Symmetric Sums of Squares

Annie Raymond
University of Washington → MSRI → University of Massachusetts

Joint with James Saunderson (Monash University),
Mohit Singh (Georgia Tech), and Rekha Thomas (UW)

November 6, 2017
Goal

Certify the nonnegativity of a symmetric polynomial over the hypercube.

Our key result: the runtime does not depend on the number of variables of the polynomial

1. Background
2. Our setting
3. Results
4. Flag algebras
5. Future work
Goal

Certify $p \geq 0$ over the solutions of a system of polynomial equations.
Sums of squares modulo an ideal

Goal

Certify $p \geq 0$ over the solutions of a system of polynomial equations.

Example

Show that $1 - y \geq 0$ whenever $x^2 + y^2 = 1$

$$1 - y = \left(\frac{x}{\sqrt{2}} \right)^2 + \left(\frac{y - 1}{\sqrt{2}} \right)^2 - \frac{1}{2}(x^2 + y^2 - 1)$$

$$= \frac{1}{2} \begin{pmatrix} 1 & x & y \end{pmatrix}
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \end{pmatrix} - \frac{1}{2}(x^2 + y^2 - 1)$$
Sums of squares modulo an ideal

Goal
Certify $p \geq 0$ over the solutions of a system of polynomial equations.

Example
Show that $1 - y \geq 0$ whenever $x^2 + y^2 = 1$

$$1 - y = \left(\frac{x}{\sqrt{2}}\right)^2 + \left(\frac{y - 1}{\sqrt{2}}\right)^2 - \frac{1}{2} (x^2 + y^2 - 1)$$

$$= \frac{1}{2} \begin{pmatrix} 1 & x & y \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \end{pmatrix} - \frac{1}{2} (x^2 + y^2 - 1)$$

- Ideal $\mathcal{I} \subseteq \mathbb{R}[x]$
- $\mathcal{V}_{\mathbb{R}}(\mathcal{I})=$its real variety
- p is sos modulo \mathcal{I} if $p \equiv \sum_{i=1}^{l} f_i^2 \mod \mathcal{I}$ (i.e., if $\exists h \in \mathcal{I}$ such that $p = \sum_{i=1}^{l} f_i^2 + h$)
- p is d-sos mod \mathcal{I} if $p \equiv \sum_{i=1}^{l} f_i^2 \mod \mathcal{I}$ where $\deg(f_i) \leq d \ \forall \ i$
Sums of squares modulo an ideal

Goal

Certify $p \geq 0$ over the solutions of a system of polynomial equations.

Example

Show that $1 - y \geq 0$ whenever $x^2 + y^2 = 1$

$$1 - y = \left(\frac{x}{\sqrt{2}}\right)^2 + \left(\frac{y - 1}{\sqrt{2}}\right)^2 - \frac{1}{2}(x^2 + y^2 - 1)$$

$$= \frac{1}{2} (1 \times y) \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \end{pmatrix} - \frac{1}{2}(x^2 + y^2 - 1)$$

- Ideal $\mathcal{I} \subseteq \mathbb{R}[x]$
- $\mathcal{V}_{\mathbb{R}}(\mathcal{I}) =$ its real variety
- p is sos modulo \mathcal{I} if $p \equiv \sum_{i=1}^{l} f_i^2 \mod \mathcal{I}$ (i.e., if $\exists h \in \mathcal{I}$ such that $p = \sum_{i=1}^{l} f_i^2 + h$)
- p is d-sos mod \mathcal{I} if $p \equiv \sum_{i=1}^{l} f_i^2 \mod \mathcal{I}$ where $\deg(f_i) \leq d \ \forall \ i \iff \exists Q \succeq 0$ such that $p \equiv \nu^\top Q \nu \mod \mathcal{I}$ (semidefinite programming can find Q in $n^{O(d)}$-time)
Our problem

Let $\mathcal{V}_{n,k} = \{0, 1\}^{n\choose k}$ be the k-subset discrete hypercube coordinates indexed by k-element subsets of $[n]$

Goal

Minimize a symmetric* polynomial over $\mathcal{V}_{n,k}$

*symmetric = \mathfrak{S}_n-invariant

$s \cdot x_{i_1i_2...i_k} = x_{s(i_1)s(i_2)...s(i_k)} \forall s \in \mathfrak{S}_n$
Our problem

