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Goal

Certify the nonnegativity of a symmetric polynomial over the hypercube.

Our key result: the runtime does not depend on the number of variables
of the polynomial

1. Background

2. Our setting

3. Results

4. Flag algebras

5. Future work
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Sums of squares modulo an ideal

Goal
Certify p ≥ 0 over the solutions of a system of polynomial equations.

Example

Show that 1− y ≥ 0 whenever x2 + y 2 = 1

1− y =

(
x√
2

)2

+

(
y − 1√

2

)2

− 1

2
(x2 + y 2 − 1)

=
1

2

(
1 x y

) 1 0 −1
0 1 0
−1 0 1

1
x
y

− 1

2
(x2 + y 2 − 1)

Ideal I ⊆ R[x]

VR(I)=its real variety

p is sos modulo I if p ≡
∑l

i=1 f
2
i mod I

(i.e., if ∃ h ∈ I such that p =
∑l

i=1 f
2
i + h)

p is d-sos mod I if p ≡
∑l

i=1 f
2
i mod I where deg(fi ) ≤ d ∀ i ⇔ ∃ Q � 0 such

that p ≡ v>Qv mod I (semidefinite programming can find Q in nO(d)-time)
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Our problem

Let Vn,k= {0, 1}(
n
k) be the k-subset discrete hypercube

→ coordinates indexed by k-element subsets of [n]

Goal

Minimize a symmetric∗ polynomial over Vn,k
∗symmetric = Sn-invariant

s · xi1i2...ik = xs(i1)s(i2)...s(ik ) ∀s ∈ Sn

How?
By finding sos certificates over Vn,k that exploit symmetry, i.e., that we
can find in a runtime independent of n.

k = 1: see Blekherman, Gouveia, Pfeiffer (2014)
k ≥ 2: ?
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Examples of such problems

Turán-type problem
Given a fixed graph H, determine the limiting edge density of a
H-free graph on n vertices as n→∞

Ramsey-type problem
Color the edges of Kn ruby or sapphire. Find the smallest n for which
you are guaranteed a ruby clique of size r or a sapphire clique of size s

Focus on Vn:= Vn,2 = {0, 1}(
n
2)

→ coordinates are indexed by pairs ij , 1 ≤ i < j ≤ n
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Passing to optimization - Turán-type problem

Example

Forbidding triangles in a graph on n vertices, find

max
1(n
2

) ∑
1≤i<j≤n

xij

s.t. x2
ij = xij ∀1 ≤ i < j ≤ n

xijxjkxik = 0 ∀1 ≤ i < j < k ≤ n

In particular, show that this is at most 1
2 + O( 1n )

→ show that 1
2 + O( 1n )− 1

(n2)

∑
1≤i<j≤n xij ≥ 0
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Issue with passing to optimization - Turán-type problem

Example (continued)

Find Q � 0 and d ∈ Z+ such that

1

2
+ O

(
1

n

)
− 1(n

2

) ∑
1≤i<j≤n

xij ≡ v>Qv mod I

where v =vector of basis elements of (R[x ]/I)d and

I = 〈x2
ij − xij ∀1 ≤ i < j ≤ n,

xijxjkxik ∀1 ≤ i < j < k ≤ n〉

Can we do this with semidefinite programming?

The runtime would be
(n
2

)O(d)→∞ as n→∞.
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Foreshadowing

Example

The following is a sos proof of Mantel’s theorem

(
1 q1

)( (n−1)2
2 −2(n−1)

n

−2(n−1)
n

8
n2

)(
1
q1

)
+ sym

((
q2

) (
8
n2

) (
q2

))
where q1 =

∑
i<j

xij and q2 =
∑
i<j

xij −
n − 2

2

n−1∑
i=1

xin

Key features of desired sos certificates:

exploits symmetry

constant size

entries are functions of n
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Representation theory needed for exploiting symmetry

(R[x ]/I)d =: V =
⊕

λ`n Vλ isotypic decomposition

I partition λ = (5, 3, 3, 1) for n = 12

Vλ =
⊕
τλ

Wτλ

I shape of λ: standard tableau τλ: 1 4 5 6 9
2 7 10
3 8 12

11
I Rτλ :=row group of τλ (fixes the rows of τλ)
I Wτλ := (Vλ)Rτλ = subspace of Vλ fixed by Rτλ
I nλ:=number of standard tableaux of shape λ
I mλ:=dimension of Wτλ

V =
⊕
λ`n

⊕
τλ

Wτλ

Note: dim(V ) =
∑
λ`n

mλnλ
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Gatermann-Parrilo symmetry-reduction technique

Recall: p d-sos mod I ⇔ ∃ Q � 0 s.t. p ≡ v>Qv mod I
where v =vector of basis elements of (R[x ]/I)d

Theorem (Gatermann-Parrilo, 2004)

For each λ, fix τλ and find a symmetry-adapted basis {bτλ1 , . . . , b
τλ
mλ} for

Wτλ .

If p is symmetric and d-sos mod I, then

p ≡
∑
λ`n

sym(b>Qλb),

where b = (bτλ1 , . . . , b
τλ
mλ)> and Qλ � 0 has size mλ ×mλ.

Gain: size of SDP is
∑
λ`n

mλ instead of
∑
λ`n

mλnλ

Annie Raymond (UW→MSRI→UMass ) Symmetric Sums of Squares November 6, 2017 10 / 16



Gatermann-Parrilo symmetry-reduction technique

Recall: p d-sos mod I ⇔ ∃ Q � 0 s.t. p ≡ v>Qv mod I
where v =vector of basis elements of (R[x ]/I)d

Theorem (Gatermann-Parrilo, 2004)

For each λ, fix τλ and find a symmetry-adapted basis {bτλ1 , . . . , b
τλ
mλ} for

Wτλ .

