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Determinant

det(M Z sgn(o M1 (1) - Mmg(n) (M) = Z Ml,a(l) e Mn’g(n)
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Determinant Permanent

det(M) = Z sgn(U)MLa(l) ... Mn,a(n) per(M) = Z Ml,a(l) ... Mn,o(n)
0ESh 0ESh
2 x 2 Example
a b
=2 q]

det(M) = ad — bc per(M) = ad + bc
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Complexity of Permanent

» #P-hard to compute per(M) for 0/1 matrices [Valiant79].
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Complexity of Permanent

» #P-hard to compute per(M) for 0/1 matrices [Valiant79].

» #P-hard to compute sign of per(M) [Aaronson’1].

» #P-hard to compute per(M) for M = 0 [Grier-Schaeffer6].
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Approximating the Permanent
Additive +¢|M|" approximation
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Approximating the Permanent
Additive 4 [M|" approximation [Gurvits'05].

Positive Matrices (M > 0) PSD Matrices (M = 0)

per(M) > 0. per(M) > 0.

» Randomized (1 + €)-approximation
(FRPAS)
[Jerrum-Sinclair-Vigoda’04].

» Deterministic 2"-approximation
[Gurvits-Samorodnitsky14].
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Approximating the Permanent
Additive 4 [M|" approximation [Gurvits'05].

Positive Matrices (M > 0) PSD Matrices (M = 0)

» Permanent is always nonnegative: » Permanentis always nonnegative:
per(M) > 0. per(M) = 0.
» Randomized (1 + ¢€)-approximation » Deterministic nl-approximation
(FRPAS) [Marcus65]: My1...Mpq.

[Jerrum-Sinclair-Vigoda’04].

» Deterministic 2"-approximation
[Gurvits-Samorodnitsky14].
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Approximating the Permanent
Additive 4 [M|" approximation [Gurvits'05].

Positive Matrices (M > 0) PSD Matrices (M = 0)

» Permanent is always nonnegative: » Permanentis always nonnegative:
per(M) > 0. per(M) > 0.
» Randomized (1 + €)-approximation » Deterministic nl-approximation
(FRPAS) [Marcus'63]: M1 1---Mnn.
[Jerrum-Sinclair-Vigoda’04]. » Improved to km/k -approximation in

» Deterministic 2"-approximation time 20(K+log(M) [Ljieb'66].
[Gurvits-Samorodnitsky14].
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Theorem [A-Gurvits-Oveis Gharan-Saberi'17]

The permanent of PSD matrices M € C"*" can be approximated, in
deterministic polynomial time, within

(7N ~ 4.84",
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Complex Gaussians
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Complex Gaussians

/// R N R,e(Z)
a
z~CN(0,1)
P [Z] le7|2|2
™

» Standard multivariate complex

Gaussian: z = (zy, . . .

Zj ~ (CN(O, 1)

,Zn) iid. and
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Complex Gaussians

17 SO \\RG(Z)
o
z~CN(0,1)
P|z] 1e*|z|2

» Standard multivariate complex
Gaussian: z = (21, ...,2n) iid. and

» General (circularly-symmetric)
complex Gaussian:

g=_Cz,

g ~ CN(0,CCH).
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Complex Gaussians

» Standard multivariate complex
Gaussian: z = (z3,...,25) 1id. and
Zj ~ CN(O, 1).

» General (circularly-symmetric)
complex Gaussian:

/,// g _ CZ’
g ~ CN(0,CCH).

1 2
—_ — _|Z|
Plz] 7Te Wick's Formula
E [Igll2 . Ignlﬂ = per(CC').
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Schur Power

The Schur power of an n x n matrix M is

Mo1),71) - - - Ma(n),r(n)
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Schur Power

The Schur power of an n x n matrix M is B The Schur power is a minor of M®",

M>0 = schur(M) = 0

M) (1) - - - Mo (n)
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Schur Power

The Schur power of an n x n matrix M is B The Schur power is a minor of M®",

M>0 = schur(M) = 0

M) ~(1) - - - Mo(n)+
W) , (M.7(m) » The permanent is an eigenvalue:

schur(M)1 = per(M)1.

n!
M>0 = per(M) >0

» Permanentis monotone w.rt. >=:

Permanent is Loewner-Monotone

M; = My = 0 = per(M;) > per(Mg) >0
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Approximation using Monotonicity

» Permanent is monotone w.rt. >=:

D> M>=wl — per(D) > per(M) > per(w').