Let $\mathcal{V}_{n,k} = \{0, 1\}^{n\choose k}$ be the k-subset discrete hypercube \rightarrow coordinates indexed by k-element subsets of $[n]$

Goal

Minimize a symmetric* polynomial over $\mathcal{V}_{n,k}$

*symmetric $\Rightarrow \mathfrak{S}_n$-invariant

$\mathfrak{s} \cdot x_{i_1i_2...i_k} = x_{s(i_1)s(i_2)...s(i_k)} \forall \mathfrak{s} \in \mathfrak{S}_n$

How?
By finding sos certificates over $\mathcal{V}_{n,k}$ that exploit symmetry, i.e., that we can find in a runtime independent of n.

$k = 1$: see Blekherman, Gouveia, Pfeiffer (2014)

$k \geq 2$: ?
Examples of such problems

- **Turán-type problem**
 Given a fixed graph H, determine the limiting edge density of a H-free graph on n vertices as $n \to \infty$
Examples of such problems

- **Turán-type problem**
 Given a fixed graph H, determine the limiting edge density of a H-free graph on n vertices as $n \to \infty$

- **Ramsey-type problem**
 Color the edges of K_n ruby or sapphire. Find the smallest n for which you are guaranteed a ruby clique of size r or a sapphire clique of size s
Examples of such problems

- **Turán-type problem**
 Given a fixed graph H, determine the limiting edge density of a H-free graph on n vertices as $n \to \infty$

- **Ramsey-type problem**
 Color the edges of K_n ruby or sapphire. Find the smallest n for which you are guaranteed a ruby clique of size r or a sapphire clique of size s

Focus on $\mathcal{V}_n := \mathcal{V}_{n,2} = \{0, 1\}^{\binom{n}{2}}$

\to coordinates are indexed by pairs ij, $1 \leq i < j \leq n$
Passing to optimization - Turán-type problem

Example

Forbidding triangles in a graph on \(n\) vertices, find

\[
\max \frac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} x_{ij}
\]

s.t. \(x_{ij}^2 = x_{ij}\) \(\forall 1 \leq i < j \leq n\)

\(x_{ij}x_{jk}x_{ik} = 0\) \(\forall 1 \leq i < j < k \leq n\)

In particular, show that this is at most \(\frac{1}{2} + O\left(\frac{1}{n}\right)\)

→ show that \(\frac{1}{2} + O\left(\frac{1}{n}\right) - \frac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} x_{ij} \geq 0\)
Example (continued)

Find $Q \succeq 0$ and $d \in \mathbb{Z}^+$ such that

$$
\frac{1}{2} + O \left(\frac{1}{n}\right) - \frac{1}{n^2} \sum_{1 \leq i < j \leq n} x_{ij} \equiv v^\top Q v \mod \mathcal{I}
$$

where $v =$ vector of basis elements of $(\mathbb{R}[x]/\mathcal{I})_d$ and

$$
\mathcal{I} = \langle x_{ij}^2 - x_{ij} \forall 1 \leq i < j \leq n, \\
x_{ij}x_{jk}x_{ik} \forall 1 \leq i < j < k \leq n \rangle
$$
Issue with passing to optimization - Turán-type problem

Example (continued)

Find $Q \succeq 0$ and $d \in \mathbb{Z}^+$ such that

$$
\frac{1}{2} + O\left(\frac{1}{n}\right) - \frac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} x_{ij} \equiv v^\top Qv \mod \mathcal{I}
$$

where $v =$vector of basis elements of $(\mathbb{R}[x]/\mathcal{I})_d$ and

$$
\mathcal{I} = \langle x_{ij}^2 - x_{ij} \ \forall 1 \leq i < j \leq n, \quad x_{ij}x_{jk}x_{ik} \ \forall 1 \leq i < j < k \leq n \rangle
$$

Can we do this with semidefinite programming?
The runtime would be $\binom{n}{2}^{O(d)}$
Issue with passing to optimization - Turán-type problem

Example (continued)

Find $Q \succeq 0$ and $d \in \mathbb{Z}^+$ such that

$$
\frac{1}{2} + O \left(\frac{1}{n} \right) - \frac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} x_{ij} \equiv v^\top Q v \quad \text{mod } \mathcal{I}
$$

where $v =$ vector of basis elements of $(\mathbb{R}[x]/\mathcal{I})_d$ and

$$
\mathcal{I} = \langle x_{ij}^2 - x_{ij} \forall 1 \leq i < j \leq n, \quad x_{ij} x_{jk} x_{ik} \forall 1 \leq i < j < k \leq n \rangle
$$