If p is symmetric and d-sos mod I, then

p ≡
∑
λ`n

sym(b>Qλb),

where b = (bτλ1 , . . . , b
τλ
mλ)> and Qλ � 0 has size mλ ×mλ.

Gain: size of SDP is
∑
λ`n

mλ instead of
∑
λ`n

mλnλ

Annie Raymond (UW→MSRI→UMass ) Symmetric Sums of Squares November 6, 2017 10 / 16



Gatermann-Parrilo symmetry-reduction technique

Recall: p d-sos mod I ⇔ ∃ Q � 0 s.t. p ≡ v>Qv mod I
where v =vector of basis elements of (R[x ]/I)d

Theorem (Gatermann-Parrilo, 2004)

For each λ, fix τλ and find a symmetry-adapted basis {bτλ1 , . . . , b
τλ
mλ} for

Wτλ .

If p is symmetric and d-sos mod I, then

p =
∑
λ`n

sym(b>Qλb),

where b = (bτλ1 , . . . , b
τλ
mλ)> and Qλ � 0 has size mλ ×mλ.

Gain: size of SDP is
∑
λ`n

mλ instead of
∑
λ`n

mλnλ

→ how much smaller is the size of this SDP?
Annie Raymond (UW→MSRI→UMass ) Symmetric Sums of Squares November 6, 2017 10 / 16



Gatermann-Parrilo symmetry-reduction technique

Recall: p d-sos mod I ⇔ ∃ Q � 0 s.t. p ≡ v>Qv mod I
where v =vector of basis elements of (R[x ]/I)d

Theorem (Gatermann-Parrilo, 2004)

For each λ, fix τλ and find a symmetry-adapted basis {bτλ1 , . . . , b
τλ
mλ} for

Wτλ .→ complexity of the algorithm depends on n

If p is symmetric and d-sos mod I, then

p =
∑
λ`n

sym(b>Qλb),

where b = (bτλ1 , . . . , b
τλ
mλ)> and Qλ � 0 has size mλ ×mλ.

Gain: size of SDP is
∑
λ`n

mλ instead of
∑
λ`n

mλnλ

→ how much smaller is the size of this SDP?
Annie Raymond (UW→MSRI→UMass ) Symmetric Sums of Squares November 6, 2017 10 / 16



Succinct SOS

Theorem (RSST, 2016)

If p is symmetric and d-sos, then it has a symmetry-reduced sos certificate
that can be obtained by solving a SDP of size independent of n by keeping
only a few partitions in Gatermann-Parrilo.

Example

In the sos proof of Mantel’s theorem

(
1 q1

)( (n−1)2
2 −2(n−1)

n

−2(n−1)
n

8
n2

)(
1
q1

)
+ sym

((
q2

) (
8
n2

) (
q2

))

→ kept partitions (n) =

n︷ ︸︸ ︷
and (n − 1, 1) =

n−1︷ ︸︸ ︷
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Bypassing symmetry-adapted basis

Theorem (RSST, 2016)

In Gatermann-Parrilo, instead of a symmetry-adapted basis, one can use

a spanning set for Wτλ for λ ≥lex

n−2d︷ ︸︸ ︷
.

of size independent of n

that is easy to generate

Examples of spanning sets containing Wτλ

symτλ
(xm) := 1

|Rτλ
|
∑

s∈Rτλ
s · xm

an appropriate Möbius transformation
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Razborov’s flag algebras for Turán-type problems

Use flags (=partially labelled graphs) to certify a symmetric inequality that
gives a good upper bound for Turán-type problems

1

2

Key features:

sums of squares of graph densities

n disappears

asymptotic results for dense graphs

Theorem (Razborov, 2010)

If A = {K 3
4 }, then maxG :|V (G)|→∞ d(G ) ≤ 0.561666.

If A = {K 3
4 ,H1}, then maxG :|V (G)|→∞ d(G ) = 5/9.
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Connection of spanning sets to flag algebras

Theorem (RSST, 2016)

Flags provide spanning sets for Wτλ of size independent of n.

If p is symmetric and d-sos, then its nonnegativity can be established
through flags on kd vertices (even in restricted cases).

Theorem (R., Singh, Thomas, 2015)

Every flag sos polynomial of degree kd can be written as a succinct d-sos.

Theorem (RSST, 2016)

Flag methods are equivalent to standard symmetry-reduction methods for
finding sos certificates over discrete hypercubes.
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Consequences of this connection

Corollary (RSST, 2016)

It is possible to use flags for a fixed n, not just asymptotic situations

Corollary (RSST, 2016)

It is possible to use flags for extremal graph theoretic problems in the
sparse setting.

Corollary (RSST, 2016)

There exists a family of symmetric nonnegative polynomials of fixed degree
that cannot be certified exactly with any fixed set of flags, namely

1(n
2

)2
 ∑

e∈E(Kn)

xe −

⌊(n
2

)
2

⌋ ∑
e∈E(Kn)

xe −

⌊(n
2

)
2

⌋
− 1

+ O(
1

n2
)
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Open problems

Find a concrete family of nonnegative polynomials on
(n
k

)
variables

that one cannot approximate up to an error of order O( 1n ) with
finitely many flags or with sums of squares of fixed degree.

Provide certificates for open problems over Vn,k using symmetric sums
of squares.

Thank you!
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