Small (Explicit) Extended Formulation for Knapsack Cover Inequalities from Monotone Circuits

Abbas Bazzi Samuel Fiorini Sangxia Huang Ola Svensson
&
Samuel Fiorini Tony Huynh Stefan Weltge
Extended formulations vs circuit complexity

[HRUBEŠ '12, GJW '16]

∃ connection between circuit complexity and extended formulations

What is the smallest LP for solving problem A?

What is the smallest depth circuit for solving problem B?
Extended formulations vs circuit complexity

[HRubeš ’12, GJW ’16]

∃ connection between circuit complexity and extended formulations

What is the smallest LP for solving problem \(A \)?

What is the smallest depth circuit for solving problem \(B \)?
Extended formulations vs circuit complexity

[Hrubeš ’12, GJW ’16]

exists a connection between circuit complexity and extended formulations

What is the smallest LP for solving problem A?

Q

P

What is the smallest depth circuit for solving problem B?

$2^{\Omega(n)}$ size LP lower bound for matchings \implies matching requires monotone circuits of $\Omega(n)$ depth
Extended formulations vs circuit complexity

[Hrubeš ’12, GJW ’16]

∃ connection between circuit complexity and extended formulations

What is the smallest LP for solving problem A?

What is the smallest depth circuit for solving problem B?

We use that certain functions have small depth monotone circuits to give small explicit LPs for covering problems.
Our problem

1. “Simplest” binary integer program with single covering constraint:

\[100x_1 + 50x_2 + 50x_3 \geq 101\]
\[x_1, x_2, x_3 \in \{0, 1\}\]

2. Write down an LP relaxation:

\[100x_1 + 50x_2 + 50x_3 \geq 101\]
\[0 \leq x_1, x_2, x_3 \leq 1\]

\# inequalities = 7

3. Adversary finds worst objective function (= evaluates integrality gap)

If \(\min x_2 + x_3\), then
\nIP optimum = 1 \quad \Longrightarrow \quad \text{Integrality gap} = 50
\nLP optimum = 1/50
Our problem

1. “Simplest” binary integer program with single covering constraint:

\[100x_1 + 50x_2 + 50x_3 \geq 101 \]
\[x_1, x_2, x_3 \in \{0, 1\} \]

2. Write down an LP relaxation:

\[x_1 = 1 \]
\[x_2 + x_3 \geq 1 \]
\[0 \leq x_2, x_3 \leq 1 \]

inequalities = 5

3. Adversary finds worst objective function (= evaluates integrality gap)

For any objective fn

IP optimum = LP optimum \[\implies\text{Integrality gap} = 1\]
Our problem — formally

“Simplest” 0/1-set defined by single covering constraint

\[\sum_{i=1}^{n} a_{i}x_{i} \geq \beta \quad \text{where } a \in \mathbb{Z}_+^{n} \text{ and } \beta \in \mathbb{Z}_+ \]

\[x \in \{0, 1\}^n \]

convex hull of integer solutions = min-knapsack polytope
Our problem — formally

1. “Simplest” 0/1-set defined by single covering constraint

\[\sum_{i=1}^{n} a_i x_i \geq \beta \quad \text{where } a \in \mathbb{Z}_+^n \text{ and } \beta \in \mathbb{Z}_+ \]
\[x \in \{0, 1\}^n \]

convex hull of integer solutions = \textbf{min-knapsack polytope}

2. Write down an LP relaxation = \textbf{extended formulation}

\[Ax + By = c \quad \text{equality constraints} \]
\[Dx + Ey \geq f \quad \text{inequality constraints} \]
Our problem — formally

1. “Simplest” 0/1-set defined by single covering constraint

\[\sum_{i=1}^{n} a_i x_i \geq \beta \quad \text{where } a \in \mathbb{Z}_+^n \text{ and } \beta \in \mathbb{Z}_+ \]

\[x \in \{0, 1\}^n \]

convex hull of integer solutions = min-knapsack polytope

2. Write down an LP relaxation = extended formulation

\[Ax + By = c \quad \text{equality constraints} \]

\[Dx + Ey \geq f \quad \text{inequality constraints} \]

