Small (Explicit) Extended Formulation for Knapsack Cover Inequalities from Monotone Circuits

Abbas Bazzi Samuel Fiorini Sangxia Huang Ola Svensson \&
Samuel Fiorini Tony Huynh Stefan Weltge

Extended formulations vs circuit complexity

[Hrubeš '12, GJW '16]

connection between circuit complexity and extended formulations

What is the smallest LP
for solving problem A ?

Extended formulations vs circuit complexity

[Hrubeš'12, GJW '16]

connection between circuit complexity and extended formulations

What is the smallest LP for solving problem A ?

What is the smallest depth circuit for solving problem B ?

Extended formulations vs circuit complexity

[Hrubeš '12, GJW '16]

\exists connection between circuit complexity and extended formulations

What is the smallest LP
for solving problem A ?

What is the smallest depth circuit for solving problem B ?

$2^{\Omega(n)}$ size LP lower bound for matchings \Longrightarrow matching requires monotone circuits of $\Omega(n)$ depth

Extended formulations vs circuit complexity

[Hrubeš '12, GJW '16]

\exists connection between circuit complexity and extended formulations

What is the smallest LP
for solving problem A ?

What is the smallest depth circuit for solving problem B ?

We use that certain functions have small depth monotone circuits to give small explicit LPs for covering problems

Our problem

(1) "Simplest" binary integer program with single covering constraint:

$$
\begin{gathered}
100 x_{1}+50 x_{2}+50 x_{3} \geqslant 101 \\
x_{1}, x_{2}, x_{3} \in\{0,1\}
\end{gathered}
$$

(2) Write down an LP relaxation:

$$
\begin{gathered}
100 x_{1}+50 x_{2}+50 x_{3} \geqslant 101 \\
0 \leqslant x_{1}, x_{2}, x_{3} \leqslant 1
\end{gathered}
$$

\# inequalities = 7
(3) Adversary finds worst objective function (= evaluates integrality gap)

If $\min x_{2}+x_{3}$, then
IP optimum =1 $\quad \Longrightarrow$ Integrality gap $=50$
LP optimum $=1 / 50$

Our problem

(1) "Simplest" binary integer program with single covering constraint:

$$
\begin{gathered}
100 x_{1}+50 x_{2}+50 x_{3} \geqslant 101 \\
x_{1}, x_{2}, x_{3} \in\{0,1\}
\end{gathered}
$$

2 Write down an LP relaxation:

$$
x_{1}=1
$$

$$
x_{2}+x_{3} \geqslant 1
$$

$$
0 \leqslant x_{2}, x_{3} \leqslant 1
$$

\# inequalities = 5
(3) Adversary finds worst objective function (= evaluates integrality gap)

For any objective fn IP optimum = LP optimum
\Longrightarrow Integrality gap = 1

Our problem — formally

(1) "Simplest" $0 / 1$-set defined by single covering constraint

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i} x_{i} \geqslant \beta \quad \text { where } a \in \mathbb{Z}_{+}^{n} \text { and } \beta \in \mathbb{Z}_{+} \\
& x \in\{0,1\}^{n}
\end{aligned}
$$

convex hull of integer solutions $=$ min-knapsack polytope

Our problem — formally

(1) "Simplest" $0 / 1$-set defined by single covering constraint

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i} x_{i} \geqslant \beta \quad \text { where } a \in \mathbb{Z}_{+}^{n} \text { and } \beta \in \mathbb{Z}_{+} \\
& x \in\{0,1\}^{n}
\end{aligned}
$$

convex hull of integer solutions $=$ min-knapsack polytope
(2) Write down an LP relaxation = extended formulation

$$
\begin{array}{ll}
A x+B y=c & \text { equality constraints } \\
D x+E y \geqslant f & \text { inequality constraints }
\end{array}
$$

Our problem - formally

(1) "Simplest" $0 / 1$-set defined by single covering constraint

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i} x_{i} \geqslant \beta \quad \text { where } a \in \mathbb{Z}_{+}^{n} \text { and } \beta \in \mathbb{Z}_{+} \\
& x \in\{0,1\}^{n}
\end{aligned}
$$

convex hull of integer solutions $=$ min-knapsack polytope
(2) Write down an LP relaxation = extended formulation

$$
\begin{array}{ll}
A x+B y=c \quad & \text { equality constraints } \\
D x+E y \geqslant f & \text { inequality constraints }
\end{array}
$$

(3) Evaluate the relaxation vs all possible objective functions in terms of

- size = \# inequalities
- integrality gap $=\sup \frac{\text { IP optimum }}{\text { LP optimum }}$

State of the Art

Knapsack-cover ineqs [Balas '75, Hammer et al. '75, Wolsey '75, Carr et al. '06]

There are exponentially many (but approximately separable) inequalities that bring the integrality gap down to 2

Many applications:

- Network design
- Facility location
- Scheduling

Question

Is there a poly-size relaxation with any constant integrality gap?