Approximation using Monotonicity

» Permanent is monotone w.rt. >:

D> M>=wl — per(D) > per(M) > per(w').

Theorem [A-Gurvits-Oveis Gharan-Saberi'17]

For any M = 0 there exist diagonal matrix D and rank-1 matrix vvi such that
D= M= wi,

and per(D) < 4.85" per(vvT).
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Computing the Approximation

» Solve and output the following

infp per(D),
subjectto D > M.



Computing the Approximation

» Solve and output the following
infp per(D),
subjectto D > M.
» Equivalently solve the convex program

infp1 log er((D™ )
subjectto M1 >=D"1>0

» No such convex program for the



Sketch of Proof

®» Renormalize rows and columns to assume D = |.
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Sketch of Proof

» Renormalize rows and columns to assume D = |.
» By duality, there is B > 0 with diag(B) = 1 such that (I — M)B = 0:

B = MB.

B is called a correlation matrix.
P Let P = proji.em). Then M = P because

X € imag(B) = x =By = Mx=MBy =By =x=Px.

» Prove the “PSD Van der Waerden”

PSD Van der Waerden [A-Gurvits-Oveis Gharan-Saberi'17]

If B is a correlation matrix and P the orthogonal projection onto the image of B,
then
per(P) > 4.857".
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PSD Van der Waerden

» Given correlation matrix B (i.e. B = 0 and diag(B) = 1), want to show

per(Projimag(s)) > 485"



PSD Van der Waerden

» Given correlation matrix B (i.e. B = 0 and diag(B) = 1), want to show

per(projimag(B)) > 485"

» Show for some unit vector v € imag(B)

per(vvi) > 4.857",
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PSD Van der Waerden

» Given correlation matrix B (i.e. B = 0 and diag(B) = 1), want to show

per(projimag(B)) > 485"

» Show for some unit vector v € imag(B)

per(vvi) > 4.857",

» Let B be the Gram matrix of unit vectors uy,...,us. Generate v by
normalizing the projection vector of uy, ..., u, onto some direction g
_ [9Tur...gfun]
l[gtus ... gfunl
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GM-AM Ratio

» Let u be arandom vector (e.g., uniformly sampled from uy, ..., un). Define

the GM-AM ratio as:
eE[log(lul?)]
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GM-AM Ratio

» Let u be a random vector (e.g., uniformly sampled from uy, ..., un). Define

the GM-AM ratio as:
eElog(u*)]

» The GM-AM ratio is always < 1. Equality happens when |u| = 1.

Lemma [A-Gurvits-Oveis

Gharan-Saberi'17]

If uis a random unit vector, there exists
g such that the GM-AM ratio of gfu is at
least

e 7.
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Complex Gaussians Come Back

P Let g be a standard complex Gaussian. Then with positive probability we
have:

[P o)

Ellgof] E[ouf]

GM-AM(gfu) >
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Complex Gaussians Come Back

P Let g be a standard complex Gaussian. Then with positive probability we

have:
G
GM—AM(QTU) > 3 > € 2
E[lgtuf’] B ot
» But ?
E [log(‘gTU‘ )} =7
and

E Ug*uﬂ =1
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Conclusion and Open Questions

» (e7t!)"-approximation for the permanent of PSD matrices.
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Conclusion and Open Questions

v

v

(e”f“)”—opproximotion for the permanent of PSD matrices.

Analysis is tight. Can we improve by sandwiching between block-diagonal
matrices and higher rank matrices?

Use lifts to get better approximations?
Markov chains to get (1 + €)-approximation?
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