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Hyperbolic polynomials Spectrahedra

Directional derivatives

En−1(X ) =
d

dt
det(X + tI )|t=0
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Hyperbolic polynomials

A polynomial p homogeneous of degree d in n variables is
hyperbolic with respect to e ∈ Rn if

I p(e) 6= 0

I for all x ∈ Rn, all roots of t 7→ p(x − te) are real

p(x , y , z) = −x2 − y 2 + z2

hyperbolic w.r.t. e = (0, 0, 1)

p(x , y , z) = −x4 − y 4 + z4

not hyperbolic
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Hyperbolicity cones

If p is hyperbolic w.r.t. e ∈ Rn define hyperbolicity cone as

Λ+(p, e) = {x ∈ Rn : all roots of t 7→ p(x − te) non-negative}

Theorem (Gårding 1959)
If p is hyperbolic w.r.t. e then Λ+(p, e) is convex.

Example

p(x , y , z) = −x2 − y 2 + z2

I hyperbolic w.r.t. e = (0, 0, 1)

I Hyperbolicity cone is

second-order/Lorentz/ice-cream cone
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Key examples

p has definite determinantal representation

p(x) = det

(
n∑

i=1

Aixi

) I A1, . . . ,An are d × d
symmetric matrices

I
∑n

i=1 Aiei � 0

Hyperbolicity cone is spectrahedron

Λ+(p, e) =

{
x ∈ Rn :

n∑
i=1

Aixi � 0

}

Examples:

I Polyhedral cone: p(x) =
∏

i(a
T
i x) with e in interior

I Positive semidefinite cone p(X ) = det(X ) with e pos def.
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Hyperbolic programming

minimizex〈c , x〉 subject to

{
Ax = b

x ∈ Λ+(p, e).

Theorem (Güler 1997)
− loge(p) is a self-concordant barrier for Λ+(p, e)

Special cases
I Linear programming
I Second-order cone programming
I Semidefinite programming

Is hyperbolic programming more general than
semidefinite programming?
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Derivative relaxations/Renegar derivatives

If p is hyperbolic w.r.t. e then directional derivative

Dep(x) =
d

dt
p(x + te)

∣∣∣∣
t=0

is hyperbolic w.r.t. e

Geometrically: the derivative relaxation is bigger!

Λ+(p, e) ⊆ Λ+(Dep, e).
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Examples: elementary symmetric polynomials

If en(x) = x1x2 · · · xn then

D1nen(x) =
n∑

i=1

∂

∂xi
x1 · · · xn

= elementary sym. poly. of degree n − 1 in n variables

= en−1(x)

Repeatedly differentiate in

I same direction−→ all elementary sym. poly.

I different directions−→ (essentially) permanent

DIn det(X ) = sum of (n − 1)× (n − 1) principal minors of X

= En−1(X ) = en−1(λ(X ))

Repeat to get all elementary sym. poly. in eigenvalues
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Generalized

Lax conjecture

Lax Conjecture: Every hyperbolic polynomial in 3 variables has
definite determinantal representation.

Helton-Vinnikov Theorem: the Lax Conjecture is true

Generalized Lax Conjecture:
Every hyperbolicity cone is a spectrahedron.

Algebraic version:
If p is hyperbolic w.r.t. e then there exists q such that

I qp has a definite determinantal representation
I hyp. cone of q ⊇ hyp. cone of p.

definite determinantal rep. =⇒ cone spectrahedral
=⇒ cone projected spectrahedral
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Lax-type problems for derivatives

Lax conjecture for derivatives
If Λ+(p, e) is a spectrahedron then

Λ+(Dep, e) is a spectrahedron.