Previously:

- [Bienstock and McClosky '12] can be done when the objective is sorted

State of the Art

Knapsack-cover ineqs [Balas '75, Hammer et al. '75, Wolsey '75, Carr et al. '06]

There are exponentially many (but approximately separable) inequalities that bring the integrality gap down to 2

Many applications:

- Network design
- Facility location
- Scheduling

Question

Is there a poly-size relaxation with any constant integrality gap?

Previously:

- [Bienstock and McClosky '12] can be done when the objective is sorted
... our first feeling: maybe there is no such relaxation?

Our results (1/2)

Theorem (Existential - Bazzi, F, Huang, Svensson '17)

The min-knapsack polytope can be $(2+\varepsilon)$-approximated by an LP of size $(n / \varepsilon)^{O(1)} \cdot 2^{O(d)}$ where d is the minimum depth of a monotone circuit that computes (truncactions of) the corresponding weighted threshold function

Our results (1/2)

Theorem (Existential - Bazzi, F, Huang, Svensson '17)

The min-knapsack polytope can be $(2+\varepsilon)$-approximated by an LP of size $(n / \varepsilon)^{O(1)} \cdot 2^{O(d)}$ where d is the minimum depth of a monotone circuit that computes (truncactions of) the corresponding weighted threshold function

- [Beimel \& Weinreb '08] Weighted threshold functions

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if } \sum_{i=1}^{n} a_{i} x_{i} \geqslant \beta \\ 0 & \text { otherwise }\end{cases}
$$

have monotone circuits of depth $O\left(\log ^{2} n\right)$

Our results (1/2)

Theorem (Existential - Bazzi, F, Huang, Svensson '17)

The min-knapsack polytope can be $(2+\varepsilon)$-approximated by an LP of size $(n / \varepsilon)^{O(1)} \cdot 2^{O(d)}$ where d is the minimum depth of a monotone circuit that computes (truncactions of) the corresponding weighted threshold function

- [Beimel \& Weinreb '08] Weighted threshold functions

$$
f\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if } \sum_{i=1}^{n} a_{i} x_{i} \geqslant \beta \\ 0 & \text { otherwise }\end{cases}
$$

have monotone circuits of depth $O\left(\log ^{2} n\right)$

Corollary (Existential - Bazzi, F, Huang, Svensson '17)

The min-knapsack polytope can be $(2+\varepsilon)$-approximated by an LP of size $(1 / \varepsilon)^{O(1)} \cdot n^{O(\log n)}$

A galaxy of hierarchies

Strengthening relaxations using formulas

$$
\begin{aligned}
& S \subseteq\{0,1\}^{n} 0 / 1 \text {-set } \\
& \phi \text { Boolean formula defining } S \\
& Q \subseteq[0,1]^{n} \text { convex relaxation of } S
\end{aligned}
$$

New relaxation $\phi(Q)$
with $S \subseteq \phi(Q) \subseteq Q$

Strengthening relaxations using formulas

$$
\begin{aligned}
& S \subseteq\{0,1\}^{n} 0 / 1 \text {-set } \\
& \phi \text { Boolean formula defining } S \\
& Q \subseteq[0,1]^{n} \text { convex relaxation of } S
\end{aligned}
$$

Starting from ϕ, recursively apply rules:

- Replace x_{i} by $Q \cap\left\{x: x_{i}=1\right\}$
- Replace $\neg x_{i}$ by $Q \cap\left\{x: x_{i}=0\right\}$
- Replace $\phi_{1} \wedge \phi_{2}$ by $\phi_{1}(Q) \cap \phi_{2}(Q)$
- Replace $\phi_{1} \vee \phi_{2}$ by $\operatorname{conv}\left(\phi_{1}(Q) \cup \phi_{2}(Q)\right)$

