$$

Example: Sanyal's representation

$$
\begin{aligned}
& \text { Spanning tree polynomial: } \\
& \qquad x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4}
\end{aligned}
$$

Definite determinantal representation:
Let $\tilde{L}_{C_{n}}(x)$ be edge-weighted reduced Laplacian of n-cycle

$$
\begin{aligned}
\operatorname{det}\left(\tilde{L}_{C_{n}}(x)\right) & =n\left(\text { spanning tree polynomial of } C_{n}\right) \\
& =n e_{n-1}(x)
\end{aligned}
$$

Example: Sanyal's representation

$$
\begin{aligned}
& \text { Spanning tree polynomial: } \\
& \qquad x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4}
\end{aligned}
$$

Definite determinantal representation:
Let $\tilde{L}_{C_{n}}(x)$ be edge-weighted reduced Laplacian of n-cycle

$$
\begin{aligned}
\operatorname{det}\left(\tilde{L}_{C_{n}}(x)\right) & =n\left(\text { spanning tree polynomial of } C_{n}\right) \\
& =n e_{n-1}(x)
\end{aligned}
$$

Spectrahedral representation

$$
\Lambda_{+}\left(e_{n-1}, \mathbf{1}_{n}\right)=\left\{x \in \mathbb{R}^{n}: V^{T} \operatorname{diag}(x) V \succeq 0\right\}
$$

where columns of V are a basis for $\mathbf{1}_{n}^{\perp}=$ cycle space ${ }^{\perp}$

Main result

Theorem (S. 2017)
$\Lambda_{+}\left(E_{n-1}, I_{n}\right)$ has a spectrahedral rep. of size $\binom{n+1}{2}-1$. If $B_{1}, B_{2}, \ldots, B_{\binom{n+1}{2}-1}$ is a basis for $n \times n$ symmetric matrices with trace zero and $[\mathcal{B}(X)]_{i j}=\operatorname{tr}\left(B_{i} X B_{j}\right)$ then

$$
\Lambda_{+}\left(E_{n-1}, I_{n}\right)=\left\{X \in \mathcal{S}^{n}: \mathcal{B}(X) \succeq 0\right\}
$$

Corollaries

- If p has a definite determinantal representation then derivative relaxation is a spectrahedron.
- Spectrahedral rep. of $\Lambda_{+}\left(e_{n-2}, \mathbf{1}_{n}\right)$ of size $\binom{n}{2}-1$.

Sketch of proof: "geometric"

Sanyal's representation of $\Lambda_{+}\left(e_{n-1}, \mathbf{1}_{n}\right)$

$$
\Lambda_{+}\left(e_{n-1}, \mathbf{1}_{n}\right)=\left\{x \in \mathbb{R}^{n}: y^{\top} \operatorname{diag}(x) y \geq 0 \text { for all } y \in \mathbf{1}_{n}^{\perp}\right\}
$$

Sketch of proof: "geometric"

Sanyal's representation of $\Lambda_{+}\left(e_{n-1}, \mathbf{1}_{n}\right)$

$$
\Lambda_{+}\left(e_{n-1}, \mathbf{1}_{n}\right)=\left\{x \in \mathbb{R}^{n}: y^{\top} \operatorname{diag}(x) y \geq 0 \text { for all } y \in \mathbf{1}_{n}^{\perp}\right\}
$$

New representation of $\Lambda_{+}\left(E_{n-1}, I_{n}\right)$

$$
\Lambda_{+}\left(E_{n-1}, I_{n}\right)=\left\{X \in \mathcal{S}^{n} \quad \operatorname{tr}(Y X Y) \geq 0 \text { for all } Y \in I_{n}^{\perp}\right\}
$$

Sketch of proof: "geometric"

Sanyal's representation of $\Lambda_{+}\left(e_{n-1}, \mathbf{1}_{n}\right)$

$$
\Lambda_{+}\left(e_{n-1}, \mathbf{1}_{n}\right)=\left\{x \in \mathbb{R}^{n}: y^{\top} \operatorname{diag}(x) y \geq 0 \text { for all } y \in \mathbf{1}_{n}^{\perp}\right\}
$$

New representation of $\Lambda_{+}\left(E_{n-1}, I_{n}\right)$

$$
\Lambda_{+}\left(E_{n-1}, I_{n}\right)=\left\{X \in \mathcal{S}^{n} \quad \operatorname{tr}(Y X Y) \geq 0 \text { for all } Y \in I_{n}^{\perp}\right\}
$$

Establish this by showing
$\Lambda_{+}\left(e_{n-1}, \mathbf{1}_{n}\right)=\left\{x \in \mathbb{R}^{n}: \operatorname{tr}(Y \operatorname{diag}(x) Y) \geq 0\right.$ for all $\left.Y \in I_{n}^{\perp}\right\}$
(diagonal of symmetric matrix is majorized by its eigenvalues)

Sketch of proof: algebraic

Polynomial identity

$$
\overbrace{c \prod_{i<j}\left(\lambda_{i}(X)+\lambda_{j}(X)\right)}^{q(X)} e_{n-1}(\lambda(X))=\operatorname{det}(\mathcal{B}(X))
$$

(constant $c>0$ depends on choice of basis in definition of \mathcal{B})

Sketch of proof: algebraic

Polynomial identity

$$
\overbrace{c \prod_{i<j}\left(\lambda_{i}(X)+\lambda_{j}(X)\right)}^{q(X)} e_{n-1}(\lambda(X))=\operatorname{det}(\mathcal{B}(X))
$$

(constant $c>0$ depends on choice of basis in definition of \mathcal{B}) Consequence:

$$
\Lambda_{+}(q, I) \cap \Lambda_{+}\left(E_{n-1}, I_{n}\right)=\{X: \mathcal{B}(X) \succeq 0\}
$$

Sketch of proof: algebraic

Polynomial identity

$$
\overbrace{c \prod_{i<j}\left(\lambda_{i}(X)+\lambda_{j}(X)\right)}^{q(X)} e_{n-1}(\lambda(X))=\operatorname{det}(\mathcal{B}(X))
$$

(constant $c>0$ depends on choice of basis in definition of \mathcal{B})
Consequence:

$$
\Lambda_{+}(q, I) \cap \Lambda_{+}\left(E_{n-1}, I_{n}\right)=\{X: \mathcal{B}(X) \succeq 0\}
$$

Separate argument:

$$
\Lambda_{+}(q, I) \supseteq \Lambda_{+}\left(E_{n-1}, I_{n}\right)
$$

(Use description of $\Lambda_{+}(p, e)$ from Kummer et al. 2015)

Some open questions

- Are $\Lambda_{+}\left(E_{k}, I_{n}\right)$ spectrahedra for $k=3,4, \ldots, n-2$?
- Lower bounds on size of spectrahedral representations? (Quadratic cones: Kummer (2016))

Spectral spectrahedra

Let C be a permutation invariant spectrahedron. Is

$$
\lambda^{-1}[C]=\{X: \lambda(X) \in C\}
$$

a spectrahedron?

Special case of Lax conjecture since $\lambda^{-1}[C]$ a hyp. cone
(Bauschke, Güler, Lewis, Sendov 2001)

Summary

- What is the relationship between hyperbolic and semidefinite programming?
- Are hyperbolicity cones (projected) spectrahedra?
- Main result: showed explicit family of hyperbolicity cones that are spectrahedra

Preprint:

- 'A spectrahedral representation of the first derivative relaxation of the positive semidefinite cone' https://arxiv.org/abs/1707.09150

THANK YOU!

