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Our problem

0 “Simplest” binary integer program e Write down an LP relaxation:
with single covering constraint:
& 100z + 5022 + 50x3 > 101
100z + 50x2 + 50x3 > 101 ()

x1,x2,x3 € {0,1}

0<@1,z2,23 <1

# inequalities = 7

e Adversary finds worst objective function (= evaluates integrality gap)

;;? If min z2 + x3, then
IP optimum = 1 — Integrality gap = 50
LP optimum = 1/50



Our problem

“Simplest” binary integer program
with single covering constraint:

100z + 5022 + 50x3 > 101
x1, 2,23 € {0,1}

e Write down an LP relaxation:

=1
e o +x3 21
0<z2,23<1

# inequalities = 5

e Adversary finds worst objective function (= evaluates integrality gap)

X For any objective fn

IP optimum = LP optimum

— Integrality gap = 1
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@ “Simplest” 0/1-set defined by single covering constraint

> awi>pB whereacZiandBeZy
=1
z € {0,1}"

convex hull of integer solutions = min-knapsack polytope

© Write down an LP relaxation = extended formulation
Ax + By =c¢ equality constraints

Dz + Ey > f inequality constraints

@ Evaluate the relaxation vs all possible objective functions in terms of

@ size = # inequalities

o integrality gap = sup 52
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There are exponentially many (but approximately separable) inequalities that
bring the integrality gap down to 2

Many applications:
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Is there a poly-size relaxation with any constant integrality gap?
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@ [Bienstock and McClosky 12] can be done when the objective is sorted
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There are exponentially many (but approximately separable) inequalities that
bring the integrality gap down to 2

Many applications:
@ Network design
@ Facility location
@ Scheduling

Is there a poly-size relaxation with any constant integrality gap?

Previously:

@ [Bienstock and McClosky 12] can be done when the objective is sorted

...our first feeling: maybe there is no such relaxation?
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Theorem (Existential — Bazzi, F, Huang, Svensson ’17)

The min-knapsack polytope can be (2 + ¢)-approximated by an LP of size
(n/e)®W . 204 where d is the minimum depth of a monotone circuit that
computes (truncactions of) the corresponding weighted threshold function

@ [Beimel & Weinreb *08] Weighted threshold functions

1 if Z?:l ;5 2 ﬁ
0 otherwise

f(xl,‘..,mn):{

have monotone circuits of depth O(log® n)

Corollary (Existential — Bazzi, F, Huang, Svensson ’17)

The min-knapsack polytope can be (2 + ¢)-approximated by an LP of size
(1/6)0(1) X nO(logn)



A galaxy of hierarchies

Balas- Lovész-
[e=LER Sherali- Bienstock-

Cornuéjols Schrijver Adams Zuckerberg
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BZ’s approximation of the CG-closures

Theorem (Bienstock & Zuckerberg ’06)

IfQ = {z €[0,1]" : Az > b} for A, b nonnegative, then
Q N{z | x satisfies all valid pitch < k ineqs}

is (1 + €)-approx of the ¢-th CG-closure of Q whenever k = Q(¢/¢)



Comparison to BZ2’04

Main theorem from Bienstock & Zuckerberg ‘04, where g(k) = Q(k?):

THEOREM 1.2. Let k > 1 be a fized integer. Consider a set-covering problem
min{c’z : Az >e, z € {0,1}"},

where A is an m X n, 0-1 matriz and e is the vector of m 1s. Let Py, denote the set
of all valid inequalities for {z € {0,1}" : Az > e} of pitch < k. Then there ezists a
positive integer g(k), a polytope Qi C R™, and a polytope Oy C R(m+m)7®) satisfying
the following:
(a) {z €{0,1}™ Az > e} C Q.
(b) aTx > ag for all x € Q and for all (a,ap) € Py.
(c) Qk is the projection to R™ of Q.
(d) Qr can be described by a system of at most (m+n)?® linear constraints, with
integral coefficients of absolute value at most k. This system can be computed
in time polynomial in n and m for fized k.
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@ Was simplified (but not improved) earlier by Mastrolili *17
@ Ifuse Q N ¢*([0,1]™), get extended formulation of size

e < xc(Q) + 2n - (mn)* for obvious CNF formula deciding S
o <xc(Q) + 2n - |¢|* where ¢ is any formula deciding S



Theorem (F, Huynh & Weltge °17)

Assuming ¢ monotone,

Q satisfies all valid
pitch < k inequalities

o(Q) satisfies all valid
pitch < k + 1 inequalities

Proof (inspired by Karchmer & Widgerson *90)
Assume >, ciw; > 6 pitch-(k + 1) ineq not valid for ¢(Q)

Letting a € {0,1}" witha; =0 <= i € I, have:
@ ¢(a)=0
@ Jviolator z € ¢(Q)




If gb = ¢1 A ¢2 then

@ ¢1(a) =0 or ¢2(a) =0

@ 3violator z; € ¢1(Q) and
Jviolator 72 € ¢2(Q)




If gb = ¢1 A ¢2 then

@ ¢1(a) =0 or ¢2(a) =0

@ 3violator z; € ¢1(Q) and
3 violator Z2 € ¢2(Q)

If d) = d)l Vv ¢2 then

o (;51(&)20 and ¢2(a):0

@ Jviolator 1 € ¢1(Q) or
Jviolator &2 € ¢2(Q)
















Final leaf z; has:
0a; =0« jeIt
@ Jviolatorz e QN {x:z; =1}



Final leaf z; has:
0a; =0« jeIt
@ Jviolatorz e QN {x:z; =1}

contradicts hypothesis that @ satisfies pitch < & ineq

Zcixi =>6—cj

i#£]
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Knapsack-cover inequalities

Given sizes s1,...,s, € Z+ and demand D € Z:

flz)=1 <= ZslxZ >D
i=1

iIDDm
S1 S22 83 S4 Sv

Knapsack cover inequality: for a € f71(0)

Z min({s;, D(a)}) - z; > D(a)

i:a; =0

where D(a) := D — Y7, s;a; = residual demand

Intuition: KC ineq is pitch-1 w.r.t. large items +— items i such that s; > D(a)



The relaxation

@ Sortitemsizes: s1 > 50> > s,

@ Parametrize the KC inequalities by:

@ « := index of last large item

o ﬂ = Ziéa S;Q;
@ Construct monotone formula ¢, s for threshold function

fap(@) =1 <= > siwi = B+1

i<a

© Define relaxation by the following formula:

/\(QSQ,B(QU) v (Zsm>D—B)>

o, B i>a
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— THANK YOU! —