Strengthening relaxations using formulas

$$
\begin{aligned}
& S \subseteq\{0,1\}^{n} 0 / 1 \text {-set } \\
& \phi \text { Boolean formula defining } S \\
& Q \subseteq[0,1]^{n} \text { convex relaxation of } S
\end{aligned}
$$

New relaxation $\phi(Q)$
with $S \subseteq \phi(Q) \subseteq Q$

Starting from ϕ, recursively apply rules:

- Replace x_{i} by $Q \cap\left\{x: x_{i}=1\right\}$
- Replace $\neg x_{i}$ by $Q \cap\left\{x: x_{i}=0\right\}$
- Replace $\phi_{1} \wedge \phi_{2}$ by $\phi_{1}(Q) \cap \phi_{2}(Q)$
- Replace $\phi_{1} \vee \phi_{2}$ by $\operatorname{conv}\left(\phi_{1}(Q) \cup \phi_{2}(Q)\right)$

0/1-set: $\quad S=\left\{x \in\{0,1\}^{3}: x_{1}+x_{2}+x_{3} \geqslant 2\right\}$
Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right)$
Relaxation: $Q:=[0,1]^{3}$

Strengthening relaxations using formulas

$$
\begin{aligned}
& S \subseteq\{0,1\}^{n} 0 / 1 \text {-set } \\
& \phi \text { Boolean formula defining } S \\
& Q \subseteq[0,1]^{n} \text { convex relaxation of } S
\end{aligned}
$$

New relaxation $\phi(Q)$
with $S \subseteq \phi(Q) \subseteq Q$

Starting from ϕ, recursively apply rules:

- Replace x_{i} by $Q \cap\left\{x: x_{i}=1\right\}$
- Replace $\neg x_{i}$ by $Q \cap\left\{x: x_{i}=0\right\}$
- Replace $\phi_{1} \wedge \phi_{2}$ by $\phi_{1}(Q) \cap \phi_{2}(Q)$
- Replace $\phi_{1} \vee \phi_{2}$ by $\operatorname{conv}\left(\phi_{1}(Q) \cup \phi_{2}(Q)\right)$

0/1-set: $\quad S=\left\{x \in\{0,1\}^{3}: x_{1}+x_{2}+x_{3} \geqslant 2\right\}$
Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right) \quad \longleftarrow$ monotone
Relaxation: $Q:=[0,1]^{3}$

Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right)$
Relaxation: $\quad Q:=[0,1]^{3}$

Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right)$
Relaxation: $\quad Q:=[0,1]^{3}$

Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right)$
Relaxation: $\quad Q:=[0,1]^{3}$

Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right)$
Relaxation: $\quad Q:=[0,1]^{3}$

Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right)$
Relaxation: $Q:=[0,1]^{3}$

Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right)$
Relaxation: $Q:=[0,1]^{3}$

Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right)$
Relaxation: $\quad Q^{\prime}:=\phi\left([0,1]^{3}\right)$

Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right)$
Relaxation: $\quad Q^{\prime}:=\phi\left([0,1]^{3}\right)$

Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right)$

Relaxation: $\quad Q^{\prime}:=\phi\left([0,1]^{3}\right)$

Formula: $\quad \phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{1}\right)$
Relaxation: $\quad Q^{\prime}:=\phi\left([0,1]^{3}\right)$

Our results (2/2)

Proposition (F, Huynh \& Weltge '17)
If $Q \subseteq[0,1]^{n}$ is a polytope then $\phi(Q)$ also, and moreover

$$
\operatorname{xc}(\phi(Q)) \leqslant|\phi| \cdot \operatorname{xc}(Q)
$$

Our results (2/2)

Proposition (F, Huynh \& Weltge '17)

If $Q \subseteq[0,1]^{n}$ is a polytope then $\phi(Q)$ also, and moreover

$$
\operatorname{xc}(\phi(Q)) \leqslant|\phi| \cdot \operatorname{xc}(Q)
$$

Theorem (F, Huynh \& Weltge '17)

Assuming ϕ monotone,

$$
\left.\begin{array}{r}
Q \text { satisfies all valid } \\
\text { pitch } \leqslant k \text { inequalities }
\end{array} \quad \Longrightarrow \right\rvert\, \begin{aligned}
& \phi(Q) \text { satisfies all valid } \\
& \text { pitch } \leqslant k+1 \text { inequalities }
\end{aligned}
$$

