Small (Explicit) Extended Formulation for Knapsack Cover Inequalities from Monotone Circuits

Abbas Bazzi Samuel Fiorini Sangxia Huang Ola Svensson & Samuel Fiorini Tony Huynh Stefan Weltge

[Hrubeš '12, GJW '16]

 \exists connection between circuit complexity and extended formulations

What is the **smallest LP** for solving problem *A*?

[Hrubeš '12, GJW '16]

 \exists connection between circuit complexity and extended formulations

What is the **smallest LP** for solving problem *A*?

What is the **smallest depth circuit** for solving problem *B*?

[Hrubeš '12, GJW '16]

 \exists connection between circuit complexity and extended formulations

What is the **smallest LP** for solving problem *A*?

What is the **smallest depth circuit** for solving problem *B*?

 $2^{\Omega(n)}$ size LP lower bound for matchings \implies matching requires monotone circuits of $\Omega(n)$ depth

[Hrubeš '12, GJW '16]

 \exists connection between circuit complexity and extended formulations

What is the **smallest LP** for solving problem *A*?

What is the **smallest depth circuit** for solving problem *B*?

We use that certain functions have small depth monotone circuits to give small **explicit** LPs for covering problems

Our problem

"Simplest" binary integer program with single covering constraint:

 $100x_1 + 50x_2 + 50x_3 \ge 101$ $x_1, x_2, x_3 \in \{0, 1\}$

inequalities = 7

Adversary finds worst objective function (= evaluates integrality gap)

3

```
If min x_2 + x_3, then
IP optimum = 1 \implies Integrality gap = 50
LP optimum = 1/50
```

Our problem

"Simplest" binary integer program with single covering constraint:

 $100x_1 + 50x_2 + 50x_3 \ge 101$ $x_1, x_2, x_3 \in \{0, 1\}$

inequalities = 5

Adversary finds worst objective function (= evaluates integrality gap)

3

For any objective fn IP optimum = LP optimum \implies Integrality gap = 1

Our problem — formally

Simplest 0/1-set defined by single covering constraint

$$\sum_{i=1}^{n} a_i x_i \geqslant \beta \quad \text{where } a \in \mathbb{Z}^n_+ \text{ and } \beta \in \mathbb{Z}_+$$
$$x \in \{0,1\}^n$$

convex hull of integer solutions = min-knapsack polytope

Our problem — formally

Simplest 0/1-set defined by single covering constraint

$$\begin{split} &\sum_{i=1}^n a_i x_i \geqslant \beta \quad \text{where } a \in \mathbb{Z}^n_+ \text{ and } \beta \in \mathbb{Z}_+ \\ &x \in \{0,1\}^n \end{split}$$

convex hull of integer solutions = min-knapsack polytope

Write down an LP relaxation = extended formulation

Ax + By = c equality constraints $Dx + Ey \ge f$ inequality constraints

Our problem — formally

Simplest 0/1-set defined by single covering constraint

$$\begin{split} &\sum_{i=1}^n a_i x_i \geqslant \beta \quad \text{where } a \in \mathbb{Z}^n_+ \text{ and } \beta \in \mathbb{Z}_+ \\ &x \in \{0,1\}^n \end{split}$$

convex hull of integer solutions = min-knapsack polytope

Write down an LP relaxation = extended formulation

Ax + By = c equality constraints $Dx + Ey \ge f$ inequality constraints

Evaluate the relaxation vs all possible objective functions in terms of

- size = # inequalities
- integrality gap = $\sup \frac{\text{IP optimum}}{\text{LP optimum}}$

State of the Art

Knapsack-cover ineqs [Balas '75, Hammer et al. '75, Wolsey '75, Carr et al. '06]

There are exponentially many (but approximately separable) inequalities that bring the integrality gap down to $2\,$

Many applications:

- Network design
- Facility location
- Scheduling

Question

Is there a poly-size relaxation with any constant integrality gap?

Previously:

Bienstock and McClosky '12] can be done when the objective is sorted

State of the Art

Knapsack-cover ineqs [Balas '75, Hammer et al. '75, Wolsey '75, Carr et al. '06]

There are exponentially many (but approximately separable) inequalities that bring the integrality gap down to $2\,$

Many applications:

- Network design
- Facility location
- Scheduling

Question

Is there a poly-size relaxation with any constant integrality gap?

Previously:

Bienstock and McClosky '12] can be done when the objective is sorted

... our first feeling: maybe there is no such relaxation?