3. Evaluate the relaxation vs all possible objective functions in terms of

- **size** = # inequalities
- **integrality gap** = \(\sup_{\text{IP optimum}} \frac{\text{LP optimum}}{\text{IP optimum}} \)
State of the Art

Knapsack-cover ineqs [Balas ’75, Hammer et al. ’75, Wolsey ’75, Carr et al. ’06]

There are exponentially many (but approximately separable) inequalities that bring the integrality gap down to 2

Many applications:
- Network design
- Facility location
- Scheduling

Question

Is there a poly-size relaxation with any constant integrality gap?

Previously:
- [Bienstock and McClosky ’12] can be done when the objective is sorted
State of the Art

Knapsack-cover ineqs [Balas ’75, Hammer et al. ’75, Wolsey ’75, Carr et al. ’06]

There are exponentially many (but approximately separable) inequalities that bring the integrality gap down to 2

Many applications:
- Network design
- Facility location
- Scheduling

Question

Is there a poly-size relaxation with any constant integrality gap?

Previously:
- [Bienstock and McClosky ’12] can be done when the objective is sorted

... our first feeling: maybe there is no such relaxation?
Our results (1/2)

Theorem (Existential – Bazzi, F, Huang, Svensson ’17)

The min-knapsack polytope can be \((2 + \varepsilon)\)-approximated by an LP of size \((n/\varepsilon)^{O(1)} \cdot 2^{O(d)}\) where \(d\) is the minimum depth of a monotone circuit that computes (truncations of) the corresponding weighted threshold function.
Our results (1/2)

Theorem (Existential – Bazzi, F, Huang, Svensson ’17)

The min-knapsack polytope can be \((2 + \varepsilon)\)-approximated by an LP of size \((n/\varepsilon)^{O(1)} \cdot 2^{O(d)}\) where \(d\) is the minimum depth of a monotone circuit that computes (truncated versions of) the corresponding weighted threshold function.

- [Beimel & Weinreb ’08] Weighted threshold functions

\[
f(x_1, \ldots, x_n) = \begin{cases}
1 & \text{if } \sum_{i=1}^{n} a_i x_i \geq \beta \\
0 & \text{otherwise}
\end{cases}
\]

have monotone circuits of depth \(O(\log^2 n)\)
Our results (1/2)

Theorem (Existential – Bazzi, F, Huang, Svensson ’17)

The min-knapsack polytope can be \((2 + \varepsilon)\)-approximated by an LP of size \((n/\varepsilon)^{O(1)} \cdot 2^{O(d)}\) where \(d\) is the minimum depth of a monotone circuit that computes (truncations of) the corresponding weighted threshold function.

- [Beimel & Weinreb ’08] Weighted threshold functions
 \[
 f(x_1, \ldots, x_n) = \begin{cases}
 1 & \text{if } \sum_{i=1}^{n} a_i x_i \geq \beta \\
 0 & \text{otherwise}
 \end{cases}
 \]
 have monotone circuits of depth \(O(\log^2 n)\)

Corollary (Existential – Bazzi, F, Huang, Svensson ’17)

The min-knapsack polytope can be \((2 + \varepsilon)\)-approximated by an LP of size \((1/\varepsilon)^{O(1)} \cdot n^{O(\log n)}\).
A galaxy of hierarchies
Strengthening relaxations using formulas

\[S \subseteq \{0, 1\}^n \] \text{0/1-set}
\[\phi \text{ Boolean formula defining } S \]
\[Q \subseteq [0, 1]^n \] \text{convex relaxation of } S

\[\rightarrow \]

\textbf{New} relaxation \(\phi(Q) \)
with \(S \subseteq \phi(Q) \subseteq Q \)
Strengthening relaxations using formulas

\[S \subseteq \{0, 1\}^n \text{ 0/1-set} \]
\[\phi \text{ Boolean formula defining } S \]
\[Q \subseteq [0, 1]^n \text{ convex relaxation of } S \]

\[\text{New relaxation } \phi(Q) \]
\[\text{with } S \subseteq \phi(Q) \subseteq Q \]

