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Survivable Network Design	
Prob: Design (cheap) networks that satisfy given connectivity 
requirements (between pairs or groups of nodes) despite a few 
edge/vertex failures 

E.g.: Connect red nodes 

Many SND problems are NP-hard, we will focus on approximation 
algorithms 



Surviving in Directed Graphs?	
Many approximation algorithms are known for SND problems on 
undirected graphs 

Steiner Network Problem: edge-
connectivity r(u,v) between 

every pair of nodes (u,v) 

[Jain’01] 2-apx 

k-Vertex Connected Steiner 
Tree: k-vertex connectivity from 

terminals to a root 

[Fleisher et al.’06] 2-apx, k=2 
[Nutov’12] O(k log k)-apx 

k-Vertex Connected Steiner 
Subgraph: k-vertex connectivity 

between terminals 

[Fleisher et al.’06] 2-apx, k=2 
[Nutov’12] O(k log2 k)-apx 

[Cheriyan,Vetta’07]  
O(1)-apx, metric edge costs 

k-Vertex Connected Spanning 
Subgraph: k-vertex connectivity 

between all nodes 

[Nutov’14] O(log (n/(n-k))log k)-apx, 
n=# nodes 

[Cheriyan,Vegh’14] 6-apx, n≥2​k↑3  

Prob: What about directed graph? 



Directed Steiner Tree (DST)	
Def: In the Directed Steiner Tree problem (DST) we are given an n-
node directed edge-weighted graph G, a root r, and a set of 
terminals S={1,...,h}. Our goal is to compute a min-cost subgraph H 
that contains a directed path from each terminal to r 

r 

= terminal Thr [Zelikosky’97, Charikar et al.’99]: 
For any D>0 in ​n↑O(D)  time one can 
compute a O(D ​𝐡↑𝟏/𝐃 𝐥𝐨𝐠𝟐𝐡) ) 
approximation for DST 

Cor1: For fixed 𝜀>0, O(​𝒉↑𝜺 ) >0, O(​𝒉↑𝜺 ) 
approximation in poly-time  

Cor2: O(​𝐥𝐨𝐠↑𝟑  h) approximation in 
quasi-polynomial-time ​2↑polylog(n)  
(QPT)  

Thr [Halpering,Krauthgamer’03]: DST is O(​𝐥𝐨𝐠↑𝟐−𝛆 𝐧) hard to ) hard to 
approximate 



k-Connected Directed Steiner Tree (k-DST)	
Def: the k-(Edge)-Connected Directed Steiner Tree problem (k-DST) is 
the generalization of DST where one wants k edge-disjoint paths from 
each terminal to the root r 

r 

= terminal k=2 



k-Connected Directed Steiner Tree (k-DST)	
Def: the k-(Edge)-Connected Directed Steiner Tree problem (k-DST) is 
the generalization of DST where one wants k edge-disjoint paths from 
each terminal to the root r 

[Cheriyan, Laekhanukit, Naves, 
Vetta ‘14] 

 ​2↑​log↑1−ε n  hard to apx. 
​𝑘↑𝛿  hard to apx. 

[Laekhanukit ‘14] ​𝑘↑​1/2 −ε  hard to apx. 

[Laekhanukit ‘16] 
 

O( ​k↑D−1 D​log ⁠n )-apx,  
D-shallow instances (directed paths 

of hop-length at most D) 

Prob [Feldam, Kortsarz, Nutov ‘12]:  
•  Can we get any non-trivial approximation for the general case?  
•  Possibly analogous to the DST case? 
•  Say for k=O(1)? Even just for k=2? 



k-Connected Directed Steiner Tree (k-DST)	
Def: the k-(Edge)-Connected Directed Steiner Tree problem (k-DST) is 
the generalization of DST where one wants k edge-disjoint paths from 
each terminal to the root r 

Thr [G.,Laekhanukit’17]: For any D>0 in ​n↑O(D)  time one can 
compute a O(​​𝐃↑𝟑  𝐥𝐨𝐠 𝐃 𝐡↑𝟐/𝐃 𝐥𝐨𝐠 𝐧) approximation for 2-DST ) approximation for 2-DST 

Cor1: For 𝜀>0, O(​𝒉↑𝜺 ) >0, O(​𝒉↑𝜺 ) 
apx 

Cor2: O(​𝐥𝐨𝐠↑𝟑 𝐡 𝐥𝐨𝐠 𝐧 𝐥𝐨𝐠𝐥𝐨𝐠 𝐡) apx in ) apx in 
QPT •  Complex LP where we combine: 

o  Zelikowsky’s height reduction 
o  Divergent Steiner trees 
o  Embedding into shallow trees [Laekhanukit’16] 
o  Group-Steiner-Tree (GST) LP 

•  LP rounding where we combine: 
o  GKR rounding for GST [Garg,Kojevod,Ravi’00] 
o  Random path mapping 
o  Cut-based connectivity analysis [Chalermsook,G.,Laekhanukit’15] 



Divergent Steiner Trees	

r 

Prob: Can we decompose a 2-DST solution into 2 
edge disjoint DST solutions?  NO! 



