
Finding Best LP Relaxations 
for Directed Cut Problems

Euiwoong Lee

CMU → Simons



People & Papers



People & Papers

Multicut(H)



People & Papers

Multicut(H)

Multicut, 
Interdiction, 
Firefighter 



People & Papers

Multicut(H)

Multicut, 
Interdiction, 
Firefighter 

Global cut 
problems



People & Papers

Multicut(H)

Multicut, 
Interdiction, 
Firefighter 

Global cut 
problems

Linear 3-cut



People & Papers

Multicut(H)

Multicut, 
Interdiction, 
Firefighter 

Global cut 
problems

Linear 3-cut



Directed Multicut

• Input
• Directed Graph G=(V, E), k pairs 

(s1, t1), …, (sk, tk)

• Goal
• Remove minimum # of edges to 

cut all si-ti path.
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Directed Multicut (before 2017)

• In terms of 𝑛, 

• [CKR 01] ෨𝑂(𝑛1/2)-approx.

• [Gupta 03] 𝑂(𝑛1/2)-approx.

• [AAC 07] ෨𝑂(𝑛11/23)-approx.

• [CK 07] 
• ෩Ω(𝑛1/7) flow-cut gap.

• 2Ω(log
1−𝜖 𝑛)-(NP) hard.

• In terms of 𝑘, 

• Easy 𝑘-approx.

• [SSZ 00] 𝑘 = 𝑂(log 𝑛/log log 𝑛),
• Flow-cut gap is 𝑘 − 𝑜 1 .

• [CM 16, EVW 13] 1.5-(UG) hard 
when 𝑘 = 2.
• From Undir. Node Multiway Cut

• Best for any constant 𝑘?



In 2017

• [CM 17, L 17]
• Directed Multicut with k pairs is k-(UG) hard.

• [CM 17] 
• Reduction from CSP [EVW 13].  

• Interesting connections between different LP relaxations.

• [L 17] 
• Direct reduction from UG. 

• Easy(?) to adapt to other cut problems.



Only in [CM 17]

• Let 𝐻 = (𝑉𝐻 , 𝐸𝐻) be a fixed 
demand graph.

• Multicut(𝐻)
• Input: Supply graph 𝐺 = (𝑉𝐺 , 𝐸𝐺)

and injective map 𝜋: 𝑉𝐻 → 𝑉𝐺 .

• Goal: Remove min # edges from 𝐺
such that 
• ∀ 𝑢, 𝑣 ∈ 𝐸𝐻 , there is no path from 
𝜋(𝑢) to 𝜋(𝑣) in 𝐺.
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Only in [CM 17]

• Let 𝐻 = (𝑉𝐻 , 𝐸𝐻) be a fixed 
demand graph.

• Multicut(𝐻)
• Input: Supply graph 𝐺 = (𝑉𝐺 , 𝐸𝐺)

and injective map 𝜋: 𝑉𝐻 → 𝑉𝐺 .

• Goal: Remove min # edges from 𝐺
such that 
• ∀ 𝑢, 𝑣 ∈ 𝐸𝐻 , there is no path from 
𝜋(𝑢) to 𝜋(𝑣) in 𝐺.

• Multicut(1 edge) = Min s-t cut!
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Only in [CM 17]

• Let 𝐻 = (𝑉𝐻 , 𝐸𝐻) be a fixed 
demand graph.

• Multicut(𝐻)
• Input: Supply graph 𝐺 = (𝑉𝐺 , 𝐸𝐺)

and injective map 𝜋: 𝑉𝐻 → 𝑉𝐺 .

• Goal: Remove min # edges from 𝐺
such that 
• ∀ 𝑢, 𝑣 ∈ 𝐸𝐻 , there is no path from 
𝜋(𝑢) to 𝜋(𝑣) in 𝐺.

• Multicut(complete DAG) = Linear 
𝑘-cut (𝑘 = |VH|).
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Multicut(𝐻)

• Multicut(𝐻): 
• Easy |𝐸𝐻|-approximation.

• Tight when 𝐻 has 𝑘 disjoint edges.

• Directed Multiway Cut (H = Complete Bidirected Graph)
• [NZ97, CM16] 2-approx.

• k-Linear Cut (H = Complete DAG)
• 𝑂(log 𝑘)-approx. (Flow-cut gap open)

• [BCKM 18?] 3-Linear Cut: 2-approx. (Matches flow-cut gap)



Multicut(𝐻)

• Much better approximation ratio for some 𝐻!
• All algorithms use flow-cut LP.

• Question] For some fixed 𝐻, will there a better relaxation?



Multicut(𝐻)

• [CM 17] When H is a directed bipartite, Multicut(𝐻) is UG-hard to 
approximate better than the worst flow-cut gap.

• What about general 𝐻?

• It is still open whether flow-cut gap is the best.

• [LM ??] There exists another LP relaxation (or estimation algorithm) 
such that it is UG-hard to do better.
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Multicut(𝐻)

• [CM 17] When H is a directed bipartite, Multicut(𝑯) is UG-hard to 
approximate better than the worst flow-cut gap.
• Another proof based on [L 17]

• What about general 𝐻?