Starting from \(\phi \), recursively apply rules:

- Replace \(x_i \) by \(Q \cap \{x : x_i = 1\} \)
- Replace \(\neg x_i \) by \(Q \cap \{x : x_i = 0\} \)
- Replace \(\phi_1 \land \phi_2 \) by \(\phi_1(Q) \cap \phi_2(Q) \)
- Replace \(\phi_1 \lor \phi_2 \) by \(\text{conv}(\phi_1(Q) \cup \phi_2(Q)) \)
Strengthening relaxations using formulas

\[S \subseteq \{0, 1\}^n \] 0/1-set
\[\phi \] Boolean formula defining \(S \)
\[Q \subseteq [0, 1]^n \] convex relaxation of \(S \)

New relaxation \(\phi(Q) \)
with \(S \subseteq \phi(Q) \subseteq Q \)

Starting from \(\phi \), recursively apply rules:
- Replace \(x_i \) by \(Q \cap \{x : x_i = 1\} \)
- Replace \(\neg x_i \) by \(Q \cap \{x : x_i = 0\} \)
- Replace \(\phi_1 \land \phi_2 \) by \(\phi_1(Q) \cap \phi_2(Q) \)
- Replace \(\phi_1 \lor \phi_2 \) by \(\text{conv}(\phi_1(Q) \cup \phi_2(Q)) \)

0/1-set: \(S = \{x \in \{0, 1\}^3 : x_1 + x_2 + x_3 \geq 2\} \)
Formula: \(\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) \)
Relaxation: \(Q := [0, 1]^3 \)
Strengthening relaxations using formulas

\[S \subseteq \{0, 1\}^n \text{ 0/1-set} \]

\[\phi \text{ Boolean formula defining } S \]

\[Q \subseteq [0, 1]^n \text{ convex relaxation of } S \]

→

New relaxation \[\phi(Q) \]

with \[S \subseteq \phi(Q) \subseteq Q \]

Starting from \(\phi \), recursively apply rules:

- Replace \(x_i \) by \(Q \cap \{x : x_i = 1\} \)
- Replace \(\neg x_i \) by \(Q \cap \{x : x_i = 0\} \)
- Replace \(\phi_1 \land \phi_2 \) by \(\phi_1(Q) \cap \phi_2(Q) \)
- Replace \(\phi_1 \lor \phi_2 \) by \(\text{conv}(\phi_1(Q) \cup \phi_2(Q)) \)

0/1-set: \[S = \{x \in \{0, 1\}^3 : x_1 + x_2 + x_3 \geq 2\} \]

Formula: \[\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) \]

←**monotone**

Relaxation: \[Q := [0, 1]^3 \]
Formula: \[\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) \]

Relaxation: \[Q := [0, 1]^3 \]
Formula: \(\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) \)

Relaxation: \(Q := [0, 1]^3 \)
Formula: \[\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) \]

Relaxation: \[Q := [0, 1]^3 \]
Formula: \(\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) \)

Relaxation: \(Q := [0, 1]^3 \)
Formula: \[\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) \]

Relaxation: \[Q := [0, 1]^3 \]
Formula: \(\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) \)

Relaxation: \(Q := [0, 1]^3 \)
Formula: \[\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) \]

Relaxation: \[Q' := \phi([0, 1]^3) \]
Formula: \[\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) \]

Relaxation: \[Q' := \phi([0, 1]^3) \]
Formula: $\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1)$

Relaxation: $Q' := \phi([0, 1]^3)$
Formula: \[\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) \]

Relaxation: \[Q' := \phi([0, 1]^3) \]
Proposition (F, Huynh & Weltge ’17)

If \(Q \subseteq [0, 1]^n \) is a polytope then \(\phi(Q) \) also, and moreover

\[
xc(\phi(Q)) \leq |\phi| \cdot xc(Q)
\]
Our results (2/2)

Proposition (F, Huynh & Weltge ’17)