Can we do this with semidefinite programming?
The runtime would be $\binom{n}{2} O(d) \to \infty$ as $n \to \infty$.
Foreshadowing

Example

The following is a sos proof of Mantel’s theorem

\[
(1 \ q_1) \begin{pmatrix}
\frac{(n-1)^2}{2} & -\frac{2(n-1)}{n} \\
-\frac{2(n-1)}{n} & \frac{8}{n^2}
\end{pmatrix} \begin{pmatrix}
1 \\
q_1
\end{pmatrix} + \text{sym} \left((q_2) \left(\frac{8}{n^2} \right) (q_2) \right)
\]

where \(q_1 = \sum_{i<j} x_{ij} \) and \(q_2 = \sum_{i<j} x_{ij} - \frac{n-2}{2} \sum_{i=1}^{n-1} x_{in} \)

Key features of desired sos certificates:

- exploits symmetry
- constant size
- entries are functions of \(n \)
Representation theory needed for exploiting symmetry

\[(\mathbb{R}[x]/\mathcal{I})_d =: V = \bigoplus_{\lambda \vdash n} V_{\lambda} \] isotypic decomposition

- partition \(\lambda = (5, 3, 3, 1) \) for \(n = 12 \)
Representation theory needed for exploiting symmetry

- \((\mathbb{R}[x]/\mathcal{I})_d =: V = \bigoplus_{\lambda \vdash n} V_\lambda\) isotropic decomposition
 - partition \(\lambda = (5, 3, 3, 1)\) for \(n = 12\)
- \(V_\lambda = \bigoplus_{\tau_\lambda} W_{\tau_\lambda}\)
 - shape of \(\lambda\): standard tableau \(\tau_\lambda\):
 - \(\mathcal{R}_{\tau_\lambda}\) := row group of \(\tau_\lambda\) (fixes the rows of \(\tau_\lambda\))
 - \(W_{\tau_\lambda} := (V_\lambda)^{\mathcal{R}_{\tau_\lambda}}\) = subspace of \(V_\lambda\) fixed by \(\mathcal{R}_{\tau_\lambda}\)
 - \(n_\lambda :=\) number of standard tableaux of shape \(\lambda\)
 - \(m_\lambda :=\) dimension of \(W_{\tau_\lambda}\)
Representation theory needed for exploiting symmetry

- $(\mathbb{R}[x]/\mathcal{I})_d =: V = \bigoplus_{\lambda \vdash n} V_{\lambda}$ isotypic decomposition
 - partition $\lambda = (5, 3, 3, 1)$ for $n = 12$

- $V_{\lambda} = \bigoplus_{\tau_{\lambda}} W_{\tau_{\lambda}}$
 - shape of λ: standard tableau τ_{λ}:
 $\begin{array}{cccc}
 1 & 4 & 5 & 6 \\
 2 & 7 & 10 \\
 3 & 8 & 12 \\
 11
 \end{array}$
 - $\mathcal{R}_{\tau_{\lambda}} :=$ row group of τ_{λ} (fixes the rows of τ_{λ})
 - $W_{\tau_{\lambda}} := (V_{\lambda})^{\mathcal{R}_{\tau_{\lambda}}} =$ subspace of V_{λ} fixed by $\mathcal{R}_{\tau_{\lambda}}$
 - $n_{\lambda} :=$ number of standard tableaux of shape λ
 - $m_{\lambda} :=$ dimension of $W_{\tau_{\lambda}}$

$$V = \bigoplus_{\lambda \vdash n} \bigoplus_{\tau_{\lambda}} W_{\tau_{\lambda}}$$

Note: $\dim(V) = \sum_{\lambda \vdash n} m_{\lambda} n_{\lambda}$
Gatermann-Parrilo symmetry-reduction technique

Recall: p d-sos mod $\mathcal{I} \iff \exists \ Q \succeq 0 \ \text{s.t.} \ p \equiv v^\top Qv \ \text{mod} \ \mathcal{I}$

where $v =$vector of basis elements of $(\mathbb{R}[x]/\mathcal{I})_d$
Gatermann-Parrilo symmetry-reduction technique

Recall: p d-sos mod $\mathcal{I} \iff \exists \ Q \succeq 0$ s.t. $p \equiv \nu^\top Q \nu$ mod \mathcal{I}

where $\nu =$vector of basis elements of $(\mathbb{R}[x]/\mathcal{I})_d$

Theorem (Gatermann-Parrilo, 2004)

For each λ, fix τ_λ and find a symmetry-adapted basis $\{b_{1\lambda}^\top, \ldots, b_{m_\lambda}^\top\}$ for W_{τ_λ}.

