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Semidefinite programming lifts

C convex body. A semidefinite lift of C is a representation:

C = π(S)

where π linear map and S spectrahedron (A0, . . . ,An ∈ Sm):

S = {x ∈ Rn : A0 + x1A1 + . . .+ xnAn � 0}

Size of lift = m

rankpsd(C ) = size of smallest SDP lift of C

Example:

[−1, 1]2 =

(x1, x2) ∈ R2 : ∃u ∈ R

 1 x1 x2

x1 1 u
x2 u 1

 � 0
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Positive semidefinite rank

Constructing SDP lifts: sum-of-squares method

Lower bounds: Psd rank of some basic convex sets unknown (regular
polygons, permutahedron, ...)

Wikipedia, “Permutohedron”
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A lower bound for LP lifts

For a polytope P, let rankLP(P) be the size of its smallest LP lift.

Theorem (Goemans)

If P is a polytope then rankLP(P) ≥ log2(#vertices(P)).

Proof.

Assume P = π(Q) and Q has m facets.

If x is a vertex of P then π−1({x}) is a face of Q

Any face of Q is an intersection of facets (Q is a polytope)

Thus #vertices(P) ≤ #faces(Q) ≤ 2m, i.e., m ≥ log2(#vertices(P)).

Bound can be tight, e.g., regular N-gon, or permutahedron
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SDP lifts: a bound using quantifier elimination

Assume C = π(S) where (A0, . . . ,An ∈ Sm):

S = {x ∈ Rn : A0 + x1A1 + . . .+ xnAn � 0}

Write explicit polynomial inequalities that describe S

Quantifier elimination → polynomial equalities/inequalities that describe C
→ bound on the degree of the boundary of C .

This approach gives (see [Gouveia, Parrilo, Thomas])

rankpsd(C ) ≥ Ω

(√
log d

n log log d

)

where d is degree of boundary of C . Problems:

Constants hard to make explicit (most likely very large)

Tight?
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Main results

If C ⊂ Rn is a convex body, the polar of C is

C o = {c ∈ Rn : 〈c , x〉 ≤ 1 ∀x ∈ C}.

Theorem (Fawzi-Safey El Din)

Let C be a convex body and d the smallest degree of a polynomial that
vanishes on the boundary of C o . Then rankpsd(C ) ≥

√
log d .

Theorem (Fawzi-Safey El Din)

There exist convex bodies C such that rankpsd(C ) ≤
√

20 log d where the degree
d of the algebraic boundary of C o can be made arbitrary large.
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Preliminaries: KKT conditions

Consider a semidefinite program

maximise cT x
subject to A(x) := A0 + x1A1 + · · ·+ xnAn � 0 (linear matrix inequality)

KKT conditions (assuming certain regularity conditions) A point x is optimal if,
and only if, there exists Z ∈ Sm (Lagrange multiplier) such that

A(x) � 0,Z � 0 (primal and dual feasibility)

A(x)Z = 0 (complementary slackness)

〈Ai ,Z 〉+ ci = 0 (i = 1, . . . , n)

Remove inequalities to get polynomial system:{
A(x)Z = 0 (complementary slackness)

〈Ai ,Z 〉+ ci = 0 (i = 1, . . . , n)

What are the solutions of this polynomial system?
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KKT system

KKT :


XZ = 0 (complementary slackness)

X = A0 + x1A1 + . . .+ xnAn

〈Ai ,Z 〉+ ci = 0 (i = 1, . . . , n)

If (A0, . . . ,An, c) chosen generically then (KKT) has a finite number of
solutions (x ,Z ) (application of Bertini theorem).

Bézout bound tells us there are at most 2m2

solutions

[NRS] and [vBR] computed the exact number of solutions. More precisely,
they computed number of solutions in each irreducible component of
(KKT)!

