A lower bound on the positive semidefinite rank of convex bodies

Hamza Fawzi (University of Cambridge)

Joint work with Mohab Safey EI Din (UPMC, LIP6)

Simons Workshop on Extended Formulations
November 2017

Semidefinite programming lifts

- C convex body. A semidefinite lift of C is a representation:

$$
C=\pi(S)
$$

where π linear map and S spectrahedron $\left(A_{0}, \ldots, A_{n} \in \mathbf{S}^{m}\right)$:

$$
S=\left\{x \in \mathbb{R}^{n}: A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \succeq 0\right\}
$$

Size of lift $=m$

- $\operatorname{rank}_{\mathrm{psd}}(C)=$ size of smallest SDP lift of C

Example:

$$
[-1,1]^{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: \exists u \in \mathbb{R}\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & 1 & u \\
x_{2} & u & 1
\end{array}\right] \succeq 0\right\}
$$

Positive semidefinite rank

- Constructing SDP lifts: sum-of-squares method
- Lower bounds: Psd rank of some basic convex sets unknown (regular polygons, permutahedron, ...)

Wikipedia, "Permutohedron"

A lower bound for LP lifts

For a polytope P, let rank ${ }_{L P}(P)$ be the size of its smallest LP lift.

```
Theorem (Goemans)
If \(P\) is a polytope then \(\operatorname{rank}_{L P}(P) \geq \log _{2}(\#\) vertices \((P))\).
```


A lower bound for LP lifts

For a polytope P, let rank $_{L P}(P)$ be the size of its smallest LP lift.

Theorem (Goemans)

If P is a polytope then $\operatorname{rank}_{L P}(P) \geq \log _{2}(\#$ vertices $(P))$.

Proof.

Assume $P=\pi(Q)$ and Q has m facets.

- If x is a vertex of P then $\pi^{-1}(\{x\})$ is a face of Q
- Any face of Q is an intersection of facets (Q is a polytope)

Thus $\#$ vertices $(P) \leq \# \operatorname{faces}(Q) \leq 2^{m}$, i.e., $m \geq \log _{2}(\#$ vertices $(P))$.

A lower bound for LP lifts

For a polytope P, let rank $_{L P}(P)$ be the size of its smallest LP lift.

Theorem (Goemans)

If P is a polytope then $\operatorname{rank}_{L P}(P) \geq \log _{2}(\#$ vertices $(P))$.

Proof.

Assume $P=\pi(Q)$ and Q has m facets.

- If x is a vertex of P then $\pi^{-1}(\{x\})$ is a face of Q
- Any face of Q is an intersection of facets (Q is a polytope)

Thus $\#$ vertices $(P) \leq \# \operatorname{faces}(Q) \leq 2^{m}$, i.e., $m \geq \log _{2}(\#$ vertices $(P))$.

Bound can be tight, e.g., regular N-gon, or permutahedron

SDP lifts: a bound using quantifier elimination

Assume $C=\pi(S)$ where $\left(A_{0}, \ldots, A_{n} \in \mathbf{S}^{m}\right)$:

$$
S=\left\{x \in \mathbb{R}^{n}: A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \succeq 0\right\}
$$

- Write explicit polynomial inequalities that describe S
- Quantifier elimination \rightarrow polynomial equalities/inequalities that describe C \rightarrow bound on the degree of the boundary of C.

SDP lifts: a bound using quantifier elimination

Assume $C=\pi(S)$ where $\left(A_{0}, \ldots, A_{n} \in \mathbf{S}^{m}\right)$:

$$
S=\left\{x \in \mathbb{R}^{n}: A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \succeq 0\right\}
$$

- Write explicit polynomial inequalities that describe S
- Quantifier elimination \rightarrow polynomial equalities/inequalities that describe C \rightarrow bound on the degree of the boundary of C.

This approach gives (see [Gouveia, Parrilo, Thomas])

$$
\operatorname{rank}_{\mathrm{psd}}(C) \geq \Omega\left(\sqrt{\frac{\log d}{n \log \log d}}\right)
$$

where d is degree of boundary of C. Problems:

- Constants hard to make explicit (most likely very large)
- Tight?

