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Approxima.ng unique games using low diameter graph decomposi.on,


  joint work with Vedat Levi Alev





Graph clustering using effec.ve resistance


  joint work with Vedat Levi Alev, Nima Anari, Shayan Oveis Gharan







Mo.va.on
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To approximate Unique Games for graphs with many small eigenvalues.





For graphs with few small eigenvalues, it is known how to approximate 

Unique Games efficiently using the eigenspace enumera.on technique 

by [Kolla].





We don’t know how to solve the problem in such generality.





Well known graph class with many small Laplacian eigenvalues is the 

class of Kr-minor free graphs and bounded genus graphs 


[Kelner, Lee, Price, Teng].




Min-Uncut
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Let’s start with the simplest interes.ng case of Unique Games.





The max-cut problem:


Given an undirected graph G=(V,E), find a par..on of V into two sets V1 

and V2 and maximize the number of edges between them.





The min-uncut problem:


Given an undirected graph G=(V,E), find a par..on of V into two sets V1 

and V2 and minimize the number of edges in the same sets.







Min-Uncut
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Planar graphs: Exact [Hadlock]





General graphs: √⁠​log ⁠𝑛    [Charikar, Makarychev, Makarychev]





Kr minor free graphs: O(r)





Graphs with genus g: O(log g)







Linear Programming Relaxa.on
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Find the minimum number of edges to remove so that the remaining 

graph is bipar.te.




Polynomial Time Solvability
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This cycle LP has exponen.ally many constraints, but it can be solved in 

polynomial .me using the ellipsoid method, using a shortest path 

algorithm as a separa.on oracle.

















Remark: Many algorithms for unique games use these “labelled 

extended graphs”, but we cannot because it destroys Kr-minor freeness.







Low Diameter Graph Decomposi.on
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Powerful tool in designing approxima.on algorithms for Kr-minor free graphs 

(e.g. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz]).





[Abraham, Gavoille, Gupta, Neiman, Talwar]


Given any weighted graph G=(V,E,w) and Δ>0, there exists a distribu.on of 

par..on V=(V1, …, Vk) such that


1.  Each edge is cut with probability at most 𝑂(𝑟) ​𝑤↓𝑒  / Δ.


2.  The diameter of each part is at most Δ, i.e.




Rounding
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Want: Cut into bipar.te components.


Know: Cut into low diameter components.


Hope: low diameter components => bipar.te components.


•  Set ​𝑤↓𝑒 = ​𝑥↓𝑒  


•  The odd cycle constraint says that each cycle is of length at least one.


•  If we could show that there exists a pair of ver.ces u,v in C such that 

dist(u,v) > 1/4, then we can run the low diameter graph 

decomposi.on with Δ = 1/4 and cut all odd cycles.


•  Then the expected cost is O(r LP).




Rounding
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But the hope is not always true.











We observe that edges with large frac.onal value is the only obstruc.on.





Lemma.  If xe <= 1/2 for all e, then for every odd cycle there exists a pair 



  of ver.ces u,v with dist(u,v) > 1/4.





Then we first pick all edges with xe >= 1/2, and then run decomposi.on.




Proof by Picture
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Unique Games Conjecture
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An important special case of unique games is 2LIN(R).


We are given linear equa.ons of the form ​𝑥↓𝑖 + ​𝑥↓𝑗 ≡ ​𝑐↓𝑖𝑗  (𝑚𝑜𝑑 𝑅). 





[Khot] For every 𝜖, there exists R such that for 2LIN(R), it is NP-hard to 

dis.nguish the following two cases:


•  YES: there is an assignment that sa.sfies 1−𝜖 frac.on of constraints.


•  NO: no assignments sa.sfies more than 𝜖 frac.on of constraints.







Linear Unique Games
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We can generalize the cycle cukng algorithm by defining “inconsistent 

cycles”, and get the same results as in min-uncut:


•  Kr minor free graphs: O(r)


•  Graphs with genus g: O(log g)





The approxima.on ra.o is independent of R.













General Unique Games
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We first use the low diameter graph decomposi.on result in [Abraham, 

Gavoille, Gupta, Neiman, Talwar], and then find a shortest path tree in 

each component, and do the propaga.on rounding in [Gupta, Talwar].


•  Kr minor free graphs: 𝑂(𝑟 √⁠𝜖 ) 


•  Graphs with genus g: 𝑂(√⁠log(𝑔) 𝜖 ) 













Graph Decomposi.on
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To design an algorithm for the unique games conjecture, we can afford 

to delete say 1% of the edges.





We know that Unique Games are “easy” on expander graphs [Arora, 

Khot, Kolla, Steurer, Tulsiani, Vishnoi], and on graphs with bounded 

diameter [Gupta, Talwar].





Suppose we can delete 1% of edges such that each remaining 

component is of constant expansion or constant diameter, then done.