Our results (2/2)

Proposition (F, Huynh \& Weltge '17)

If $Q \subseteq[0,1]^{n}$ is a polytope then $\phi(Q)$ also, and moreover

$$
\mathrm{xc}(\phi(Q)) \leqslant|\phi| \cdot \mathrm{xc}(Q)
$$

Theorem (F, Huynh \& Weltge '17)

Assuming ϕ monotone,

$$
\left.\begin{array}{r}
Q \text { satisfies all valid } \\
\text { pitch } \leqslant k \text { inequalities }
\end{array} \quad \Longrightarrow \quad \right\rvert\, \begin{aligned}
& \phi(Q) \text { satisfies all valid } \\
& \text { pitch } \leqslant k+1 \text { inequalities }
\end{aligned}
$$

The pitch measures how "complex" ineqs are (Bienstock \& Zuckerberg '04):

Our results (2/2)

Proposition (F, Huynh \& Weltge '17)

If $Q \subseteq[0,1]^{n}$ is a polytope then $\phi(Q)$ also, and moreover

$$
\mathrm{xc}(\phi(Q)) \leqslant|\phi| \cdot \operatorname{xc}(Q)
$$

Theorem (F, Huynh \& Weltge '17)

Assuming ϕ monotone,

$$
\left.\begin{array}{r}
Q \text { satisfies all valid } \\
\text { pitch } \leqslant k \text { inequalities }
\end{array} \quad \Longrightarrow \quad \right\rvert\, \begin{aligned}
& \phi(Q) \text { satisfies all valid } \\
& \text { pitch } \leqslant k+1 \text { inequalities }
\end{aligned}
$$

The pitch measures how "complex" ineqs are (Bienstock \& Zuckerberg '04):

- $x_{1} \geqslant 1, \quad x_{1}+x_{3}+x_{7} \geqslant 1 \quad$ have pitch 1

Our results (2/2)

Proposition (F, Huynh \& Weltge '17)

If $Q \subseteq[0,1]^{n}$ is a polytope then $\phi(Q)$ also, and moreover

$$
\mathrm{xc}(\phi(Q)) \leqslant|\phi| \cdot \operatorname{xc}(Q)
$$

Theorem (F, Huynh \& Weltge '17)

Assuming ϕ monotone,

$$
\left.\begin{array}{r}
Q \text { satisfies all valid } \\
\text { pitch } \leqslant k \text { inequalities }
\end{array} \quad \Longrightarrow \quad \right\rvert\, \begin{aligned}
& \phi(Q) \text { satisfies all valid } \\
& \text { pitch } \leqslant k+1 \text { inequalities }
\end{aligned}
$$

The pitch measures how "complex" ineqs are (Bienstock \& Zuckerberg '04):

- $x_{1} \geqslant 1, \quad x_{1}+x_{3}+x_{7} \geqslant 1 \quad$ have pitch 1
- $x_{1}+x_{5} \geqslant 2, \quad 2 x_{3}+x_{4}+x_{5} \geqslant 2 \quad$ have pitch 2

Our results (2/2)

Proposition (F, Huynh \& Weltge '17)

If $Q \subseteq[0,1]^{n}$ is a polytope then $\phi(Q)$ also, and moreover

$$
\operatorname{xc}(\phi(Q)) \leqslant|\phi| \cdot \operatorname{xc}(Q)
$$

Theorem (F, Huynh \& Weltge '17)

Assuming ϕ monotone,

$$
\left.\begin{array}{r}
Q \text { satisfies all valid } \\
\text { pitch } \leqslant k \text { inequalities }
\end{array} \quad \Longrightarrow \quad \right\rvert\, \begin{aligned}
& \phi(Q) \text { satisfies all valid } \\
& \text { pitch } \leqslant k+1 \text { inequalities }
\end{aligned}
$$

The pitch measures how "complex" ineqs are (Bienstock \& Zuckerberg '04):

- $x_{1} \geqslant 1, \quad x_{1}+x_{3}+x_{7} \geqslant 1 \quad$ have pitch 1
- $x_{1}+x_{5} \geqslant 2, \quad 2 x_{3}+x_{4}+x_{5} \geqslant 2 \quad$ have pitch 2
- $2 x_{3}+x_{4}+2 x_{7} \geqslant 3$