If $Q \subseteq [0, 1]^n$ is a polytope then $\phi(Q)$ also, and moreover

$$xc(\phi(Q)) \leq |\phi| \cdot xc(Q)$$

Theorem (F, Huynh & Weltge ’17)

Assuming ϕ monotone,

- Q satisfies all valid pitch $\leq k$ inequalities
- $\phi(Q)$ satisfies all valid pitch $\leq k + 1$ inequalities
Proposition (F, Huynh & Weltge ’17)

If $Q \subseteq [0, 1]^n$ is a polytope then $\phi(Q)$ also, and moreover

$$\text{xc}(\phi(Q)) \leq |\phi| \cdot \text{xc}(Q)$$

Theorem (F, Huynh & Weltge ’17)

Assuming ϕ monotone,

Q satisfies all valid pitch $\leq k$ inequalities $\implies \phi(Q)$ satisfies all valid pitch $\leq k + 1$ inequalities

The pitch measures how “complex” ineqs are (Bienstock & Zuckerberg ’04):
Our results (2/2)

Proposition (F, Huynh & Weltge ’17)

If $Q \subseteq [0, 1]^n$ is a polytope then $\phi(Q)$ also, and moreover

$$\text{xc}(\phi(Q)) \leq |\phi| \cdot \text{xc}(Q)$$

Theorem (F, Huynh & Weltge ’17)

Assuming ϕ monotone,

- Q satisfies all valid pitch $\leq k$ inequalities \implies $\phi(Q)$ satisfies all valid pitch $\leq k + 1$ inequalities

The **pitch** measures how “complex” ineqs are (Bienstock & Zuckerberg ’04):

- $x_1 \geq 1, \quad x_1 + x_3 + x_7 \geq 1$ have pitch 1
Our results (2/2)

Proposition (F, Huynh & Weltge ’17)
If $Q \subseteq [0, 1]^n$ is a polytope then $\phi(Q)$ also, and moreover

$$xc(\phi(Q)) \leq |\phi| \cdot xc(Q)$$

Theorem (F, Huynh & Weltge ’17)
Assuming ϕ monotone,

$$Q \text{ satisfies all valid pitch } \leq k \text{ inequalities} \implies \phi(Q) \text{ satisfies all valid pitch } \leq k + 1 \text{ inequalities}$$

The *pitch* measures how “complex” ineqs are (Bienstock & Zuckerberg ’04):

- $x_1 \geq 1, x_1 + x_3 + x_7 \geq 1$ have pitch 1
- $x_1 + x_5 \geq 2, 2x_3 + x_4 + x_5 \geq 2$ have pitch 2
Our results (2/2)

Proposition (F, Huynh & Weltge ’17)

If \(Q \subseteq [0, 1]^n \) is a polytope then \(\phi(Q) \) also, and moreover

\[
\text{xc}(\phi(Q)) \leq |\phi| \cdot \text{xc}(Q)
\]

Theorem (F, Huynh & Weltge ’17)

Assuming \(\phi \) monotone,

\[
\begin{align*}
Q & \text{ satisfies all valid } \\
\text{pitch} & \leq k \text{ inequalities} \\
\implies \quad & \phi(Q) \text{ satisfies all valid } \\
\text{pitch} & \leq k + 1 \text{ inequalities}
\end{align*}
\]

The **pitch** measures how “complex” ineqs are (Bienstock & Zuckerberg ’04):

- \(x_1 \geq 1, \quad x_1 + x_3 + x_7 \geq 1 \) have pitch 1
- \(x_1 + x_5 \geq 2, \quad 2x_3 + x_4 + x_5 \geq 2 \) have pitch 2
- \(2x_3 + x_4 + 2x_7 \geq 3 \)
Our results (2/2)

Proposition (F, Huynh & Weltge ’17)

If \(Q \subseteq [0, 1]^n \) *is a polytope then* \(\phi(Q) \) *also, and moreover*

\[
\text{xc}(\phi(Q)) \leq |\phi| \cdot \text{xc}(Q)
\]