Main results

If $C \subset \mathbb{R}^{n}$ is a convex body, the polar of C is

$$
C^{o}=\left\{c \in \mathbb{R}^{n}:\langle c, x\rangle \leq 1 \forall x \in C\right\} .
$$

Main results

If $C \subset \mathbb{R}^{n}$ is a convex body, the polar of C is

$$
C^{o}=\left\{c \in \mathbb{R}^{n}:\langle c, x\rangle \leq 1 \forall x \in C\right\} .
$$

Theorem (Fawzi-Safey El Din)

Let C be a convex body and d the smallest degree of a polynomial that vanishes on the boundary of C^{0}. Then rank $\mathrm{psd}(C) \geq \sqrt{\log d}$.

Main results

If $C \subset \mathbb{R}^{n}$ is a convex body, the polar of C is

$$
C^{\circ}=\left\{c \in \mathbb{R}^{n}:\langle c, x\rangle \leq 1 \forall x \in C\right\} .
$$

Theorem (Fawzi-Safey El Din)

Let C be a convex body and d the smallest degree of a polynomial that vanishes on the boundary of C^{0}. Then $\operatorname{rank}_{\text {psd }}(C) \geq \sqrt{\log d}$.

Theorem (Fawzi-Safey El Din)

There exist convex bodies C such that rank $\mathrm{psd}(C) \leq \sqrt{20 \log d}$ where the degree d of the algebraic boundary of C° can be made arbitrary large.

Preliminaries: KKT conditions

Consider a semidefinite program

$$
\begin{array}{ll}
\operatorname{maximise} & c^{\top} x \\
\text { subject to } & A(x):=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0 \quad \text { (linear matrix inequality) }
\end{array}
$$

KKT conditions (assuming certain regularity conditions) A point x is optimal if, and only if, there exists $Z \in \mathbf{S}^{m}$ (Lagrange multiplier) such that

$$
\left\{\begin{array}{l}
A(x) \succeq 0, Z \succeq 0 \quad \text { (primal and dual feasibility) } \\
A(x) Z=0 \quad(\text { complementary slackness }) \\
\left\langle A_{i}, Z\right\rangle+c_{i}=0(i=1, \ldots, n)
\end{array}\right.
$$

Preliminaries: KKT conditions

Consider a semidefinite program

$$
\begin{array}{ll}
\operatorname{maximise} & c^{\top} x \\
\text { subject to } & A(x):=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0 \quad \text { (linear matrix inequality) }
\end{array}
$$

KKT conditions (assuming certain regularity conditions) A point x is optimal if, and only if, there exists $Z \in \mathbf{S}^{m}$ (Lagrange multiplier) such that

$$
\left\{\begin{array}{l}
A(x) \succeq 0, Z \succeq 0 \quad \text { (primal and dual feasibility) } \\
A(x) Z=0 \quad \text { (complementary slackness) } \\
\left\langle A_{i}, Z\right\rangle+c_{i}=0 \quad(i=1, \ldots, n)
\end{array}\right.
$$

Remove inequalities to get polynomial system:

$$
\left\{\begin{array}{l}
A(x) Z=0 \quad \text { (complementary slackness) } \\
\left\langle A_{i}, Z\right\rangle+c_{i}=0(i=1, \ldots, n)
\end{array}\right.
$$

What are the solutions of this polynomial system?

KKT system

$$
K K T:\left\{\begin{array}{l}
X Z=0 \quad \text { (complementary slackness) } \\
X=A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \\
\left\langle A_{i}, Z\right\rangle+c_{i}=0(i=1, \ldots, n)
\end{array}\right.
$$

KKT system

$$
K K T:\left\{\begin{array}{l}
X Z=0 \quad \text { (complementary slackness) } \\
X=A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \\
\left\langle A_{i}, Z\right\rangle+c_{i}=0(i=1, \ldots, n)
\end{array}\right.
$$

- If $\left(A_{0}, \ldots, A_{n}, c\right)$ chosen generically then (KKT) has a finite number of solutions (x, Z) (application of Bertini theorem).