Theorem (Existential – Bazzi, F, Huang, Svensson '17)

The min-knapsack polytope can be $(2 + \varepsilon)$ -approximated by an LP of size $(n/\varepsilon)^{O(1)} \cdot 2^{O(d)}$ where d is the minimum depth of a monotone circuit that computes (truncactions of) the corresponding weighted threshold function

Theorem (Existential – Bazzi, F, Huang, Svensson '17)

The min-knapsack polytope can be $(2 + \varepsilon)$ -approximated by an LP of size $(n/\varepsilon)^{O(1)} \cdot 2^{O(d)}$ where d is the minimum depth of a monotone circuit that computes (truncactions of) the corresponding weighted threshold function

[Beimel & Weinreb '08] Weighted threshold functions

$$f(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } \sum_{i=1}^n a_i x_i \ge \beta \\ 0 & \text{otherwise} \end{cases}$$

have monotone circuits of depth $O(\log^2 n)$

Theorem (Existential – Bazzi, F, Huang, Svensson '17)

The min-knapsack polytope can be $(2 + \varepsilon)$ -approximated by an LP of size $(n/\varepsilon)^{O(1)} \cdot 2^{O(d)}$ where d is the minimum depth of a monotone circuit that computes (truncactions of) the corresponding weighted threshold function

[Beimel & Weinreb '08] Weighted threshold functions

$$f(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } \sum_{i=1}^n a_i x_i \ge \beta \\ 0 & \text{otherwise} \end{cases}$$

have monotone circuits of depth $O(\log^2 n)$

Corollary (Existential – Bazzi, F, Huang, Svensson '17)

The min-knapsack polytope can be $(2+\varepsilon)$ -approximated by an LP of size $(1/\varepsilon)^{O(1)}\cdot n^{O(\log n)}$

A galaxy of hierarchies

 $S \subseteq \{0,1\}^n \ 0/1\text{-set}$

 ϕ Boolean formula defining S

 $Q \subseteq [0,1]^n$ convex relaxation of S

New relaxation $\phi(Q)$ with $S \subseteq \phi(Q) \subseteq Q$

 $S \subseteq \{0,1\}^n \ 0/1\text{-set}$

 ϕ Boolean formula defining S

 $Q \subseteq [0,1]^n$ convex relaxation of S

New relaxation
$$\phi(Q)$$

with $S \subseteq \phi(Q) \subseteq Q$

Starting from ϕ , recursively apply **rules**:

• Replace x_i by $Q \cap \{x : x_i = 1\}$ • Replace $\neg x_i$ by $Q \cap \{x : x_i = 0\}$ • Replace $\phi_1 \land \phi_2$ by $\phi_1(Q) \cap \phi_2(Q)$ • Replace $\phi_1 \lor \phi_2$ by $\operatorname{conv}(\phi_1(Q) \cup \phi_2(Q))$

 $S \subseteq \{0,1\}^n \ 0/1\text{-set}$

 ϕ Boolean formula defining S

 $Q \subseteq [0,1]^n$ convex relaxation of S

New relaxation
$$\phi(Q)$$

with $S \subseteq \phi(Q) \subseteq Q$

Starting from ϕ , recursively apply **rules**:

• Replace x_i by $Q \cap \{x : x_i = 1\}$ • Replace $\neg x_i$ by $Q \cap \{x : x_i = 0\}$ • Replace $\phi_1 \wedge \phi_2$ by $\phi_1(Q) \cap \phi_2(Q)$ • Replace $\phi_1 \lor \phi_2$ by $\operatorname{conv}(\phi_1(Q) \cup \phi_2(Q))$

0/1-set:
$$S = \{x \in \{0, 1\}^3 : x_1 + x_2 + x_3 \ge 2\}$$

Formula: $\phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1)$

Relaxation: $Q := [0, 1]^3$

 $S \subseteq \{0,1\}^n \ 0/1\text{-set}$

 ϕ Boolean formula defining S

 $Q \subseteq [0,1]^n$ convex relaxation of S

New relaxation
$$\phi(Q)$$

with $S \subseteq \phi(Q) \subseteq Q$

Starting from ϕ , recursively apply **rules**:

• Replace x_i by $Q \cap \{x : x_i = 1\}$ • Replace $\neg x_i$ by $Q \cap \{x : x_i = 0\}$ • Replace $\phi_1 \land \phi_2$ by $\phi_1(Q) \cap \phi_2(Q)$ • Replace $\phi_1 \lor \phi_2$ by $\operatorname{conv}(\phi_1(Q) \cup \phi_2(Q))$

$$\begin{array}{ll} 0/1\text{-set:} & S = \{x \in \{0,1\}^3 : x_1 + x_2 + x_3 \geqslant 2\}\\ \text{Formula:} & \phi = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1) & \longleftarrow \text{monotone}\\ \text{Relaxation:} & Q := [0,1]^3 \end{array}$$

 $\left[x_{2}\right]$

 x_3

 (x_3)

 x_1

 x_2

Proposition (F, Huynh & Weltge '17)

If $Q \subseteq [0,1]^n$ is a polytope then $\phi(Q)$ also, and moreover

 $\operatorname{xc}(\phi(Q)) \leqslant |\phi| \cdot \operatorname{xc}(Q)$

Proposition (F, Huynh & Weltge '17)

If $Q \subseteq [0,1]^n$ is a polytope then $\phi(Q)$ also, and moreover

$\operatorname{xc}(\phi(Q)) \leqslant |\phi| \cdot \operatorname{xc}(Q)$

Theorem (F, Huynh & Weltge '17)

Assuming ϕ monotone,

Q satisfies all valid pitch $\leq k$ inequalities

 $\implies \qquad \phi(Q) \text{ satisfies all valid} \\ \text{pitch} \leqslant k + 1 \text{ inequalities} \end{cases}$

Proposition (F, Huynh & Weltge '17)

If $Q \subseteq [0,1]^n$ is a polytope then $\phi(Q)$ also, and moreover

 $\operatorname{xc}(\phi(Q)) \leq |\phi| \cdot \operatorname{xc}(Q)$

Proposition (F, Huynh & Weltge '17)

If $Q \subseteq [0,1]^n$ is a polytope then $\phi(Q)$ also, and moreover

 $\operatorname{xc}(\phi(Q)) \leqslant |\phi| \cdot \operatorname{xc}(Q)$

Theorem (F, Huynh & Weltge '17)		
Assuming ϕ monotone,		
Q satisfies all valid \Rightarrow pitch $\leqslant k$ inequalities	$\phi(Q)$ satisfies all valid pitch $\leqslant k+1$ inequalities	
The <i>pitch</i> measures how "complex" ineqs are (Bienstock & Zuckerberg '04):		

• $x_1 \ge 1$, $x_1 + x_3 + x_7 \ge 1$ have pitch 1

Proposition (F, Huynh & Weltge '17)

If $Q \subseteq [0,1]^n$ is a polytope then $\phi(Q)$ also, and moreover

 $\operatorname{xc}(\phi(Q)) \leq |\phi| \cdot \operatorname{xc}(Q)$

•
$$x_1 \ge 1$$
, $x_1 + x_3 + x_7 \ge 1$ have pitch 1

• $x_1 + x_5 \ge 2$, $2x_3 + x_4 + x_5 \ge 2$ have pitch 2

Proposition (F, Huynh & Weltge '17)

If $Q \subseteq [0,1]^n$ is a polytope then $\phi(Q)$ also, and moreover

 $\operatorname{xc}(\phi(Q)) \leqslant |\phi| \cdot \operatorname{xc}(Q)$

Theorem (F, Huynh & Weltge '17)		
Assuming ϕ monotone,		
Q satisfies all valid \implies pitch $\leqslant k$ inequalities	$\phi(Q)$ satisfies all valid pitch $\leq k+1$ inequalities	
The nitch measures how "compley" increases (Dispeterly 8, Zuskerberg 204);		

The *pitch* measures how "complex" ineqs are (Bienstock & Zuckerberg '04):

•
$$x_1 \ge 1$$
, $x_1 + x_3 + x_7 \ge 1$ have pitch 1

•
$$x_1 + x_5 \ge 2$$
, $2x_3 + x_4 + x_5 \ge 2$ have pitch 2

$$2x_3 + x_4 + 2x_7 \ge 3$$

Proposition (F, Huynh & Weltge '17)

If $Q \subseteq [0,1]^n$ is a polytope then $\phi(Q)$ also, and moreover

 $\operatorname{xc}(\phi(Q)) \leqslant |\phi| \cdot \operatorname{xc}(Q)$

Theorem (F, Huynh & Weltge '17)		
Assuming ϕ monotone,		
Q satisfies all valid pitch $\leqslant k$ inequalities \Longrightarrow	$\phi(Q)$ satisfies all valid pitch $\leqslant k+1$ inequalities	
The <i>pitch</i> measures how "complex" ineqs are (Bienstock & Zuckerberg '04):		