If p is symmetric and d-sos mod \mathcal{I}, then

$$p \equiv \sum_{\lambda \vdash n} \text{sym}(b^\top Q_\lambda b),$$

where $b = (b_{1\lambda}^\top, \ldots, b_{m_\lambda}^\top)^\top$ and $Q_\lambda \succeq 0$ has size $m_\lambda \times m_\lambda$.

Gain: size of SDP is $\sum_{\lambda \vdash n} m_\lambda$ instead of $\sum_{\lambda \vdash n} m_\lambda n_\lambda$
Recall: \(p \ d\text{-sos mod } I \iff \exists Q \succeq 0 \text{ s.t. } p \equiv \nu^\top Q\nu \mod I \)

where \(\nu \) = vector of basis elements of \((\mathbb{R}[x]/I)_d\)

Theorem (Gatermann-Parrilo, 2004)

For each \(\lambda \), fix \(\tau_\lambda \) and find a symmetry-adapted basis \(\{b_{1\lambda}^{\tau}, \ldots, b_{m_\lambda\lambda}^{\tau}\} \) for \(W_{\tau_\lambda} \).

If \(p \) is symmetric and \(d\text{-sos mod } I \), then

\[
p = \sum_{\lambda \vdash n} \text{sym}(b^\top Q_\lambda b),
\]

where \(b = (b_{1\lambda}^{\tau}, \ldots, b_{m_\lambda\lambda}^{\tau})^\top \) and \(Q_\lambda \succeq 0 \) has size \(m_\lambda \times m_\lambda \).

Gain: size of SDP is \(\sum_{\lambda \vdash n} m_\lambda \) instead of \(\sum_{\lambda \vdash n} m_\lambda n_\lambda \)

→ how much smaller is the size of this SDP?
Gatermann-Parrilo symmetry-reduction technique

Recall: \(p \ d\text{-sos mod } \mathcal{I} \leftrightarrow \exists \ Q \succeq 0 \text{ s.t. } p \equiv v^\top Q v \mod \mathcal{I} \)
where \(v = \text{vector of basis elements of } (\mathbb{R}[x]/\mathcal{I})_d \)

Theorem (Gatermann-Parrilo, 2004)

For each \(\lambda \), fix \(\tau_\lambda \) and find a **symmetry-adapted basis** \(\{ b_1^{\tau_\lambda}, \ldots, b_{m_\lambda}^{\tau_\lambda} \} \) for \(W_{\tau_\lambda} \).

\(\rightarrow \) **complexity of the algorithm depends on** \(n \)

If \(p \) is symmetric and \(d\text{-sos mod } \mathcal{I} \), then

\[
p = \sum_{\lambda \vdash n} \text{sym}(b^\top Q_\lambda b),
\]

where \(b = (b_1^{\tau_\lambda}, \ldots, b_{m_\lambda}^{\tau_\lambda})^\top \) and \(Q_\lambda \succeq 0 \) has size \(m_\lambda \times m_\lambda \).

Gain: size of SDP is \(\sum_{\lambda \vdash n} m_\lambda \) instead of \(\sum_{\lambda \vdash n} m_\lambda n_\lambda \)

\(\rightarrow \) **how much smaller is the size of this SDP?**
Theorem (RSST, 2016)

If p is symmetric and d-sos, then it has a symmetry-reduced sos certificate that can be obtained by solving a SDP of size independent of n by keeping only a few partitions in Gatermann-Parrilo.
Theorem (RSST, 2016)

If \(p \) is symmetric and \(d\)-sos, then it has a symmetry-reduced sos certificate that can be obtained by solving a SDP of size independent of \(n \) by keeping only a few partitions in Gatermann-Parrilo.