KKT system

$$
K K T:\left\{\begin{array}{l}
X Z=0 \quad \text { (complementary slackness) } \\
X=A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \\
\left\langle A_{i}, Z\right\rangle+c_{i}=0(i=1, \ldots, n)
\end{array}\right.
$$

- If $\left(A_{0}, \ldots, A_{n}, c\right)$ chosen generically then (KKT) has a finite number of solutions (x, Z) (application of Bertini theorem).
- Bézout bound tells us there are at most $2^{m^{2}}$ solutions

KKT system

$$
K K T:\left\{\begin{array}{l}
X Z=0 \quad \text { (complementary slackness) } \\
X=A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \\
\left\langle A_{i}, Z\right\rangle+c_{i}=0(i=1, \ldots, n)
\end{array}\right.
$$

- If $\left(A_{0}, \ldots, A_{n}, c\right)$ chosen generically then (KKT) has a finite number of solutions (x, Z) (application of Bertini theorem).
- Bézout bound tells us there are at most $2^{m^{2}}$ solutions
- [NRS] and [vBR] computed the exact number of solutions. More precisely, they computed number of solutions in each irreducible component of (KKT)!
[NRS] Nie-Ranestad-Sturmfels: The algebraic degree of semidefinite programming [vBR] von Bothmer-Ranestad: A general formula for the algebraic degree in SDP

Proof of lower bound

Let C be a convex body and assume $C=\pi(S)$ where S spectrahedron.

- We exhibit a system of polynomial equations that vanishes on the boundary of ∂C^{0}. In fact, this system is nothing but the KKT equations. Indeed:

Proof of lower bound

Let C be a convex body and assume $C=\pi(S)$ where S spectrahedron.

- We exhibit a system of polynomial equations that vanishes on the boundary of ∂C^{0}. In fact, this system is nothing but the KKT equations. Indeed:
- A point c is on boundary of C° means that
(P) $\max _{z \in C}\langle c, z\rangle=1$

Proof of lower bound

Let C be a convex body and assume $C=\pi(S)$ where S spectrahedron.

- We exhibit a system of polynomial equations that vanishes on the boundary of ∂C^{0}. In fact, this system is nothing but the KKT equations. Indeed:
- A point c is on boundary of C° means that

$$
\begin{equation*}
\text { (P) } \quad \max _{z \in C}\langle c, z\rangle=1 \underset{\substack{s, c|c| i(S) \\ C=\pi(S)}}{\Longleftrightarrow} \max _{x \in S}\left\langle\pi^{*}(c), x\right\rangle=1 \tag{SDP}
\end{equation*}
$$

where $S=\left\{x \in \mathbb{R}^{N}: A(x):=A_{0}+x_{1} A_{1}+\ldots+x_{N} A_{N} \succeq 0\right\}$

Proof of lower bound

Let C be a convex body and assume $C=\pi(S)$ where S spectrahedron.

- We exhibit a system of polynomial equations that vanishes on the boundary of ∂C^{0}. In fact, this system is nothing but the KKT equations. Indeed:
- A point c is on boundary of C° means that

$$
\begin{equation*}
\text { (P) } \quad \max _{z \in C}\langle c, z\rangle=1 \quad \underset{\substack{S \overleftrightarrow{D P i f t} \\ C=\pi(S)}}{\Longleftrightarrow} \max _{x \in S}\left\langle\pi^{*}(c), x\right\rangle=1 \tag{SDP}
\end{equation*}
$$

where $S=\left\{x \in \mathbb{R}^{N}: A(x):=A_{0}+x_{1} A_{1}+\ldots+x_{N} A_{N} \succeq 0\right\}$

- KKT conditions of optimality for (SDP): $\exists Z \in \mathbf{S}^{m}$ (Lagrange multiplier)

$$
\left\{\begin{array}{l}
A(x) \succeq 0, Z \succeq 0 \quad \text { (primal and dual feasibility) } \\
A(x) Z=0 \quad \text { (complementary slackness) } \\
\left\langle\pi^{*}(c), x\right\rangle=1, \quad\left(A-A_{0}\right)^{*}(Z)+\pi^{*}(c)=0
\end{array}\right.
$$

Proof of lower bound

Let C be a convex body and assume $C=\pi(S)$ where S spectrahedron.