• $x_1 \ge 1$, $x_1 + x_3 + x_7 \ge 1$ have pitch 1

• $x_1 + x_5 \ge 2$, $2x_3 + x_4 + x_5 \ge 2$ have pitch 2

• $2x_3 + x_4 + 2x_7 \ge 3$ has pitch 2

BZ's approximation of the CG-closures

Theorem (Bienstock & Zuckerberg '06)

If $Q = \{x \in [0,1]^n : Ax \ge b\}$ for A, b nonnegative, then

 $Q \cap \{x \mid x \text{ satisfies all valid pitch} \leq k \text{ ineqs}\}$

is $(1 + \varepsilon)$ -approx of the ℓ -th CG-closure of Q whenever $k = \Omega(\ell/\varepsilon)$

Main theorem from Bienstock & Zuckerberg '04, where $g(k) = \Omega(k^2)$:

Theorem 1.2. Let $k \ge 1$ be a fixed integer. Consider a set-covering problem

 $\min\{c^T x \, : \, Ax \ge e, \, \, x \in \{0,1\}^n \, \},$

where A is an $m \times n$, 0-1 matrix and e is the vector of m 1s. Let P_k denote the set of all valid inequalities for $\{x \in \{0,1\}^n : Ax \ge e\}$ of pitch $\le k$. Then there exists a positive integer g(k), a polytope $\mathcal{Q}_k \subseteq \mathbb{R}^n$, and a polytope $\overline{\mathcal{Q}}_k \subseteq \mathbb{R}^{(m+n)^{g(k)}}$ satisfying the following:

- (a) $\{x \in \{0,1\}^n Ax \ge e\} \subseteq \mathcal{Q}_k.$
- (b) $a^T x \ge a_0$ for all $x \in \mathcal{Q}_k$ and for all $(a, a_0) \in P_k$.
- (c) \mathcal{Q}_k is the projection to \mathbb{R}^n of $\overline{\mathcal{Q}}_k$.
- (d) \$\bar{Q}_k\$ can be described by a system of at most \$(m+n)^{g(k)}\$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.

Main theorem from Bienstock & Zuckerberg '04, where $g(k) = \Omega(k^2)$:

THEOREM 1.2. Let $k \ge 1$ be a fixed integer. Consider a set-covering problem $\min\{c^T x : Ax \ge e, x \in \{0,1\}^n\},$

where A is an $m \times n$, 0-1 matrix and e is the vector of m 1s. Let P_k denote the set of all valid inequalities for $\{x \in \{0,1\}^n : Ax \ge e\}$ of pitch $\le k$. Then there exists a positive integer g(k), a polytope $Q_k \subseteq R^n$, and a polytope $\overline{Q}_k \subseteq R^{(m+n)^{g(k)}}$ satisfying the following:

- (a) $\{x \in \{0,1\}^n Ax \ge e\} \subseteq \mathcal{Q}_k.$
- (b) $a^T x \ge a_0$ for all $x \in \mathcal{Q}_k$ and for all $(a, a_0) \in P_k$.
- (c) \mathcal{Q}_k is the projection to \mathbb{R}^n of $\overline{\mathcal{Q}}_k$.
- (d) \$\bar{Q}_k\$ can be described by a system of at most \$(m+n)^{g(k)}\$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.

Was simplified (but not improved) earlier by Mastrolili '17

Main theorem from Bienstock & Zuckerberg '04, where $g(k) = \Omega(k^2)$:

THEOREM 1.2. Let $k \ge 1$ be a fixed integer. Consider a set-covering problem $\min\{c^T x : Ax \ge e, x \in \{0,1\}^n\},$

where A is an $m \times n$, 0-1 matrix and e is the vector of m 1s. Let P_k denote the set of all valid inequalities for $\{x \in \{0,1\}^n : Ax \ge e\}$ of pitch $\le k$. Then there exists a positive integer g(k), a polytope $\mathcal{Q}_k \subseteq \mathbb{R}^n$, and a polytope $\overline{\mathcal{Q}}_k \subseteq \mathbb{R}^{(m+n)^{g(k)}}$ satisfying the following:

- (a) $\{x \in \{0,1\}^n Ax \ge e\} \subseteq \mathcal{Q}_k.$
- (b) $a^T x \ge a_0$ for all $x \in \mathcal{Q}_k$ and for all $(a, a_0) \in P_k$.
- (c) \mathcal{Q}_k is the projection to \mathbb{R}^n of $\overline{\mathcal{Q}}_k$.
- (d) \$\bar{Q}_k\$ can be described by a system of at most \$(m+n)^{g(k)}\$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.
- Was simplified (but not improved) earlier by Mastrolili '17
- If use $Q \cap \phi^k([0,1]^n)$, get extended formulation of size

Main theorem from Bienstock & Zuckerberg '04, where $g(k) = \Omega(k^2)$:

THEOREM 1.2. Let $k \ge 1$ be a fixed integer. Consider a set-covering problem $\min\{c^T x : Ax \ge e, x \in \{0,1\}^n\},$

where A is an $m \times n$, 0-1 matrix and e is the vector of m 1s. Let P_k denote the set of all valid inequalities for $\{x \in \{0,1\}^n : Ax \ge e\}$ of pitch $\le k$. Then there exists a positive integer g(k), a polytope $\mathcal{Q}_k \subseteq \mathbb{R}^n$, and a polytope $\overline{\mathcal{Q}}_k \subseteq \mathbb{R}^{(m+n)^{g(k)}}$ satisfying the following:

- (a) $\{x \in \{0,1\}^n Ax \ge e\} \subseteq \mathcal{Q}_k.$
- (b) $a^T x \ge a_0$ for all $x \in \mathcal{Q}_k$ and for all $(a, a_0) \in P_k$.
- (c) \mathcal{Q}_k is the projection to \mathbb{R}^n of $\overline{\mathcal{Q}}_k$.
- (d) \$\bar{Q}_k\$ can be described by a system of at most \$(m+n)^{g(k)}\$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.
- Was simplified (but not improved) earlier by Mastrolili '17
- If use $Q \cap \phi^k([0,1]^n)$, get extended formulation of size

• $\leq \operatorname{xc}(Q) + 2n \cdot (mn)^k$ for obvious CNF formula deciding S

Main theorem from Bienstock & Zuckerberg '04, where $g(k) = \Omega(k^2)$:

THEOREM 1.2. Let $k \ge 1$ be a fixed integer. Consider a set-covering problem $\min\{c^T x : Ax \ge e, x \in \{0,1\}^n\},$

where A is an $m \times n$, 0-1 matrix and e is the vector of m 1s. Let P_k denote the set of all valid inequalities for $\{x \in \{0,1\}^n : Ax \ge e\}$ of pitch $\le k$. Then there exists a positive integer g(k), a polytope $Q_k \subseteq R^n$, and a polytope $\overline{Q}_k \subseteq R^{(m+n)^{g(k)}}$ satisfying the following:

- (a) $\{x \in \{0,1\}^n Ax \ge e\} \subseteq \mathcal{Q}_k.$
- (b) $a^T x \ge a_0$ for all $x \in \mathcal{Q}_k$ and for all $(a, a_0) \in P_k$.
- (c) \mathcal{Q}_k is the projection to \mathbb{R}^n of $\overline{\mathcal{Q}}_k$.
- (d) \$\bar{Q}_k\$ can be described by a system of at most \$(m+n)^{g(k)}\$ linear constraints, with integral coefficients of absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.
- Was simplified (but not improved) earlier by Mastrolili '17
- If use $Q \cap \phi^k([0,1]^n)$, get extended formulation of size
 - $\bullet\,\leqslant\,\mathrm{xc}(Q)+2n\cdot(mn)^k$ for obvious CNF formula deciding S
 - $\leq \operatorname{xc}(Q) + 2n \cdot |\phi|^k$ where ϕ is **any** formula deciding S

Theorem (F, Huynh & Weltge '17)

Assuming ϕ monotone,

Q satisfies all valid pitch $\leq k$ inequalities

 $\phi(Q)$ satisfies all valid pitch $\leqslant k + 1$ inequalities

Proof (inspired by Karchmer & Widgerson '90)

Assume $\sum_{i \in I^+} c_i x_i \ge \delta$ pitch-(k+1) ineq not valid for $\phi(Q)$

Letting $a \in \{0,1\}^n$ with $a_i = 0 \iff i \in I^+$, have:

•
$$\phi(a) = 0$$

•
$$\exists$$
 violator $\tilde{x} \in \phi(Q)$

If $\phi = \phi_1 \wedge \phi_2$ then

- $\phi_1(a) = 0$ or $\phi_2(a) = 0$
- \exists violator $\tilde{x}_1 \in \phi_1(Q)$ and \exists violator $\tilde{x}_2 \in \phi_2(Q)$