Theorem (F, Huynh & Weltge ’17)

Assuming \(\phi \) *monotone,*

\[
\begin{align*}
Q \text{ satisfies all valid } & \quad \Rightarrow \\
pitch \leq k \text{ inequalities} & \quad \Rightarrow \\
\phi(Q) \text{ satisfies all valid } & \quad \text{pitch} \leq k + 1 \text{ inequalities}
\end{align*}
\]

The **pitch** measures how “complex” ineqs are (Bienstock & Zuckerberg ’04):

- \(x_1 \geq 1, \quad x_1 + x_3 + x_7 \geq 1 \) have pitch 1
- \(x_1 + x_5 \geq 2, \quad 2x_3 + x_4 + x_5 \geq 2 \) have pitch 2
- \(2x_3 + x_4 + 2x_7 \geq 3 \) has pitch 2
BZ’s approximation of the CG-closures

Theorem (Bienstock & Zuckerberg ’06)

If $Q = \{ x \in [0, 1]^n : Ax \geq b \}$ for A, b nonnegative, then

$$Q \cap \{ x \mid x \text{ satisfies all valid pitch } \leq k \text{ ineqs} \}$$

is $(1 + \varepsilon)$-approx of the ℓ-th CG-closure of Q whenever $k = \Omega(\ell/\varepsilon)$.
Comparison to BZ’04

Main theorem from Bienstock & Zuckerberg ’04, where \(g(k) = \Omega(k^2) \):

Theorem 1.2. Let \(k \geq 1 \) be a fixed integer. Consider a set-covering problem

\[
\min \{ c^T x : Ax \geq e, \ x \in \{0,1\}^n \},
\]

where \(A \) is an \(m \times n \), 0-1 matrix and \(e \) is the vector of \(m \) 1s. Let \(P_k \) denote the set of all valid inequalities for \(\{ x \in \{0,1\}^n : Ax \geq e \} \) of pitch \(\leq k \). Then there exists a positive integer \(g(k) \), a polytope \(Q_k \subseteq R^n \), and a polytope \(\tilde{Q}_k \subseteq R^{(m+n)g(k)} \) satisfying the following:

(a) \(\{ x \in \{0,1\}^n : Ax \geq e \} \subseteq Q_k \).
(b) \(a^T x \geq a_0 \) for all \(x \in Q_k \) and for all \((a,a_0) \in P_k \).
(c) \(Q_k \) is the projection to \(R^n \) of \(\tilde{Q}_k \).
(d) \(Q_k \) can be described by a system of at most \((m+n)g(k) \) linear constraints, with integral coefficients of absolute value at most \(k \). This system can be computed in time polynomial in \(n \) and \(m \) for fixed \(k \).
Comparison to BZ’04

Main theorem from Bienstock & Zuckerberg ’04, where $g(k) = \Omega(k^2)$:

Theorem 1.2. Let $k \geq 1$ be a fixed integer. Consider a set-covering problem
\[
\min\{c^T x : Ax \geq e, \ x \in \{0,1\}^n \},
\]
where A is an $m \times n$, 0-1 matrix and e is the vector of m 1s. Let P_k denote the set of all valid inequalities for \(\{x \in \{0,1\}^n : Ax \geq e\} \) of pitch $\leq k$. Then there exists a positive integer $g(k)$, a polytope $Q_k \subseteq \mathbb{R}^n$, and a polytope $\bar{Q}_k \subseteq \mathbb{R}^{(m+n)g(k)}$ satisfying the following:

(a) $\{x \in \{0,1\}^n \ Ax \geq e\} \subseteq Q_k$.

(b) $a^T x \geq a_0$ for all $x \in Q_k$ and for all $(a,a_0) \in P_k$.

(c) Q_k is the projection to \mathbb{R}^n of \bar{Q}_k.

(d) Q_k can be described by a system of at most $(m+n)g(k)$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.