- We exhibit a system of polynomial equations that vanishes on the boundary of ∂C^{0}. In fact, this system is nothing but the KKT equations. Indeed:
- A point c is on boundary of C° means that

$$
\begin{equation*}
\text { (P) } \quad \max _{z \in C}\langle c, z\rangle=1 \quad \underset{\substack{S \mid \\ C=\pi(S)}}{\Longleftrightarrow} \max _{x \in S}\left\langle\pi^{*}(c), x\right\rangle=1 \tag{SDP}
\end{equation*}
$$

where $S=\left\{x \in \mathbb{R}^{N}: A(x):=A_{0}+x_{1} A_{1}+\ldots+x_{N} A_{N} \succeq 0\right\}$

- KKT conditions of optimality for (SDP): $\exists Z \in \mathbf{S}^{m}$ (Lagrange multiplier)

$$
\begin{cases}A(x) \succeq 0, Z \succeq 0 \quad \text { (primaland dual feasibility) } & \\ A(x) Z=0 \quad \text { (complementary slackness) } & \text { want equations only } \\ \left\langle\pi^{*}(c), x\right\rangle=1, \quad\left(A-A_{0}\right)^{*}(Z)+\pi^{*}(c)=0 & \text { no inequalities }\end{cases}
$$

Proof of lower bound

Let C be a convex body and assume $C=\pi(S)$ where S spectrahedron.

- We exhibit a system of polynomial equations that vanishes on the boundary of ∂C^{0}. In fact, this system is nothing but the KKT equations. Indeed:
- A point c is on boundary of C° means that

$$
\begin{equation*}
\text { (P) } \quad \max _{z \in C}\langle c, z\rangle=1 \quad \underset{\substack{S \overleftrightarrow{D P i f t} \\ C=\pi(S)}}{\Longleftrightarrow} \max _{x \in S}\left\langle\pi^{*}(c), x\right\rangle=1 \tag{SDP}
\end{equation*}
$$

where $S=\left\{x \in \mathbb{R}^{N}: A(x):=A_{0}+x_{1} A_{1}+\ldots+x_{N} A_{N} \succeq 0\right\}$

- KKT conditions of optimality for (SDP): $\exists Z \in \mathbf{S}^{m}$ (Lagrange multiplier)

$$
\begin{cases}A(x) \geq 0, Z \geq 0 \quad \text { (primal and dual feasibility) } & \\ A(x) Z=0 \quad \text { (complementary slackness) } & \text { want equations only } \\ \left\langle\pi^{*}(c), x\right\rangle=1, \quad\left(A-A_{0}\right)^{*}(Z)+\pi^{*}(c)=0 & \text { no inequalities }\end{cases}
$$

- Projecting on c we get a variety that vanishes on ∂C°. Bézout bound tells us this variety has degree $\leq 2^{m^{2}}$.

Illustration of proof

$$
A(x, y, s, t)=\left[\begin{array}{cccc}
1+s & t & x+s & y-t \\
t & 1-s & -y-t & x-s \\
x+s & -y-t & 1+x & -y \\
y-t & x-s & -y & 1-x
\end{array}\right]
$$

Can show that $C=\pi_{x, y}(S)$ is regular pentagon in \mathbb{R}^{2}. Variety obtained from the KKT equations:

- Red $=$ algebraic boundary of C°
- Blue = spurious components

Application: vertices of spectrahedra and their shadows

A vertex of a convex body is a point where normal cone is full-dimensional.

Any convex body has at most countably many vertices (see e.g., [Schneider]).

Application: vertices of spectrahedra and their shadows

A vertex of a convex body is a point where normal cone is full-dimensional.

Any convex body has at most countably many vertices (see e.g., [Schneider]).

Theorem (Fawzi-Safey El Din)

If C has a SDP representation of size m then C has at most $2^{m^{2}}$ vertices.

Proof.

Each vertex of C contributes a linear factor in the boundary of C°.

Tightness of bound

Theorem (Fawzi-Safey El Din)

There exist convex bodies C such that rank ${ }_{\text {psd }}(C) \leq \sqrt{20 \log d}$ where the degree d of the algebraic boundary of C° can be made arbitrary large.

Main idea

- The convex bodies C are "random spectrahedra" of appropriate dimension.
- For these spectrahedra, we can use the exact formulas for the degree of the KKT equations computed in:
- Nie-Ranestad-Sturmfels: The algebraic degree of semidefinite programming
- von Bothmer-Ranestad: A general formula for the algebraic degree in SDP

Proof of tightness

- Nie-Ranestad-Sturmfels: If C is a generic spectrahedron defined by $A(x):=A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \in \mathbf{S}^{m}$ then:

$$
\partial_{a} C^{\circ} \subseteq \bigcup_{r \in \text { Pataki range }} \mathcal{V}_{r}
$$

where each \mathcal{V}_{r} is irreducible and has degree $\delta(n, m, r)$.