Our results (2/2)

Proposition (F, Huynh \& Weltge '17)

If $Q \subseteq[0,1]^{n}$ is a polytope then $\phi(Q)$ also, and moreover

$$
\operatorname{xc}(\phi(Q)) \leqslant|\phi| \cdot \operatorname{xc}(Q)
$$

Theorem (F, Huynh \& Weltge '17)

Assuming ϕ monotone,

$$
\left.\begin{array}{r}
Q \text { satisfies all valid } \\
\text { pitch } \leqslant k \text { inequalities }
\end{array} \quad \Longrightarrow \quad \right\rvert\, \begin{aligned}
& \phi(Q) \text { satisfies all valid } \\
& \text { pitch } \leqslant k+1 \text { inequalities }
\end{aligned}
$$

The pitch measures how "complex" ineqs are (Bienstock \& Zuckerberg '04):

- $x_{1} \geqslant 1, \quad x_{1}+x_{3}+x_{7} \geqslant 1 \quad$ have pitch 1
- $x_{1}+x_{5} \geqslant 2, \quad 2 x_{3}+x_{4}+x_{5} \geqslant 2 \quad$ have pitch 2
- $2 x_{3}+x_{4}+2 x_{7} \geqslant 3$ has pitch 2

BZ's approximation of the CG-closures

Theorem (Bienstock \& Zuckerberg '06)
If $Q=\left\{x \in[0,1]^{n}: A x \geqslant b\right\}$ for A, b nonnegative, then
$Q \cap\{x \mid x$ satisfies all valid pitch $\leqslant k$ ineqs $\}$
is $(1+\varepsilon)$-approx of the ℓ-th CG-closure of Q whenever $k=\Omega(\ell / \varepsilon)$

Comparison to BZ’04

Main theorem from Bienstock \& Zuckerberg '04, where $g(k)=\Omega\left(k^{2}\right)$:

THEOREM 1.2. Let $k \geq 1$ be a fixed̆ integer. Consider a set-covering problem

$$
\min \left\{c^{T} x: A x \geq e, x \in\{0,1\}^{n}\right\}
$$

where A is an $m \times n$, 0-1 matrix and e is the vector of $m 1 s$. Let P_{k} denote the set of all valid inequalities for $\left\{x \in\{0,1\}^{n}: A x \geq e\right\}$ of pitch $\leq k$. Then there exists a positive integer $g(k)$, a polytope $\mathcal{Q}_{k} \subseteq R^{n}$, and a polytope $\overline{\mathcal{Q}}_{k} \subseteq R^{(m+n)^{g(k)}}$ satisfying the following:
(a) $\left\{x \in\{0,1\}^{n} A x \geq e\right\} \subseteq \mathcal{Q}_{k}$.
(b) $a^{T} x \geq a_{0}$ for all $x \in \mathcal{Q}_{k}$ and for all $\left(a, a_{0}\right) \in P_{k}$.
(c) \mathcal{Q}_{k} is the projection to R^{n} of $\overline{\mathcal{Q}}_{k}$.
(d) $\overline{\mathcal{Q}}_{k}$ can be described by a system of at most $(m+n)^{g(k)}$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.

Comparison to BZ'04

Main theorem from Bienstock \& Zuckerberg '04, where $g(k)=\Omega\left(k^{2}\right)$:

THEOREM 1.2. Let $k \geq 1$ be a fixed integer. Consider a set-covering problem

$$
\min \left\{c^{T} x: A x \geq e, x \in\{0,1\}^{n}\right\}
$$

where A is an $m \times n$, 0-1 matrix and e is the vector of $m 1 s$. Let P_{k} denote the set of all valid inequalities for $\left\{x \in\{0,1\}^{n}: A x \geq e\right\}$ of pitch $\leq k$. Then there exists a positive integer $g(k)$, a polytope $\mathcal{Q}_{k} \subseteq R^{n}$, and a polytope $\overline{\mathcal{Q}}_{k} \subseteq R^{(m+n)^{g(k)}}$ satisfying the following:
(a) $\left\{x \in\{0,1\}^{n} A x \geq e\right\} \subseteq \mathcal{Q}_{k}$.
(b) $a^{T} x \geq a_{0}$ for all $x \in \mathcal{Q}_{k}$ and for all $\left(a, a_{0}\right) \in P_{k}$.
(c) \mathcal{Q}_{k} is the projection to R^{n} of $\overline{\mathcal{Q}}_{k}$.
(d) $\overline{\mathcal{Q}}_{k}$ can be described by a system of at most $(m+n)^{g(k)}$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.