• It is still open whether flow-cut gap is the best.

• [LM ??] There exists another LP relaxation (or estimation algorithm) 
such that it is UG-hard to do better.



Flow-Cut (Distance) LP

• Will consider vertex deletion version.
• Cannot delete terminals (𝑇 ≔ 𝜋 𝑉𝐻 ).

• Miniminze σ𝑣∈𝑉\T 𝑥𝑣

• Subject to      σ𝑣∈𝑃\T 𝑥𝑣 ≥ 1 for ∀ 𝑢, 𝑣 ∈ 𝐸𝐻 , and 𝜋(𝑢)- 𝜋(𝑣) path 𝑃

• 𝑥 ≥ 0



LP Gap

• 𝑂𝑃𝑇 = 2

• 𝐿𝑃 = 4/3
• 𝑥𝑣 = 1/3 for all 𝑣 ∈ 𝑉 ∖ 𝑇

• Every 𝑠1-𝑡1 or 𝑠2- 𝑡2 path involves 
3 internal (non-terminal) vertices.

𝑠1 𝑡1

𝐻

𝑠1 𝑡1

𝐺

𝑠2 𝑡2

𝑠2𝑡2



Dictator Test

• Just another instance of 
Multicut(𝐻)

• Replace every internal vertex by 
a hypercube ℓ 𝑅
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Dictator Test

• Just another instance of 
Multicut(𝐻)

• Replace every internal vertex by 
a hypercube ℓ 𝑅

• Put edges
• If 𝑢, 𝑣 ∈ 𝐸𝐺 , create some edges 

between corresponding 
hypercube “appropriately”. 

𝑠1 𝑡1

𝐻

𝑠2 𝑡2

𝑠1 𝑡1

𝐷

𝑠2𝑡2



Reduction from UG

• Instance of Unique Games
• A graph

• Each edge is some constraint

• Goal: Give a label to each 
vertex to
• Maximize # of “satisfied” 

edges.



Reduction from UG
𝑠1 𝑡1

𝑠2𝑡2

𝑠1 𝑡1
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Reduction from UG
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Reduction from UG

𝑠1 𝑡1
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Reduction from UG

𝑠1 𝑡1

𝑠2𝑡2

If UG instance has a good labeling that 
satisfies most constraints.



Reduction from UG

𝑠1 𝑡1

𝑠2𝑡2

If UG instance does not a good 
labeling



Reduction from UG

𝑠1 𝑡1

𝑠2𝑡2

If UG instance does not a good 
labeling

Gap between good case and bad 
case = exactly the LP gap.



Multicut(𝐻)

• [CM 17] When H is a directed bipartite, Multicut(𝑯) is UG-hard to 
approximate better than the worst flow-cut gap.

• What is wrong with general 𝑯?



General H

• 𝑥𝑣 = 1/3 for all 𝑣 ∈ 𝑉 ∖ 𝑇
• Still feasible to LP.

• Reduction does not work.

• Dist.(𝑠1-𝑡1) = 1, but 
• Dist.(𝑠1-𝑠2) = Dist.(𝑠2-𝑡1) = 2/3

• Observation] In order to cut 𝒔𝟏
from 𝒕𝟏, we need to either
• Cut 𝒔𝟏 from 𝒔𝟐 OR

• Cut 𝒔𝟐 from 𝒕𝟏

𝑠1 𝑡11/3

1/3 1/3

1/3

𝐺

𝑠2𝑡2

𝑠1 𝑡1

𝐻

𝑠2 𝑡2





Best (estimation) Algorithm

• Say 𝐹 “unambiguous” if for every 𝑢, 𝑣 ∈ 𝐸𝐹 and 𝑤 ∈ 𝑉𝐹
• Either 𝑢,𝑤 ∈ 𝐸𝐹 or 𝑤, 𝑣 ∈ 𝐸𝐹
• “If you cut (𝑢, 𝑣), then you need to cut either (𝑢, 𝑤) or (𝑤, 𝑣)”.

• (Directed) complement of 𝐹 is transitive. 

• Estimation algorithm for Directed Multicut(𝐻).
• Given a supply graph 𝐺, 

• Try every “unambiguous” 𝐹 = (𝑉𝐻 , 𝐸𝐹) s.t. 𝐸𝐻 ⊆ 𝐸𝐹.
• Compute Flow-cut relaxation value 𝐿𝑃 𝐹, 𝐺 .

• Output the min
𝐹

𝐿𝑃 𝐹, 𝐺 .



Best (estimation) Algorithm

• Estimation algorithm for Directed Multicut(𝐻).
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𝐿𝑃 𝐹, 𝐺 .

• For every 𝐹, 𝐿𝑃 𝐻, 𝐺 ≤ 𝐿𝑃(𝐹, 𝐺).