- Was simplified (but not improved) earlier by Mastrolili ’17
Comparison to BZ’04

Main theorem from Bienstock & Zuckerberg ’04, where $g(k) = \Omega(k^2)$:

\[g(k) = \Omega(k^2) \]

Was simplified (but not improved) earlier by Mastrolili ’17

If use $Q \cap \phi^k([0, 1]^n)$, get extended formulation of size
Comparison to BZ’04

Main theorem from Bienstock & Zuckerber ’04, where \(g(k) = \Omega(k^2) \):

Theorem 1.2. Let \(k \geq 1 \) be a fixed integer. Consider a set-covering problem

\[
\min \{ c^T x : Ax \geq e, \ x \in \{0,1\}^n \},
\]

where \(A \) is an \(m \times n \), 0-1 matrix and \(e \) is the vector of \(m \) 1s. Let \(P_k \) denote the set of all valid inequalities for \(\{ x \in \{0,1\}^n : Ax \geq e \} \) of pitch \(\leq k \). Then there exists a positive integer \(g(k) \), a polytope \(Q_k \subseteq R^n \), and a polytope \(\bar{Q}_k \subseteq R^{(m+n)g(k)} \) satisfying the following:

(a) \(\{ x \in \{0,1\}^n : Ax \geq e \} \subseteq Q_k. \)
(b) \(a^T x \geq a_0 \) for all \(x \in Q_k \) and for all \((a,a_0) \in P_k. \)
(c) \(Q_k \) is the projection to \(R^n \) of \(\bar{Q}_k. \)
(d) \(Q_k \) can be described by a system of at most \((m+n)^g(k) \) linear constraints, with integral coefficients of absolute value at most \(k \). This system can be computed in time polynomial in \(n \) and \(m \) for fixed \(k \).

- Was simplified (but not improved) earlier by Mastrolili ’17
- If use \(Q \cap \phi^k([0,1]^n) \), get extended formulation of size
 - \(\leq xc(Q) + 2n \cdot (mn)^k \) for obvious CNF formula deciding \(S \)
Comparison to BZ'04

Main theorem from Bienstock & Zuckerberg '04, where $g(k) = \Omega(k^2)$:

Theorem 1.2. Let $k \geq 1$ be a fixed integer. Consider a set-covering problem

$$\min \{ c^T x : Ax \geq e, \ x \in \{0,1\}^n \},$$

where A is an $m \times n$, 0-1 matrix and e is the vector of m 1s. Let P_k denote the set of all valid inequalities for \{x \in \{0,1\}^n : Ax \geq e\} of pitch $\leq k$. Then there exists a positive integer $g(k)$, a polytope $Q_k \subseteq R^n$, and a polytope $\mathcal{Q}_k \subseteq R^{(m+n)g(k)}$ satisfying the following:

(a) \{x \in \{0,1\}^n : Ax \geq e\} $\subseteq Q_k$.

(b) $a^T x \geq a_0$ for all $x \in Q_k$ and for all $(a, a_0) \in P_k$.

(c) Q_k is the projection to R^n of \mathcal{Q}_k.

(d) Q_k can be described by a system of at most $(m+n)^g(k)$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.

- Was simplified (but not improved) earlier by Mastrolili '17
- If use $Q \cap \phi^k([0,1]^n)$, get extended formulation of size
 - $\leq xc(Q) + 2n \cdot (mn)^k$ for obvious CNF formula deciding S
 - $\leq xc(Q) + 2n \cdot |\phi|^k$ where ϕ is any formula deciding S
Theorem (F, Huynh & Weltge ’17)

Assuming ϕ monotone,

\[Q \text{ satisfies all valid } \text{pitch} \leq k \text{ inequalities} \quad \implies \quad \phi(Q) \text{ satisfies all valid } \text{pitch} \leq k + 1 \text{ inequalities} \]

Proof (inspired by Karchmer & Widgerson ’90)

Assume $\sum_{i \in I^+} c_i x_i \geq \delta$ pitch-$(k + 1)$ ineq not valid for $\phi(Q)$

Letting $a \in \{0, 1\}^n$ with $a_i = 0 \iff i \in I^+$, have:

- $\phi(a) = 0$
- \exists violator $\tilde{x} \in \phi(Q)$
If $\phi = \phi_1 \land \phi_2$ then

- $\phi_1(a) = 0$ or $\phi_2(a) = 0$
- \exists violator $\tilde{x}_1 \in \phi_1(Q)$ and \exists violator $\tilde{x}_2 \in \phi_2(Q)$
If $\phi = \phi_1 \land \phi_2$ then

- $\phi_1(a) = 0$ or $\phi_2(a) = 0$
- \exists violator $\tilde{x}_1 \in \phi_1(Q)$ and \exists violator $\tilde{x}_2 \in \phi_2(Q)$

If $\phi = \phi_1 \lor \phi_2$ then

- $\phi_1(a) = 0$ and $\phi_2(a) = 0$
- \exists violator $\tilde{x}_1 \in \phi_1(Q)$ or \exists violator $\tilde{x}_2 \in \phi_2(Q)$
Final leaf x_j has:

$a_j = 0 \iff j \in I^+$

\exists violator $\bar{x} \in Q \cap \{x : x_j = 1\}$

contradicts hypothesis that Q satisfies pitch $\leq k$ ineq

$$\sum_{i \neq j} c_i x_i \geq \delta - c_j$$
Final leaf x_j has:

$$a_j = 0 \iff j \in I^+$$

\exists violator $\tilde{x} \in Q \cap \{x : x_j = 1\}$

contradicts hypothesis that Q satisfies pitch $\leq k$ ineq

$$\sum_{i \neq j} c_i x_i \geq \delta - c_j$$
Final leaf x_j has:

$$a_j = 0 \iff j \in I^+$$

\exists violator $\tilde{x} \in Q \cap \{x : x_j = 1\}$

contradicts hypothesis that Q satisfies pitch $\leq k_{\text{ineq}}$

$$\sum_{i \neq j} c_i x_i \geq \delta - c_j$$
Final leaf x_j has:

$$a_j = 0 \iff j \in I^+$$

$$\exists \text{ violator } \tilde{x} \in Q \cap \{x : x_j = 1\}$$

contradicts hypothesis that Q satisfies pitch $\leq k$ ineq

$$\sum_{i \neq j} c_i x_i \geq \delta - c_j$$
Final leaf x_j has:

- $a_j = 0 \iff j \in I^+$
- \exists violator $\tilde{x} \in Q \cap \{x : x_j = 1\}$
Final leaf x_j has:

- $a_j = 0 \iff j \in I^+$
- \exists violator $\tilde{x} \in Q \cap \{x : x_j = 1\}$

contradicts hypothesis that Q satisfies pitch $\leq k$ ineq

$$\sum_{i \neq j} c_i x_i \geq \delta - c_j$$
Knapsack-cover inequalities

Given *sizes* $s_1, \ldots, s_n \in \mathbb{Z}_+$ and *demand* $D \in \mathbb{Z}_+$:

$$f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \geq D$$
Knapsack-cover inequalities

Given *sizes* \(s_1, \ldots, s_n \in \mathbb{Z}_+ \) and *demand* \(D \in \mathbb{Z}_+ \):

\[
f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \geq D
\]

Intuition: KC ineq is pitch-1 w.r.t. large items ← items \(s_i \) such that \(s_i \geq D(a) \)
Knapsack-cover inequalities

Given sizes $s_1, \ldots, s_n \in \mathbb{Z}_+$ and demand $D \in \mathbb{Z}_+$:

$$f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \geq D$$
Knapsack-cover inequalities

Given sizes $s_1, \ldots, s_n \in \mathbb{Z}_+$ and demand $D \in \mathbb{Z}_+$:

$$f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \geq D$$

Intuition: KC ineq is pitch-1 w.r.t. large items \leftarrow items i such that $s_i \geq D(a)$.
Knapsack-cover inequalities

Given sizes $s_1, \ldots, s_n \in \mathbb{Z}_+$ and demand $D \in \mathbb{Z}_+$:

$$f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \geq D$$
Knapsack-cover inequalities

