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[Hrubeš ’12, GJW ’16]

∃ connection between circuit complexity and extended formulations

What is the smallest LP
for solving problem A?

P

Q

What is the smallest depth circuit
for solving problem B?

2Ω(n) size LP lower bound for matchings =⇒
matching requires monotone circuits of Ω(n) depth



Extended formulations vs circuit complexity

[Hrubeš ’12, GJW ’16]

∃ connection between circuit complexity and extended formulations

What is the smallest LP
for solving problem A?

P

Q

What is the smallest depth circuit
for solving problem B?

We use that certain functions have small depth monotone
circuits to give small explicit LPs for covering problems



Our problem

1 “Simplest” binary integer program
with single covering constraint:

100x1 + 50x2 + 50x3 > 101

x1, x2, x3 ∈ {0, 1}

2 Write down an LP relaxation:

100x1 + 50x2 + 50x3 > 101

0 6 x1, x2, x3 6 1

# inequalities = 7

3 Adversary finds worst objective function (= evaluates integrality gap)

If minx2 + x3, then
IP optimum = 1
LP optimum = 1/50

=⇒ Integrality gap = 50



Our problem

1 “Simplest” binary integer program
with single covering constraint:

100x1 + 50x2 + 50x3 > 101

x1, x2, x3 ∈ {0, 1}

2 Write down an LP relaxation:

x1 = 1

x2 + x3 > 1

0 6 x2, x3 6 1

# inequalities = 5

3 Adversary finds worst objective function (= evaluates integrality gap)

For any objective fn
IP optimum = LP optimum

=⇒ Integrality gap = 1



Our problem — formally

1 “Simplest” 0/1-set defined by single covering constraint

n∑
i=1

aixi > β where a ∈ Zn+ and β ∈ Z+

x ∈ {0, 1}n

convex hull of integer solutions = min-knapsack polytope

2 Write down an LP relaxation = extended formulation

Ax+By = c equality constraints

Dx+ Ey > f inequality constraints

3 Evaluate the relaxation vs all possible objective functions in terms of

size = # inequalities

integrality gap = sup IP optimum
LP optimum
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State of the Art

Knapsack-cover ineqs [Balas ’75, Hammer et al. ’75, Wolsey ’75, Carr et al. ’06]

There are exponentially many (but approximately separable) inequalities that
bring the integrality gap down to 2

Many applications:

Network design

Facility location

Scheduling

Question

Is there a poly-size relaxation with any constant integrality gap?

Previously:

[Bienstock and McClosky ’12] can be done when the objective is sorted

. . . our first feeling: maybe there is no such relaxation?
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Our results (1/2)

Theorem (Existential – Bazzi, F, Huang, Svensson ’17)

The min-knapsack polytope can be (2 + ε)-approximated by an LP of size
(n/ε)O(1) · 2O(d) where d is the minimum depth of a monotone circuit that
computes (truncactions of) the corresponding weighted threshold function

[Beimel & Weinreb ’08] Weighted threshold functions

f(x1, . . . , xn) =

{
1 if

∑n
i=1 aixi > β

0 otherwise

have monotone circuits of depth O(log2 n)

Corollary (Existential – Bazzi, F, Huang, Svensson ’17)

The min-knapsack polytope can be (2 + ε)-approximated by an LP of size
(1/ε)O(1) · nO(logn)
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A galaxy of hierarchies



Strengthening relaxations using formulas

S ⊆ {0, 1}n 0/1-set

φ Boolean formula defining S

Q ⊆ [0, 1]n convex relaxation of S

−→
New relaxation φ(Q)

with S ⊆ φ(Q) ⊆ Q

Starting from φ, recursively apply rules:

Replace xi by Q ∩ {x : xi = 1}
Replace ¬xi by Q ∩ {x : xi = 0}
Replace φ1 ∧ φ2 by φ1(Q) ∩ φ2(Q)

Replace φ1 ∨ φ2 by conv(φ1(Q) ∪ φ2(Q))

0/1-set: S = {x ∈ {0, 1}3 : x1 + x2 + x3 > 2}

Formula: φ = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1)

Relaxation: Q := [0, 1]3
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Our results (2/2)

Proposition (F, Huynh & Weltge ’17)

If Q ⊆ [0, 1]n is a polytope then φ(Q) also, and moreover

xc(φ(Q)) 6 |φ| · xc(Q)

Theorem (F, Huynh & Weltge ’17)