- Was simplified (but not improved) earlier by Mastrolili '17

Comparison to BZ’04

Main theorem from Bienstock \& Zuckerberg '04, where $g(k)=\Omega\left(k^{2}\right)$:

THEOREM 1.2. Let $k \geq 1$ be a fixed̆ integer. Consider a set-covering problem

$$
\min \left\{c^{T} x: A x \geq e, x \in\{0,1\}^{n}\right\}
$$

where A is an $m \times n$, 0-1 matrix and e is the vector of $m 1 s$. Let P_{k} denote the set of all valid inequalities for $\left\{x \in\{0,1\}^{n}: A x \geq e\right\}$ of pitch $\leq k$. Then there exists a positive integer $g(k)$, a polytope $\mathcal{Q}_{k} \subseteq R^{n}$, and a polytope $\overline{\mathcal{Q}}_{k} \subseteq R^{(m+n)^{g(k)}}$ satisfying the following:
(a) $\left\{x \in\{0,1\}^{n} A x \geq e\right\} \subseteq \mathcal{Q}_{k}$.
(b) $a^{T} x \geq a_{0}$ for all $x \in \mathcal{Q}_{k}$ and for all $\left(a, a_{0}\right) \in P_{k}$.
(c) \mathcal{Q}_{k} is the projection to R^{n} of $\overline{\mathcal{Q}}_{k}$.
(d) $\overline{\mathcal{Q}}_{k}$ can be described by a system of at most $(m+n)^{g(k)}$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.

- Was simplified (but not improved) earlier by Mastrolili '17
- If use $Q \cap \phi^{k}\left([0,1]^{n}\right)$, get extended formulation of size

Comparison to BZ'04

Main theorem from Bienstock \& Zuckerberg '04, where $g(k)=\Omega\left(k^{2}\right)$:

THEOREM 1.2. Let $k \geq 1$ be a fixed integer. Consider a set-covering problem

$$
\min \left\{c^{T} x: A x \geq e, x \in\{0,1\}^{n}\right\}
$$

where A is an $m \times n$, 0-1 matrix and e is the vector of $m 1 s$. Let P_{k} denote the set of all valid inequalities for $\left\{x \in\{0,1\}^{n}: A x \geq e\right\}$ of pitch $\leq k$. Then there exists a positive integer $g(k)$, a polytope $\mathcal{Q}_{k} \subseteq R^{n}$, and a polytope $\overline{\mathcal{Q}}_{k} \subseteq R^{(m+n)^{g(k)}}$ satisfying the following:
(a) $\left\{x \in\{0,1\}^{n} A x \geq e\right\} \subseteq \mathcal{Q}_{k}$.
(b) $a^{T} x \geq a_{0}$ for all $x \in \mathcal{Q}_{k}$ and for all $\left(a, a_{0}\right) \in P_{k}$.
(c) \mathcal{Q}_{k} is the projection to R^{n} of $\overline{\mathcal{Q}}_{k}$.
(d) $\overline{\mathcal{Q}}_{k}$ can be described by a system of at most $(m+n)^{g(k)}$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.

- Was simplified (but not improved) earlier by Mastrolili '17
- If use $Q \cap \phi^{k}\left([0,1]^{n}\right)$, get extended formulation of size
- $\leqslant \mathrm{xc}(Q)+2 n \cdot(m n)^{k}$ for obvious CNF formula deciding S

Comparison to BZ’04

Main theorem from Bienstock \& Zuckerberg '04, where $g(k)=\Omega\left(k^{2}\right)$:

THEOREM 1.2. Let $k \geq 1$ be a fixed integer. Consider a set-covering problem

$$
\min \left\{c^{T} x: A x \geq e, x \in\{0,1\}^{n}\right\}
$$

where A is an $m \times n$, 0-1 matrix and e is the vector of $m 1 s$. Let P_{k} denote the set of all valid inequalities for $\left\{x \in\{0,1\}^{n}: A x \geq e\right\}$ of pitch $\leq k$. Then there exists a positive integer $g(k)$, a polytope $\mathcal{Q}_{k} \subseteq R^{n}$, and a polytope $\overline{\mathcal{Q}}_{k} \subseteq R^{(m+n)^{g(k)}}$ satisfying the following:
(a) $\left\{x \in\{0,1\}^{n} A x \geq e\right\} \subseteq \mathcal{Q}_{k}$.
(b) $a^{T} x \geq a_{0}$ for all $x \in \mathcal{Q}_{k}$ and for all $\left(a, a_{0}\right) \in P_{k}$.
(c) \mathcal{Q}_{k} is the projection to R^{n} of $\overline{\mathcal{Q}}_{k}$.
(d) $\overline{\mathcal{Q}}_{k}$ can be described by a system of at most $(m+n)^{g(k)}$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.

- Was simplified (but not improved) earlier by Mastrolili '17
- If use $Q \cap \phi^{k}\left([0,1]^{n}\right)$, get extended formulation of size
- $\leqslant \mathrm{xc}(Q)+2 n \cdot(m n)^{k}$ for obvious CNF formula deciding S
- $\leqslant \mathrm{xc}(Q)+2 n \cdot|\phi|^{k}$ where ϕ is any formula deciding S

Theorem (F, Huynh \& Weltge '17)

Assuming ϕ monotone,

Proof (inspired by Karchmer \& Widgerson '90)
Assume $\sum_{i \in I^{+}} c_{i} x_{i} \geqslant \delta$ pitch- $(k+1)$ ineq not valid for $\phi(Q)$
Letting $a \in\{0,1\}^{n}$ with $a_{i}=0 \Longleftrightarrow i \in I^{+}$, have:

- $\phi(a)=0$
- \exists violator $\tilde{x} \in \phi(Q)$

If $\phi=\phi_{1} \wedge \phi_{2}$ then

- $\phi_{1}(a)=0$ or $\phi_{2}(a)=0$
- \exists violator $\tilde{x}_{1} \in \phi_{1}(Q)$ and \exists violator $\tilde{x}_{2} \in \phi_{2}(Q)$

If $\phi=\phi_{1} \wedge \phi_{2}$ then

- $\phi_{1}(a)=0$ or $\phi_{2}(a)=0$
- \exists violator $\tilde{x}_{1} \in \phi_{1}(Q)$ and \exists violator $\tilde{x}_{2} \in \phi_{2}(Q)$

If $\phi=\phi_{1} \vee \phi_{2}$ then

- $\phi_{1}(a)=0$ and $\phi_{2}(a)=0$
- \exists violator $\tilde{x}_{1} \in \phi_{1}(Q)$ or \exists violator $\tilde{x}_{2} \in \phi_{2}(Q)$

Final leaf x_{j} has:

- $a_{j}=0 \Longleftrightarrow j \in I^{+}$
- \exists violator $\tilde{x} \in Q \cap\left\{x: x_{j}=1\right\}$

Final leaf x_{j} has:

- $a_{j}=0 \Longleftrightarrow j \in I^{+}$
- \exists violator $\tilde{x} \in Q \cap\left\{x: x_{j}=1\right\}$
contradicts hypothesis that Q satisfies pitch $\leqslant k$ ineq

$$
\sum_{i \neq j} c_{i} x_{i} \geqslant \delta-c_{j}
$$

fite
cmestons

Knapsack-cover inequalities

Given sizes $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{+}$and demand $D \in \mathbb{Z}_{+}$:

$$
f(x)=1 \Longleftrightarrow \sum_{i=1}^{n} s_{i} x_{i} \geqslant D
$$

Knapsack-cover inequalities

Given sizes $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{+}$and demand $D \in \mathbb{Z}_{+}$:

$$
f(x)=1 \Longleftrightarrow \sum_{i=1}^{n} s_{i} x_{i} \geqslant D
$$

Knapsack-cover inequalities

Given sizes $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{+}$and demand $D \in \mathbb{Z}_{+}$:

$$
f(x)=1 \Longleftrightarrow \sum_{i=1}^{n} s_{i} x_{i} \geqslant D
$$

Knapsack-cover inequalities

Given sizes $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{+}$and demand $D \in \mathbb{Z}_{+}$:

$$
f(x)=1 \Longleftrightarrow \sum_{i=1}^{n} s_{i} x_{i} \geqslant D
$$

Knapsack-cover inequalities

Given sizes $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{+}$and demand $D \in \mathbb{Z}_{+}$:

$$
f(x)=1 \Longleftrightarrow \sum_{i=1}^{n} s_{i} x_{i} \geqslant D
$$

Knapsack-cover inequalities

Given sizes $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{+}$and demand $D \in \mathbb{Z}_{+}$:

$$
f(x)=1 \Longleftrightarrow \sum_{i=1}^{n} s_{i} x_{i} \geqslant D
$$

Knapsack cover inequality: for $a \in f^{-1}(0)$

$$
\sum_{i: a_{i}=0} \min \left(\left\{s_{i}, D(a)\right\}\right) \cdot x_{i} \geqslant D(a)
$$

where $D(a):=D-\sum_{i=1}^{n} s_{i} a_{i}=$ residual demand

Knapsack-cover inequalities

Given sizes $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{+}$and demand $D \in \mathbb{Z}_{+}$:

$$
f(x)=1 \Longleftrightarrow \sum_{i=1}^{n} s_{i} x_{i} \geqslant D
$$

Knapsack cover inequality: for $a \in f^{-1}(0)$

$$
\sum_{i: a_{i}=0} \min \left(\left\{s_{i}, D(a)\right\}\right) \cdot x_{i} \geqslant D(a)
$$

where $D(a):=D-\sum_{i=1}^{n} s_{i} a_{i}=$ residual demand
Intuition: KC ineq is pitch-1 w.r.t. large items \longleftarrow items i such that $s_{i} \geqslant D(a)$

The relaxation

(1) Sort item sizes: $s_{1} \geqslant s_{2} \geqslant \cdots \geqslant s_{n}$
(2) Parametrize the KC inequalities by:

- $\alpha:=$ index of last large item
- $\beta:=\sum_{i \leqslant \alpha} s_{i} a_{i}$
(3) Construct monotone formula $\phi_{\alpha, \beta}$ for threshold function

$$
f_{\alpha, \beta}(x)=1 \Longleftrightarrow \sum_{i \leqslant \alpha} s_{i} x_{i} \geqslant \beta+1
$$

(4) Define relaxation by the following formula:

$$
\bigwedge_{\alpha, \beta}\left(\phi_{\alpha, \beta}(x) \quad \vee \quad\left(\sum_{i>\alpha} s_{i} x_{i} \geqslant D-\beta\right)\right)
$$

Final comments

- We can extend to flow cover inequalities (used e.g. for single demand facility location problem)

Final comments

- We can extend to flow cover inequalities (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$-size $O(1)$-apx EF?

Final comments

- We can extend to flow cover inequalities (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$-size $O(1)$-apx EF?
- Open: do weighted threshold fns admit $n^{O(1)}$-size monotone formulas?

Final comments

- We can extend to flow cover inequalities (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$-size $O(1)$-apx EF?
- Open: do weighted threshold fns admit $n^{O(1)}$-size monotone formulas?
- Open: does min-knapsack admit a $n^{O(\log n)}$-size $(1+\varepsilon)$-apx EF?

Final comments

- We can extend to flow cover inequalities (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$-size $O(1)$-apx EF?
- Open: do weighted threshold fns admit $n^{O(1)}$-size monotone formulas?
- Open: does min-knapsack admit a $n^{O(\log n)}$-size $(1+\varepsilon)$-apx EF?
- Find more algorithmic applications of Chvátal-Gomory cuts!!

Final comments

- We can extend to flow cover inequalities (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$-size $O(1)$-apx EF?
- Open: do weighted threshold fns admit $n^{O(1)}$-size monotone formulas?
- Open: does min-knapsack admit a $n^{O(\log n)}$-size $(1+\varepsilon)$-apx EF?
- Find more algorithmic applications of Chvátal-Gomory cuts!!

Final comments

- We can extend to flow cover inequalities (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$-size $O(1)$-apx EF?
- Open: do weighted threshold fns admit $n^{O(1)}$-size monotone formulas?
- Open: does min-knapsack admit a $n^{O(\log n)}$-size $(1+\varepsilon)$-apx EF?
- Find more algorithmic applications of Chvátal-Gomory cuts!!

- THANK YOU! -