[NRS] Nie-Ranestad-Sturmfels: The algebraic degree of semidefinite programming

[vBR] von Bothmer-Ranestad: A general formula for the algebraic degree in SDP
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Proof of lower bound

Let C be a convex body and assume C = π(S) where S spectrahedron.

We exhibit a system of polynomial equations that vanishes on the boundary
of ∂C o . In fact, this system is nothing but the KKT equations. Indeed:

A point c is on boundary of Co means that

(P) max
z∈C
〈c, z〉 = 1

⇐⇒
SDP lift
C=π(S)

max
x∈S
〈π∗(c), x〉 = 1 (SDP)

where S = {x ∈ RN : A(x) := A0 + x1A1 + . . .+ xNAN � 0}

KKT conditions of optimality for (SDP): ∃Z ∈ Sm (Lagrange multiplier)A(x)Z = 0 (complementary slackness)

〈π∗(c), x〉 = 1, (A− A0)∗(Z) + π∗(c) = 0

Projecting on c we get a variety that vanishes on ∂Co . Bézout bound tells us this variety

has degree ≤ 2m
2
.
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Illustration of proof

A(x , y , s, t) =

[
1 + s t x + s y − t
t 1− s −y − t x − s

x + s −y − t 1 + x −y
y − t x − s −y 1− x

]
Can show that C = πx,y (S) is regular pentagon in R2. Variety obtained from
the KKT equations:

Red = algebraic boundary of C o

Blue = spurious components
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Application: vertices of spectrahedra and their shadows

A vertex of a convex body is a point where normal cone is full-dimensional.

C

NC(x)

x

Co

Any convex body has at most countably many vertices (see e.g., [Schneider]).

Theorem (Fawzi-Safey El Din)

If C has a SDP representation of size m then C has at most 2m2

vertices.

Proof.
Each vertex of C contributes a linear factor in the boundary of C o .
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Tightness of bound

Theorem (Fawzi-Safey El Din)

There exist convex bodies C such that rankpsd(C ) ≤
√

20 log d where the degree
d of the algebraic boundary of C o can be made arbitrary large.

Main idea

The convex bodies C are “random spectrahedra” of appropriate dimension.

For these spectrahedra, we can use the exact formulas for the degree of the
KKT equations computed in:

Nie-Ranestad-Sturmfels: The algebraic degree of semidefinite programming

von Bothmer-Ranestad: A general formula for the algebraic degree in SDP
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Proof of tightness

Nie-Ranestad-Sturmfels: If C is a generic spectrahedron defined by
A(x) := A0 + x1A1 + . . .+ xnAn ∈ Sm then:

∂aC
o ⊆

⋃
r∈Pataki range

Vr

where each Vr is irreducible and has degree δ(n,m, r).

Inclusion can be strict: possible for a certain Vr not to “touch” (the real
semialgebraic set) ∂C o .

Amelunxen-Bürgisser: if A0, . . . ,An are chosen randomly then each value of
r appears in ∂aC

o with strictly positive probability.

Complete proof by showing (using elementary calculations) that

δ(n(m),m, r(m)) ≥ 2m2/20

for choice
n = n(m) ∼ m2/4 and r = r(m) ∼ m/2.

Note: we observed numerically that δ(n(m),m, r) ≥ 2Ω(m2) for all r . Proving this would allow
to prove result without using Amelunxen-Bürgisser.
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Open questions

Polytopes: Can we improve lower bound to log d if we assume C to be a
polytope? In particular: what is the positive semidefinite rank of regular
polygons in the plane?

Vertices: Is the bound of 2m2

on the number of vertices tight? Studying
random spectrahedra as in Amelunxen-Bürgisser can be useful here...

Explicit: Find explicit family of convex bodies that match the bound of√
log d .

Algebraic degree: More systematic analysis of δ(n,m, r). Seems to have
interesting properties (log-concavity, etc.) + connection with intrinsic
volumes of positive semidefinite cone (cf. Amelunxen-Bürgisser).

For more, see paper on arXiv:1705.06996.

Thank you!
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