# Sums of Squares and Matrix Completion 

Greg Blekherman Georgia Tech

Simons Instituite, 2017

## Basic Question

$X \subset \mathbb{R}^{n}$ is a compact set defined by quadratic equations $p_{1}=0, \ldots, p_{s}=0$. Want to optimize a quadratic $Q$ on $X$.
$P_{X}$ convex cone of quadratics nonnegative on $X$.
"Obviously nonnegative" quadratics on $X$ : Sums of squares of linear polynomials + linear combinations of $p_{i}$ 's.
$\Sigma_{X}$ convex cone of sums of squares on $X$.
Main Question: For what $X$ are all nonnegative quadratics "obviously nonnegative"? Sum of Squares hierarchy converges in one step.

## Going Deeper

Quadratic polynomials are symmetric matrices. Work modulo linear subspace $L$ :

$$
L=\operatorname{span}\left(p_{1}, \ldots, p_{s}\right)
$$

The cone $\Sigma_{X}$ is a projection of the cone of PSD matrices $\mathcal{S}_{+}^{n}$.
The dual cone $\Sigma_{X}^{*}$ is the slice of $\mathcal{S}_{+}^{n}$ with the orthogonal complement $L^{\perp}$. $\Sigma_{X}^{*}$ is the Hankel Spectrahedron of $X$.

Observation: $\Sigma_{X}=P_{X}$ iff $\Sigma_{X}^{*}$ has only rank 1 extreme rays.
Equivalent Formulation: Describe all spectrahedral cones $C=L \cap \mathcal{S}_{+}^{n}$ which have only rank one extreme rays.

## Examples

First example: $L=\mathcal{S}^{n}$ and $C=\mathcal{S}_{+}^{n}$.
Second example: $L$ is the subspace of Hankel matrices:
$\left[\begin{array}{cccccc}a_{1} & a_{2} & a_{3} & . \cdot & . \cdot & a_{n} \\ a_{2} & a_{3} & . \cdot & . \cdot & a_{n} & a_{n+1} \\ a_{3} & . & . & . & a_{n} & a_{n+1} \\ . \cdot & . \cdot \\ . \cdot & . \cdot \\ a_{n} & a_{n+1} & . \cdot & . \cdot & . \cdot & a_{2 n-1}\end{array}\right]$

Third Example: $L$ is a hyperplane. $S$-Lemma implies that $C$ has only rank 1 extreme rays.

## One More Example!

Fourth example: $L$ is a subspace of block-Hankel Matrices:

$$
C=\left[\begin{array}{l|l}
H_{1} & H_{2} \\
\hline H_{2} & H_{3}
\end{array}\right]
$$

where each $H_{i}$ is Hankel. Can be any size:

$$
C=\left[\begin{array}{l|l|l}
H_{1} & H_{2} & H_{3} \\
\hline H_{2} & H_{4} & H_{5} \\
\hline H_{3} & H_{5} & H_{6}
\end{array}\right]
$$

Tensor products: $M \otimes H$

## Warmup Question

$M$ is a partially filled-in symmetric matrix.

$$
M=\left[\begin{array}{llll}
1 & 1 & 1 & ? \\
1 & 1 & 1 & ? \\
1 & 1 & 1 & 2 \\
? & ? & 2 & 1
\end{array}\right]
$$

Can ? entries be chosen so that $M$ is positive semidefinite?

## Warmup Question

$M$ is a partially filled-in symmetric matrix.

$$
M=\left[\begin{array}{llll}
1 & 1 & 1 & ? \\
1 & 1 & 1 & ? \\
1 & 1 & 1 & 1 \\
? & ? & 1 & 1
\end{array}\right]
$$

Can ? entries be chosen so that $M$ is positive semidefinite?

## Warmup Question, Part II

$M$ is a symmetric matrix where $*$ entries are given and ? entries can be freely chosen.

Can $M$ be completed to a positive semidefinite matrix?

$$
M=\left[\begin{array}{llll}
* & * & * & ? \\
* & * & * & ? \\
* & * & * & * \\
? & ? & * & *
\end{array}\right]
$$

## Obvious Necessary Condition

$M$ is a symmetric matrix where $*$ entries are given and ? entries can be freely chosen.

Can $M$ be completed to a positive semidefinite matrix?
$\left[\begin{array}{cccc}\hline * & * & * & ? \\ * & * & * & ? \\ * & * & * & * \\ ? & ? & * & *\end{array}\right]$

Necessary Condition: Filled in principal minors of $M$ must be PSD.
Question: When is this necessary condition also sufficient?

## Sum of Squares Reformulation

$\left[\begin{array}{|cccc}* * & * & * & ? \\ * & * & * & ? \\ * & * & * & * \\ ? & ? & * & *\end{array}\right]$

A symmetric matrix is also a quadratic form!
Let

$$
X=\operatorname{Span}\left(e_{1}, e_{2}, e_{3}\right) \cup \operatorname{Span}\left(e_{3}, e_{4}\right)
$$

Observe that quadrics vanishing on $X$ are

$$
L(X)=\operatorname{span}\left(x_{1} x_{4}, x_{2} x_{4}\right)
$$

Reformulation: Given a quadratic form nonnegative on $X$ when can we write it as a sum of squares on $X$ (modulo $L(X)$ )?

## Enter Graphs



Draw a graph $G$ where edges correspond to $*$ (no self-edges).
Variety $X$ corresponds to maximal cliques (clique complex) of $G$.
Theorem: (Grone, Johnson, Sa, Wolkowicz, 1984) The obvious necessary condition is also sufficient if and only if $G$ is chordal.
$G$ is chordal if any cycle of length $\geq 4$ has a chord dividing it.

## The Theorem

Theorem:(B., R. Sinn, M. Velasco) The following are equivalent:

- $P_{X}=\Sigma_{X}$.
- The irreducible components $X_{1}, \ldots, X_{k}$ of $X$ are varieties of minimal degree which are linearly joined:

$$
\left(X_{1} \cup \cdots \cup X_{i}\right) \cap X_{i+1}=\operatorname{Span}\left(X_{1} \cup \cdots \cup X_{i}\right) \cap \operatorname{Span} X_{i+1} .
$$

$L$ is the vector space of all quadratic vanishing on $X$.

## Remarks:

- Variety of minimal degree means: $\operatorname{deg} X=\operatorname{codim} X+1$. These have been classified classically by Del Pezzo and Bertini.
- From Eisenbud, Green, Hulek, Popescu (2004) the above $X$ are exactly varieties of Castelnuovo-Mumford regularity 2.


## What If Not Equal?

$L$ : Coordinate linear subspace of $\mathcal{S}^{n}$ with corresponding graph $G$.
$C=L \cap \mathcal{S}_{n}^{+}$spectrahedral cone.
Theorem:(B., R. Sinn, M. Velasco) A number $p$ is the smallest rank of an extreme ray of $C$ greater than 1 if and only if $p+2$ is the length of the smallest chordless cycle in $G$.

Remark: This also generalizes to arbitrary varieties $X$, via so-called property $N_{2, p}$.

## THANK YOU!

Do Sums of Squares Dream of Free Resolutions?
G.B., R. Sinn, M. Velasco