Given sizes $s_1, \ldots, s_n \in \mathbb{Z}_+$ and demand $D \in \mathbb{Z}_+$:

$$f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \geq D$$

Knapsack cover inequality: for $a \in f^{-1}(0)$

$$\sum_{i:a_i=0} \min(\{s_i, D(a)\}) \cdot x_i \geq D(a)$$

where $D(a) := D - \sum_{i=1}^{n} s_i a_i = \text{residual demand}$
Knapsack-cover inequalities

Given sizes $s_1, \ldots, s_n \in \mathbb{Z}_+$ and demand $D \in \mathbb{Z}_+$:

$$f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \geq D$$

Knapsack cover inequality: for $a \in f^{-1}(0)$

$$\sum_{i:a_i=0} \min\{s_i, D(a)\} \cdot x_i \geq D(a)$$

where $D(a) := D - \sum_{i=1}^{n} s_i a_i = \text{residual demand}$

Intuition: KC ineq is pitch-1 w.r.t. large items \leftarrow items i such that $s_i \geq D(a)$
The relaxation

1. **Sort** item sizes: \(s_1 \geq s_2 \geq \cdots \geq s_n \)

2. **Parametrize** the KC inequalities by:
 - \(\alpha := \) index of last large item
 - \(\beta := \sum_{i \leq \alpha} s_i a_i \)

3. **Construct** monotone formula \(\phi_{\alpha, \beta} \) for threshold function
 \[
 f_{\alpha, \beta}(x) = 1 \iff \sum_{i \leq \alpha} s_i x_i \geq \beta + 1
 \]

4. **Define** relaxation by the following formula:
 \[
 \bigwedge_{\alpha, \beta} \left(\phi_{\alpha, \beta}(x) \lor \left(\sum_{i > \alpha} s_i x_i \geq D - \beta \right) \right)
 \]
Final comments

- We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)
Final comments

- We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)

- *Open*: does min-knapsack admit a $n^{O(1)}$-size $O(1)$-apx EF?
Final comments

- We can extend to \textit{flow cover inequalities} (used e.g. for single demand facility location problem)

- \textbf{Open}: does min-knapsack admit a \(n^{O(1)}\)-size \(O(1)\)-apx EF?

- \textbf{Open}: do weighted threshold fns admit \(n^{O(1)}\)-size monotone formulas?
Final comments

- We can extend to flow cover inequalities (used e.g. for single demand facility location problem)

- Open: does min-knapsack admit a $n^{O(1)}$-size $O(1)$-apx EF?

- Open: do weighted threshold fns admit $n^{O(1)}$-size monotone formulas?

- Open: does min-knapsack admit a $n^{O(\log n)}$-size $(1 + \varepsilon)$-apx EF?
Final comments

- We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)

- **Open**: does min-knapsack admit a $n^{O(1)}$-size $O(1)$-apx EF?

- **Open**: do weighted threshold fns admit $n^{O(1)}$-size monotone formulas?

- **Open**: does min-knapsack admit a $n^{O(\log n)}$-size $(1 + \varepsilon)$-apx EF?

- **Find more algorithmic** applications of Chvátal-Gomory cuts!!
Final comments

- We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)

- **Open**: does min-knapsack admit a $n^{O(1)}$-size $O(1)$-apx EF?

- **Open**: do weighted threshold fns admit $n^{O(1)}$-size monotone formulas?

- **Open**: does min-knapsack admit a $n^{O(\log n)}$-size $(1 + \varepsilon)$-apx EF?

- Find more **algorithmic** applications of Chvátal-Gomory cuts!!
Final comments

- We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)

- **Open**: does min-knapsack admit a $n^{O(1)}$-size $O(1)$-apx EF?

- **Open**: do weighted threshold fns admit $n^{O(1)}$-size monotone formulas?

- **Open**: does min-knapsack admit a $n^{O(\log n)}$-size $(1 + \varepsilon)$-apx EF?

- Find more **algorithmic** applications of Chvátal-Gomory cuts!!

— THANK YOU! —