• There exists 𝐹 such that 𝐿𝑃 𝐹, 𝐺 ≤ 𝑂𝑃𝑇 𝐹, 𝐺 = 𝑂𝑃𝑇(𝐻, 𝐺)
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Best (estimation) Algorithm

• Estimation algorithm for Directed Multicut(𝐻).
• Given a supply graph 𝐺, 

• Try every “unambiguous” 𝐹 = (𝑉𝐻 , 𝐸𝐹) s.t. 𝐸𝐻 ⊆ 𝐸𝐹.
• Compute Flow-cut relaxation value 𝐿𝑃 𝐹, 𝐺 .

• Output the min
𝐹

𝐿𝑃 𝐹, 𝐺 .

• For every 𝐹, 𝐿𝑃 𝐻, 𝐺 ≤ 𝐿𝑃(𝐹, 𝐺).

• There exists 𝐹 such that 𝐿𝑃 𝐹, 𝐺 ≤ 𝑂𝑃𝑇 𝐹, 𝐺 = 𝑂𝑃𝑇(𝐻, 𝐺)

• Therefore, 𝐿𝑃 𝐻, 𝐺 ≤ 𝐴𝐿𝐺 𝐻, 𝐺 ≤ 𝑂𝑃𝑇(𝐻, 𝐺) for every 𝐺,𝐻.

• Can be captured as a single LP (running a flow-cut LP for every 𝐹).



Best (estimation) Algorithm

• Estimation algorithm for Directed Multicut(𝐻).
• Given a supply graph 𝐺, 

• Try every “unambiguous” 𝐹 = (𝑉𝐻 , 𝐸𝐹) s.t. 𝐸𝐻 ⊆ 𝐸𝐹.
• Compute Flow-cut relaxation value 𝐿𝑃 𝐹, 𝐺 .

• Output the min
𝐹

𝐿𝑃 𝐹, 𝐺 .

• What does a gap of this algorithm mean (for fixed 𝐻)?
• An unambiguous 𝐹 ⊇ 𝐻 and 𝐺 s.t. 𝐿𝑃 𝐹, 𝐺 ≪ 𝑂𝑃𝑇 𝐻, 𝐺 .

• [LM ??] For fixed 𝑯, a gap of this algorithm implies the matching 
UG-hardness.



Undirected Analog

• Running time 2𝑂(𝑘
2)𝑛𝑂(1) when 𝑘 = |𝑉𝐻|.

• Undirected Multicut(𝐻).
• “Unambiguous” 𝐹: complete 𝑝-partite graph (complement = disjoint cliques).

• Guess which terminals belong together, and run Multiway Cut 
• Already gives 1.3-approx. [SV13, BSW16] for every 𝐻 in time 2𝑂(𝑘 log 𝑘)𝑛𝑂(1).

• Gap instance] 
• Unambiguous 𝐹 ⊇ 𝐻 and 𝐺 s.t. 𝐸𝑎𝑟𝑡ℎ𝑚𝑜𝑣𝑒𝑟𝐿𝑃 𝐹, 𝐺 ≪ 𝑂𝑃𝑇(𝐻, 𝐺). 

• EarthmoverLP is already proved to be optimal for Multiway Cut [MNRS 08]

• Their proof already proves that the above is best estimation algorithm for 
Undirected Multicut(𝐻)?
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Global Cut Problems

• [BCKLX 17] Global versions
• 𝑠-𝑡 Bicut:       Given G and 𝒔, 𝒕, remove min # arcs s.t. 𝑠↛𝑡 and 𝑡↛𝑠.

• Global Bicut: Given G,               remove min # arcs s.t. ∃𝒔, 𝒕 with 𝑠↛𝑡 and 𝑡↛𝑠.

• Undirected Analog
• 3-way cut:     Given G and 𝒔, 𝒕, 𝒖, remove min # edges s.t. they are separated.

• 3-cut        :      Given G,                 remove min # edges s.t. ∃𝒔, 𝒕, 𝒖 separated. 

• 3-way cut: NP-hard. 3-cut: P

• s-t Bicut: 2-hard [CM 17, L 17]. Global Bicut: 1.998-approximation.



Hardness Framework

• [L 17] First 𝜔(1)-hardness for 
• Length-Bounded Cut

• Shortest Path Interdiction

• Firefighter (RMFC)

• Length-Control Dictatorship Test
• Take (some) LP gap instances to UG-hardness.

• More cut problems?
• General theorem that unifies current results?

• How to formally unify various cut problems?



Open Problems

• Flow-Cut LP may be still optimal (save 2𝑂(𝑘
2) time)!

• ∃𝐺,𝐻 s.t. 𝐿𝑃 𝐻, 𝐺 < 𝐴𝐿𝐺(𝐻, 𝐺)

• But maybe max
𝐺

𝐿𝑃(𝐻,𝐺)

𝑂𝑃𝑇 𝐻,𝐺
= max

𝐺

𝐴𝐿𝐺(𝐻,𝐺)

𝑂𝑃𝑇 𝐻,𝐺
? ?

• “Interesting H” where we can do much better than 𝐸𝐻 -approx.?
• Multiway Cut, Linear-k-Cut, ???

• Using the new LP?

• Optimal rounding algorithms?
• Undirected Multiway Cut [MNRS 08], Min CSP [EVW 13]



Thank you!