Example

In the sos proof of Mantel’s theorem

\[
\begin{pmatrix}
1 & q_1
\end{pmatrix}
\begin{pmatrix}
\frac{(n-1)^2}{2} & -\frac{2(n-1)}{n}
\end{pmatrix}
\begin{pmatrix}
1 \\
q_1
\end{pmatrix}
+ \text{sym}\left((q_2) \left(\frac{8}{n^2} \right) (q_2) \right)
\]

\[\rightarrow \text{kept partitions } (n) = \underbrace{\text{\(n\) partitions}}_{\text{\(n\) partitions}} \text{ and } (n - 1, 1) = \underbrace{\text{\(n-1\) partitions}}_{\text{\(n-1\) partitions}}\]
Bypassing symmetry-adapted basis

Theorem (RSST, 2016)

In Gatermann-Parrilo, instead of a symmetry-adapted basis, one can use

- a spanning set for $W_{\tau \lambda}$ for $\lambda \geq_{\text{lex}} n - 2d$.
- of size independent of n
- that is easy to generate
Bypassing symmetry-adapted basis

Theorem (RSST, 2016)

In Gatermann-Parrilo, instead of a symmetry-adapted basis, one can use

- a spanning set for $W_{\tau,\lambda}$ for $\lambda \geq \text{lex}^{n-2d}$

- of size independent of n

- that is easy to generate

Examples of spanning sets containing $W_{\tau,\lambda}$

- $\text{sym}_{\tau,\lambda}(x^m) := \frac{1}{|R_{\tau,\lambda}|} \sum_{\mathbf{s} \in R_{\tau,\lambda}} \mathbf{s} \cdot x^m$

- an appropriate Möbius transformation
Razborov’s flag algebras for Turán-type problems

Use flags (=partially labelled graphs) to certify a symmetric inequality that gives a good upper bound for Turán-type problems

Key features:
- sums of squares of graph densities
- n disappears
- asymptotic results for dense graphs

Theorem (Razborov, 2010)
If $\mathcal{A} = \{K_4^3\}$, then $\max_{G:|V(G)| \to \infty} d(G) \leq 0.561666$.
If $\mathcal{A} = \{K_4^3, H_1\}$, then $\max_{G:|V(G)| \to \infty} d(G) = 5/9$.
Connection of spanning sets to flag algebras

Theorem (RSST, 2016)

Flags provide spanning sets for $W_{\tau,\lambda}$ of size independent of n.

If p is symmetric and d-sos, then its nonnegativity can be established through flags on kd vertices (even in restricted cases).

Theorem (R., Singh, Thomas, 2015)

Every flag sos polynomial of degree kd can be written as a succinct d-sos.

Theorem (RSST, 2016)

Flag methods are equivalent to standard symmetry-reduction methods for finding sos certificates over discrete hypercubes.
Consequences of this connection

Corollary (RSST, 2016)

It is possible to use flags for a fixed n, not just asymptotic situations.
Consequences of this connection

Corollary (RSST, 2016)

It is possible to use flags for a fixed n, not just asymptotic situations

Corollary (RSST, 2016)

It is possible to use flags for extremal graph theoretic problems in the sparse setting.
Consequences of this connection

Corollary (RSST, 2016)

It is possible to use flags for a fixed n, not just asymptotic situations.

Corollary (RSST, 2016)

It is possible to use flags for extremal graph theoretic problems in the sparse setting.

Corollary (RSST, 2016)

There exists a family of symmetric nonnegative polynomials of fixed degree that cannot be certified exactly with any fixed set of flags, namely

\[
\frac{1}{(\frac{n}{2})^2} \left(\sum_{e \in E(K_n)} x_e - \left\lfloor \frac{n}{2} \right\rfloor \right) \left(\sum_{e \in E(K_n)} x_e - \left\lfloor \frac{n}{2} \right\rfloor - 1 \right) + O\left(\frac{1}{n^2} \right)
\]
Open problems

- Find a concrete family of nonnegative polynomials on $\binom{n}{k}$ variables that one cannot approximate up to an error of order $O\left(\frac{1}{n}\right)$ with finitely many flags or with sums of squares of fixed degree.
- Provide certificates for open problems over $\mathcal{V}_{n,k}$ using symmetric sums of squares.
Open problems

- Find a concrete family of nonnegative polynomials on $\binom{n}{k}$ variables that one cannot approximate up to an error of order $O\left(\frac{1}{n}\right)$ with finitely many flags or with sums of squares of fixed degree.
- Provide certificates for open problems over $V_{n,k}$ using symmetric sums of squares.

Thank you!