The subexponen.al .me algorithm by [Arora,Barak,Steurer] is to 

decompose the graph into graphs with few small Laplacian eigenvalues.







Graph Decomposi.on
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But there are graphs (e.g. hypercube) such that if we delete constant 

frac.on of edges, we can only ensure that each component


•  is of conductance Ω(1 / ​log ⁠𝑛) .


•  is of diameter O( ​log ⁠𝑛) .	

	

This log(n) loss is too bad for the unique games problem.


Ques.on: Is there a “relaxed property” which is close to high 

conductance and low diameter so that we can prove a stronger graph 

decomposi.on result (without a log(n) factor loss)?







Effec.ve Resistance
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We think about the weighted graph as an electrical network.


Each edge is of conductance w(e), or of resistance 1/w(e).





The effec.ve resistance between two ver.ces u and v is defined as the 

poten.al difference between u and v when one unit of current is 

injected to u and extracted from v.





Equivalently, it is the minimum energy of a unit flow from u to v, where 

the energy of a flow is defined as ∑𝑒∈𝐸↑▒​𝑟↓𝑒  ​𝑓↓𝑒↑2 .  




Effec.ve Resistance as a Relaxed Property


18	

It is easy to see that Reff(u,v) <= dist(u,v).





It is also known that Reff(u,v) = O(1) in a constant expansion graph.





So it can be seen as a relaxed property of low diameter and high 

expansion.





And it is intui.vely a good relaxa.on, as we usually think of Reff(u,v) 

being small as saying that there are many disjoint short paths between 

u and v.




Applica.ons of Effec.ve Resistance
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Tradi.onally, effec.ve resistance is closely related to some parameters 

of random walks, such as hikng .me [Chandra, Raghavan, Ruzzo, 

Smolensky, Tiwari], cover .me [Maphews], and the probability of an 

edge in a random spanning tree [Kirchhoff].





Recently, it is used in spectral sparsifica.on [Spielman, Srivastava], 

compu.ng maximum flow [Chris.ano, Kelner, Madry, Spielamn, Teng], 

finding thin tree [Anari, Oveis Gharan], and genera.ng random spanning 

trees [Kelner, Madry] [Madry, Straszak, Tarnawski].





It may also be a natural distance measure to do graph clustering.




Graph Decomposi.on using Reff
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Theorem.  For every weighted graph G=(V,E,w) and large enough 

constant Δ>0, there exists a par..on V=(V1, …, Vk) such that





1.  The resistance diameter is small, i.e.


​​max┬𝑢,𝑣∈ ​𝑉↓𝑖   ⁠𝑅𝑒𝑓​𝑓↓𝐺[​𝑉↓𝑖 ] (𝑢,𝑣)≤Δ𝑛/ 𝑤(𝐸).  


2.    Few edges between clusters, i.e.


𝑤(𝐸 − ∪𝐸(​𝑉↓𝑖 ))≤𝑤(𝐸)/ ​Δ↑​1/3   




d-Regular Graphs
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Corollary.  For every unweighted d-regular graph G=(V,E) and large 

enough constant Δ>0, there exists a par..on V=(V1, …, Vk) such that


1.  Each component is of resistance diameter 𝑂(​Δ/𝑑 ). 


2.  Only 𝑂(​|𝐸|/​Δ↑​1/3   ) edges are deleted.


Note that any d-regular graph has resistance diameter Ω(​1/𝑑 ), and d-

regular expander has resistance diameter 𝑂(​1/𝑑 ).  So, although we 

cannot decompose a graph into expander, we can decompose a graph 

into graphs with essen.ally op.mal electrical property.




Technical Result
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Theorem.  If 𝑤(𝛿(𝑆))≥𝑐 𝑣𝑜𝑙​(𝑆)↑​1/2 +𝜖  


    for every some 𝜖>0 and for all S separa.ng u and v, then



𝑅𝑒𝑓𝑓(𝑢,𝑣)≤(​1/​​deg ⁠(𝑢) ↑2𝜖  + ​1/​​deg ⁠(𝑣) ↑2𝜖  )​1/​𝑐↑2 𝜖 .








The main point is that the expansion requirement for large sets is very 

mild (i.e. sublinear).




Proof Ideas
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The technical result is to look at the poten.al vectors, and argue that if 

each level set is of mild expansion, then the poten.al will drop slowly.


The argument is a liple similar to some proofs of Cheeger’s inequality.





The graph decomposi.on result is to apply the technical result 

recursively, and since the conductance is sublinear, it is a geometric 

decreasing sequence (e.g. we don’t lose a log(n) factor).




Open Ques.ons
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1.  Can the decomposi.on be computed in near linear .me?


2.  Are there some problems that can be solved effec.vely in graphs 

with bounded resistance diameter?
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Thank you.