Proof of tightness

- Nie-Ranestad-Sturmfels: If C is a generic spectrahedron defined by $A(x):=A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \in \mathbf{S}^{m}$ then:

$$
\partial_{a} C^{\circ} \subseteq \bigcup_{r \in \text { Pataki range }} \mathcal{V}_{r}
$$

where each \mathcal{V}_{r} is irreducible and has degree $\delta(n, m, r)$.

- Inclusion can be strict: possible for a certain \mathcal{V}_{r} not to "touch" (the real semialgebraic set) ∂C°.

Proof of tightness

- Nie-Ranestad-Sturmfels: If C is a generic spectrahedron defined by $A(x):=A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \in \mathbf{S}^{m}$ then:

$$
\partial_{a} C^{\circ} \subseteq \bigcup_{r \in \text { Pataki range }} \mathcal{V}_{r}
$$

where each \mathcal{V}_{r} is irreducible and has degree $\delta(n, m, r)$.

- Inclusion can be strict: possible for a certain \mathcal{V}_{r} not to "touch" (the real semialgebraic set) ∂C°.
- Amelunxen-Bürgisser: if A_{0}, \ldots, A_{n} are chosen randomly then each value of r appears in $\partial_{a} C^{\circ}$ with strictly positive probability.

Proof of tightness

- Nie-Ranestad-Sturmfels: If C is a generic spectrahedron defined by $A(x):=A_{0}+x_{1} A_{1}+\ldots+x_{n} A_{n} \in \mathbf{S}^{m}$ then:

$$
\partial_{a} C^{\circ} \subseteq \bigcup_{r \in \text { Pataki range }} \mathcal{V}_{r}
$$

where each \mathcal{V}_{r} is irreducible and has degree $\delta(n, m, r)$.

- Inclusion can be strict: possible for a certain \mathcal{V}_{r} not to "touch" (the real semialgebraic set) ∂C°.
- Amelunxen-Bürgisser: if A_{0}, \ldots, A_{n} are chosen randomly then each value of r appears in $\partial_{a} C^{\circ}$ with strictly positive probability.
- Complete proof by showing (using elementary calculations) that

$$
\delta(n(m), m, r(m)) \geq 2^{m^{2} / 20}
$$

for choice

$$
n=n(m) \sim m^{2} / 4 \text { and } r=r(m) \sim m / 2
$$

Note: we observed numerically that $\delta(n(m), m, r) \geq 2^{\Omega\left(m^{2}\right)}$ for all r. Proving this would allow to prove result without using Amelunxen-Bürgisser.

Open questions

- Polytopes: Can we improve lower bound to $\log d$ if we assume C to be a polytope? In particular: what is the positive semidefinite rank of regular polygons in the plane?
- Vertices: Is the bound of $2^{m^{2}}$ on the number of vertices tight? Studying random spectrahedra as in Amelunxen-Bürgisser can be useful here...
- Explicit: Find explicit family of convex bodies that match the bound of $\sqrt{\log d}$.
- Algebraic degree: More systematic analysis of $\delta(n, m, r)$. Seems to have interesting properties (log-concavity, etc.) + connection with intrinsic volumes of positive semidefinite cone (cf. Amelunxen-Bürgisser).
For more, see paper on arXiv:1705.06996.

Open questions

- Polytopes: Can we improve lower bound to $\log d$ if we assume C to be a polytope? In particular: what is the positive semidefinite rank of regular polygons in the plane?
- Vertices: Is the bound of $2^{m^{2}}$ on the number of vertices tight? Studying random spectrahedra as in Amelunxen-Bürgisser can be useful here...
- Explicit: Find explicit family of convex bodies that match the bound of $\sqrt{\log d}$.
- Algebraic degree: More systematic analysis of $\delta(n, m, r)$. Seems to have interesting properties (log-concavity, etc.) + connection with intrinsic volumes of positive semidefinite cone (cf. Amelunxen-Bürgisser).

For more, see paper on arXiv:1705.06996.
Thank you!