Would imply hyperbolicity cones are spectrahedra for

I permanents, mixed discriminants

I elementary symmetric polynomials (in eigenvalues)

Theorem (S. 2017)
If p has a definite determinantal representation then

Λ+(Dep, e) is a spectrahedron.
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(Projected)

Spectrahedral descriptions

Hyperbolicity cones known to be spectrahedra

I Sanyal (2013): Λ+(en−1, 1n) of size n − 1

I Brändén (2014): Λ+(ek , 1n) of size O(nk−1)

I Amini (2016):
hyp. cones assoc. with multivariate matching polynomials

I Kummer (2016):
hyperbolicity cone of specialized Vámos polynomial

Hyperbolicity cones known to be projected spectrahedra

I Zinchenko (2008): Λ+(en−1, 1n)

I Parrilo, S. (2015): Λ+(Ek , In) of size O(n2 min{k , n − k})
I Netzer, Sanyal (2015): Smooth hyperbolicity cones
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Example: Sanyal’s representation

x1

x2

x3

x4

Spanning tree polynomial:

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

Definite determinantal representation:
Let L̃Cn(x) be edge-weighted reduced Laplacian of n-cycle

det(L̃Cn(x)) = n (spanning tree polynomial of Cn)

= n en−1(x)

Spectrahedral representation

Λ+(en−1, 1n) = {x ∈ Rn : V T diag(x)V � 0}

where columns of V are a basis for 1⊥n = cycle space⊥
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Main result

Theorem (S. 2017)
Λ+(En−1, In) has a spectrahedral rep. of size

(
n+1
2

)
− 1.

If B1,B2, . . . ,B(n+1
2 )−1 is a basis for n× n symmetric ma-

trices with trace zero and [B(X )]ij = tr(BiXBj) then

Λ+(En−1, In) = {X ∈ Sn : B(X ) � 0}

Corollaries

I If p has a definite determinantal representation then
derivative relaxation is a spectrahedron.

I Spectrahedral rep. of Λ+(en−2, 1n) of size
(
n
2

)
− 1.
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Sketch of proof: “geometric”

Sanyal’s representation of Λ+(en−1, 1n)

Λ+(en−1, 1n) = {x ∈ Rn : yT diag(x)y ≥ 0 for all y ∈ 1⊥n }

New representation of Λ+(En−1, In)

Λ+(En−1, In) = {X ∈ Sn tr(YXY ) ≥ 0 for all Y ∈ I⊥n }

Establish this by showing

Λ+(en−1, 1n) = {x ∈ Rn : tr(Y diag(x)Y ) ≥ 0 for all Y ∈ I⊥n }

(diagonal of symmetric matrix is majorized by its eigenvalues)
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Sketch of proof: algebraic

Polynomial identity

q(X )︷ ︸︸ ︷
c
∏
i<j

(λi(X ) + λj(X )) en−1(λ(X )) = det(B(X ))

(constant c > 0 depends on choice of basis in definition of B)

Consequence:

Λ+(q, I ) ∩ Λ+(En−1, In) = {X : B(X ) � 0}.

Separate argument:

Λ+(q, I ) ⊇ Λ+(En−1, In)

(Use description of Λ+(p, e) from Kummer et al. 2015)
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Some open questions

I Are Λ+(Ek , In) spectrahedra for k = 3, 4, . . . , n − 2?

I Lower bounds on size of spectrahedral representations?
(Quadratic cones: Kummer (2016))

Spectral spectrahedra
Let C be a permutation invariant spectrahedron. Is

λ−1[C ] = {X : λ(X ) ∈ C}

a spectrahedron?

Special case of Lax conjecture since λ−1[C ] a hyp. cone
(Bauschke, Güler, Lewis, Sendov 2001)

16



Summary

I What is the relationship between hyperbolic and
semidefinite programming?

I Are hyperbolicity cones (projected) spectrahedra?

I Main result: showed explicit family of hyperbolicity cones
that are spectrahedra

Preprint:

I ‘A spectrahedral representation of the first derivative
relaxation of the positive semidefinite cone’
https://arxiv.org/abs/1707.09150

THANK YOU!
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