If $\phi = \phi_1 \wedge \phi_2$ then

- $\phi_1(a) = 0$ or $\phi_2(a) = 0$
- \exists violator $\tilde{x}_1 \in \phi_1(Q)$ and \exists violator $\tilde{x}_2 \in \phi_2(Q)$

If $\phi = \phi_1 \lor \phi_2$ then

- $\phi_1(a) = 0$ and $\phi_2(a) = 0$
- \exists violator $\tilde{x}_1 \in \phi_1(Q)$ or \exists violator $\tilde{x}_2 \in \phi_2(Q)$

Final leaf x_j has:

- $a_j = 0 \iff j \in I^+$
- \exists violator $\tilde{x} \in Q \cap \{x : x_j = 1\}$

Final leaf x_j has:

- $a_j = 0 \iff j \in I^+$
- \exists violator $\tilde{x} \in Q \cap \{x : x_j = 1\}$

contradicts hypothesis that Q satisfies pitch $\leq k$ ineq

$$\sum_{i \neq j} c_i x_i \geqslant \delta - c_j$$

$$f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \ge D$$

$$f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \ge D$$

$$f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \ge D$$

Given sizes $s_1, \ldots, s_n \in \mathbb{Z}_+$ and demand $D \in \mathbb{Z}_+$:

Knapsack cover inequality: for $a \in f^{-1}(0)$

$$\sum_{i:a_i=0} \min(\{s_i, D(a)\}) \cdot x_i \ge D(a)$$

where $D(a) := D - \sum_{i=1}^{n} s_i a_i = residual demand$

Given sizes $s_1, \ldots, s_n \in \mathbb{Z}_+$ and demand $D \in \mathbb{Z}_+$:

Knapsack cover inequality: for $a \in f^{-1}(0)$

$$\sum_{i:a_i=0} \min(\{s_i, D(a)\}) \cdot x_i \ge D(a)$$

where $D(a) := D - \sum_{i=1}^{n} s_i a_i = residual demand$

Intuition: KC ineq is **pitch-1** w.r.t. *large* items \leftarrow items *i* such that $s_i \ge D(a)$

The relaxation

1 Sort item sizes: $s_1 \ge s_2 \ge \cdots \ge s_n$

Parametrize the KC inequalities by:

α := index of last large item

•
$$\beta := \sum_{i \leqslant \alpha} s_i a_i$$

Objective Set 5 Object to Set Set Set 5 Object to Set 5 Object 5 Object to

$$f_{\alpha,\beta}(x) = 1 \iff \sum_{i \leqslant \alpha} s_i x_i \geqslant \beta + 1$$

Optime relaxation by the following formula:

$$\bigwedge_{\alpha,\beta} \left(\phi_{\alpha,\beta}(x) \quad \lor \quad \Big(\sum_{i > \alpha} s_i x_i \geqslant D - \beta \Big) \right)$$

• We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)

- We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$ -size O(1)-apx EF?

- We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$ -size O(1)-apx EF?
- Open: do weighted threshold fns admit $n^{O(1)}$ -size monotone formulas?

- We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$ -size O(1)-apx EF?
- Open: do weighted threshold fns admit n^{O(1)}-size monotone formulas?
- Open: does min-knapsack admit a $n^{O(\log n)}$ -size $(1 + \varepsilon)$ -apx EF?

- We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$ -size O(1)-apx EF?
- Open: do weighted threshold fns admit n^{O(1)}-size monotone formulas?
- Open: does min-knapsack admit a $n^{O(\log n)}$ -size $(1 + \varepsilon)$ -apx EF?
- Find more algorithmic applications of Chvátal-Gomory cuts!!

- We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$ -size O(1)-apx EF?
- Open: do weighted threshold fns admit n^{O(1)}-size monotone formulas?
- Open: does min-knapsack admit a $n^{O(\log n)}$ -size $(1 + \varepsilon)$ -apx EF?
- Find more algorithmic applications of Chvátal-Gomory cuts!!

- We can extend to *flow cover inequalities* (used e.g. for single demand facility location problem)
- Open: does min-knapsack admit a $n^{O(1)}$ -size O(1)-apx EF?
- Open: do weighted threshold fns admit n^{O(1)}-size monotone formulas?
- Open: does min-knapsack admit a $n^{O(\log n)}$ -size $(1 + \varepsilon)$ -apx EF?
- Find more algorithmic applications of Chvátal-Gomory cuts!!

- THANK YOU! -