
Approximating the Permanent of
Positive Semidefinite Matrices

Nima Anari

Joint work with

Leonid Shayan Amin
Gurvits Oveis Gharan Saberi

1 / 14



Determinant

det(M) =
∑
σ∈Sn

sgn(σ)M1,σ(1) . . .Mn,σ(n)

Permanent

per(M) =
∑
σ∈Sn

M1,σ(1) . . .Mn,σ(n)

2× 2 Example

M =

[
a b
c d

]

det(M) = ad− bc per(M) = ad+ bc
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Complexity of Permanent
#P-hard to compute per(M) for 0/1matrices [Valiant’79].

#P-hard to compute sign of per(M) [Aaronson’11].
#P-hard to compute per(M) for M ⪰ 0 [Grier-Schaeffer’16].

•

•

•
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Approximating the Permanent
Additive ±ϵ |M|n approximation [Gurvits’05].

Positive Matrices (M ≥ 0)
Permanent is always nonnegative:

per(M) ≥ 0.

Randomized (1 + ϵ)-approximation
(FRPAS)
[Jerrum-Sinclair-Vigoda’04].
Deterministic 2n-approximation
[Gurvits-Samorodnitsky’14].

PSD Matrices (M ⪰ 0)
Permanent is always nonnegative:

per(M) ≥ 0.

Deterministic n!-approximation
[Marcus’63]: M1,1 . . .Mn,n.
Improved to n!

k!n/k -approximation in
time 2O(k+log(n)) [Lieb’66].
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Theorem [A-Gurvits-Oveis Gharan-Saberi'17]
The permanent of PSD matrices M ∈ Cn×n can be approximated, in
deterministic polynomial time, within

(eγ+1)n ≃ 4.84n.
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Complex Gaussians

Re(z)

Im(z)

z ∼ CN (0, 1)

P [z] =
1

π
e−|z|2

Standard multivariate complex
Gaussian: z = (z1, . . . , zn) i.i.d. and
zi ∼ CN (0, 1).
General (circularly-symmetric)
complex Gaussian:

g = Cz,

g ∼ CN (0,CC†).

Wick's Formula

E
[
|g1|2 . . . |gn|2

]
= per(CC†).
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Schur Power
The Schur power of an n× n matrix M is

n!



...

...
...

... Mσ(1),τ(1) . . .Mσ(n),τ(n)
...

...
...

...


︸ ︷︷ ︸

n!

The Schur power is a minor of M⊗n.

M ⪰ 0 =⇒ schur(M) ⪰ 0

The permanent is an eigenvalue:

schur(M)1 = per(M)1.

M ⪰ 0 =⇒ per(M) ≥ 0

Permanent is monotone w.r.t. ⪰:

Permanent is Loewner-Monotone

M1 ⪰ M2 ⪰ 0 =⇒ per(M1) ≥ per(M2) ≥ 0
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Approximation using Monotonicity

Permanent is monotone w.r.t. ⪰:

D ⪰ M ⪰ vv† =⇒ per(D) ≥ per(M) ≥ per(vv†).

Theorem [A-Gurvits-Oveis Gharan-Saberi'17]
For any M ⪰ 0 there exist diagonal matrix D and rank-1 matrix vv† such that

D ⪰ M ⪰ vv†,

and per(D) ≤ 4.85n per(vv†).
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Computing the Approximation

Solve and output the following

infD per(D),
subject to D ⪰ M.

Equivalently solve the convex program

infD−1 log(per((D−1)−1),
subject to M−1 ⪰ D−1 ⪰ 0.

No such convex program for the best rank-1 matrix.
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Sketch of Proof
Renormalize rows and columns to assume D = I.

By duality, there is B ⪰ 0 with diag(B) = 1 such that (I−M)B = 0:

B = MB.

B is called a correlation matrix.
Let P = projimag(B). Then M ⪰ P because

x ∈ imag(B) =⇒ x = By =⇒ Mx = MBy = By = x = Px.

Prove the “PSD Van der Waerden”

PSD Van der Waerden [A-Gurvits-Oveis Gharan-Saberi'17]
If B is a correlation matrix and P the orthogonal projection onto the image of B,
then

per(P) ≥ 4.85−n.
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PSD Van der Waerden
Given correlation matrix B (i.e. B ⪰ 0 and diag(B) = 1), want to show

per(projimag(B)) ≥ 4.85−n.

Show for some unit vector v ∈ imag(B)

per(vv†) ≥ 4.85−n.

Let B be the Gram matrix of unit vectors u1, . . . ,un. Generate v by
normalizing the projection vector of u1, . . . ,un onto some direction g

v =
[g†u1 . . .g†un]
|[g†u1 . . .g†un]|

.
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GM-AM Ratio
Let u be a random vector (e.g., uniformly sampled from u1, . . . ,un). Define
the GM-AM ratio as:

eE[log(|u|2)]

E
[
|u|2

]

The GM-AM ratio is always ≤ 1. Equality happens when |u| = 1.

Lemma [A-Gurvits-Oveis
Gharan-Saberi'17]
If u is a random unit vector, there exists
g such that the GM-AM ratio of g†u is at
least

e−γ .

•u1

•u2

g
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Complex Gaussians Come Back

Let g be a standard complex Gaussian. Then with positive probability we
have:

GM-AM(g†u) ≥
E
[
eE

[
log(|g†u|2)

]]
E
[
|g†u|2

] ≥ eE
[
log(|g†u|2)

]
E
[
|g†u|2

]

But
E
[
log(

∣∣∣g†u
∣∣∣2)] = −γ,

and
E
[∣∣∣g†u

∣∣∣2] = 1.
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Conclusion and Open Questions

(eγ+1)n-approximation for the permanent of PSD matrices.

Analysis is tight. Can we improve by sandwiching between block-diagonal
matrices and higher rank matrices?
Use lifts to get better approximations?
Markov chains to get (1 + ϵ)-approximation?
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