Assuming φ monotone,

Q satisfies all valid
pitch 6 k inequalities =⇒ φ(Q) satisfies all valid

pitch 6 k + 1 inequalities

The pitch measures how “complex” ineqs are (Bienstock & Zuckerberg ’04):

x1 > 1, x1 + x3 + x7 > 1 have pitch 1

x1 + x5 > 2, 2x3 + x4 + x5 > 2 have pitch 2

2x3 + x4 + 2x7 > 3 has pitch 2
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BZ’s approximation of the CG-closures

Theorem (Bienstock & Zuckerberg ’06)

If Q = {x ∈ [0, 1]n : Ax > b} for A, b nonnegative, then

Q ∩ {x | x satisfies all valid pitch 6 k ineqs}

is (1 + ε)-approx of the `-th CG-closure of Q whenever k = Ω(`/ε)



Comparison to BZ’04
Main theorem from Bienstock & Zuckerberg ’04, where g(k) = Ω(k2):

Was simplified (but not improved) earlier by Mastrolili ’17

If use Q ∩ φk([0, 1]n), get extended formulation of size

6 xc(Q) + 2n · (mn)k for obvious CNF formula deciding S
6 xc(Q) + 2n · |φ|k where φ is any formula deciding S
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Theorem (F, Huynh & Weltge ’17)

Assuming φ monotone,

Q satisfies all valid
pitch 6 k inequalities =⇒ φ(Q) satisfies all valid

pitch 6 k + 1 inequalities

Proof (inspired by Karchmer & Widgerson ’90)

Assume
∑
i∈I+ cixi > δ pitch-(k + 1) ineq not valid for φ(Q)

Letting a ∈ {0, 1}n with ai = 0 ⇐⇒ i ∈ I+, have:

φ(a) = 0

∃ violator x̃ ∈ φ(Q)

x̃

φ(Q)



If φ = φ1 ∧ φ2 then

φ1(a) = 0 or φ2(a) = 0

∃ violator x̃1 ∈ φ1(Q) and
∃ violator x̃2 ∈ φ2(Q)

φ1(Q)

φ2(Q)

If φ = φ1 ∨ φ2 then

φ1(a) = 0 and φ2(a) = 0

∃ violator x̃1 ∈ φ1(Q) or
∃ violator x̃2 ∈ φ2(Q)

φ1(Q)

φ2(Q)
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∧
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x1 x2 x2 x3 x3 x1

Final leaf xj has:

aj = 0 ⇐⇒ j ∈ I+

∃ violator x̃ ∈ Q ∩ {x : xj = 1}

contradicts hypothesis that Q satisfies pitch 6 k ineq∑
i6=j

cixi > δ − cj
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Knapsack-cover inequalities
Given sizes s1, . . . , sn ∈ Z+ and demand D ∈ Z+:

f(x) = 1 ⇐⇒
n∑
i=1

sixi > D

s1 s2 s3 s4 s5 D

Knapsack cover inequality: for a ∈ f−1(0)∑
i:ai=0

min({si, D(a)}) · xi > D(a)

where D(a) := D −
∑n
i=1 siai = residual demand

Intuition: KC ineq is pitch-1 w.r.t. large items←− items i such that si > D(a)
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Knapsack-cover inequalities
Given sizes s1, . . . , sn ∈ Z+ and demand D ∈ Z+:

f(x) = 1 ⇐⇒
n∑
i=1

sixi > D

s1 s2 s3 s4 s5 D

Knapsack cover inequality: for a ∈ f−1(0)∑
i:ai=0

min({si, D(a)}) · xi > D(a)

where D(a) := D −
∑n
i=1 siai = residual demand

Intuition: KC ineq is pitch-1 w.r.t. large items←− items i such that si > D(a)



The relaxation

1 Sort item sizes: s1 > s2 > · · · > sn

2 Parametrize the KC inequalities by:

α := index of last large item
β :=

∑
i6α siai

3 Construct monotone formula φα,β for threshold function

fα,β(x) = 1 ⇐⇒
∑
i6α

sixi > β + 1

4 Define relaxation by the following formula:

∧
α,β

(
φα,β(x) ∨

(∑
i>α

sixi > D − β
))



Final comments

We can extend to flow cover inequalities (used e.g. for single demand
facility location problem)

Open: does min-knapsack admit a nO(1)-size O(1)-apx EF?

Open: do weighted threshold fns admit nO(1)-size monotone formulas?

Open: does min-knapsack admit a nO(logn)-size (1 + ε)-apx EF?

Find more algorithmic applications of Chvátal-Gomory cuts!!

— THANK YOU! —
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