Divergent Steiner Trees	

r 

Def: two (possibly not edge disjoint) DST solutions ​T↓1  and ​T↓2  are 
divergent if for any terminal t, the t-r path in ​T↓1  and ​T↓2  are edge 
disjoint 

Thr [Georgiadis,Tarjan’05;Berczi,Kovacz’11]: any 2-DST solution can be 
“decomposed” into 2 divergent Directed Steiner trees 

r r 



Height Reduction	

r 

Thr [Zelikovsky’97]: for any D>0 and DST T, there exists a DST ​T  in the 
metric closure of T of depth ≤D and cost w(​𝐓 )≤O(D ​𝐡↑𝟏/𝐃 )w(T)  

r 

Rem: for DST apx. (T=OPT) one 
can consider the metric 
closure of the overall graph G 

Rem: the proof defines a mapping 
𝜙 from edges of ​T  to paths of T 
(between the same endpoints) 
where each edge of T is used  
≤𝛃=O(D ​𝐡↑𝟏/𝐃 ) times altogether  
(bounded congestion) 

p 

𝜙(𝒑
) 

D 



r 

Def: in the Group Steiner Tree problem (GST) we are given an 
undirected edge-weighted graph G, a root r, and h subsets of nodes ​
G↓1 ,..., ​G↓h  (groups). The goal is to compute the cheapest tree that 
contains r and at least one node per group  

Group Steiner Tree (GST)	

Rem: We will consider the 
2-GST generalization, with 
connectivity 2 between 
each group and the root 



Group Steiner Tree (GST)	

r 

Thr [Garg,Kojevod,Ravi’00]: there is a O(​𝐥𝐨𝐠↑𝟐  h)-apx for GST on a 
tree T 

min	 ∑p↑▒w(p) ​y↓p  	 (GST LP)	

s.t.	 ​f↓p↑i ≤ ​y↓p 	 ∀i∈[h]∀p∈E(T)	

∑p∈​δ↑in (w)↑▒​f↓p↑i  
=∑p∈​δ↑out (w)↑▒​f↓p↑i  	

∀i∈[h]

∀w∈V(T)∖({r}∪ ​
G↓i )	

∑p∈​δ↑out ( ​G↓i )↑▒​f↓p↑i  
≥1	

∀i∈[h]	

​y↓p , ​f↓p↑i ∈[0,1]	 ∀i∈[h]∀p∈E(T)	

•  Apply GKR rounding O( ​log↑2  h) 
times:  
o  select edge p incident to r 

independently with probability ​
y↓p  

o  otherwise select p with 
probability ​y↓p / ​y↓e  if parent 
edge e of p was selected before 

Rem: If the tree has height 
D, O(D log h) rounds are 
sufficient 

Rem: The same works if the 
flow leaving ​G↓i  is 𝜴(1) (1) 

•  Solve GST LP 

Rem: We will use a similar 
LP for 2-GST... 



The Big Plan	
OPT 

​
𝐃↓
𝟏  

​
𝐃↓
𝟐  

​
𝐇↓
𝟏  

​
𝐇↓
𝟐  𝑻

​f↓𝑝↑i ≤ ​𝑦↓𝑝 	 ∀𝑖∈[h]∀𝑝∈E
(T)	

∑p∈​δ↑in 
(w)↑▒​f↓𝑝↑i  
=∑p∈​δ↑out 
(w)↑▒​f↓𝑝↑i  	

∀𝑖∈[h]


∀𝑤∈𝑉(𝑇)∖({r}

∪ ​G↓i )	

∑p∈​δ↑out ( ​
G↓i )↑▒​f↓𝑝↑i  
≥𝟐	

∀𝑖∈[h]	

​𝑦↓𝑝 , ​f↓𝑝↑i 
∈[0,1]	

∀𝑖∈[h]∀𝑝∈E
(T)	

𝑨𝑷
𝑿′ 

𝑨𝑷
𝑿 

1.  Divergent Steiner Trees 

2.  D-Height Reduction 
3.  Embedding into 2-GST 

instance in a D-
Shallow Tree 

4.  GKR Rounding for 2-
GST LP 

5.  Map back to G 

Prob: Differently from DST, 
cannot use metric closure 
in Height Reduction 



Problem Fixing	
Prob: Cannot use metric closure in Height Reduction (we would lose 
connectivity properties of original graph) 

Idea: Let an LP create the mapping! 

​f↓p,e ≤ ​x↓e 	 ∀p∈E(T)∀e∈E(G)	

∑e∈ ​δ↑out (u)↑▒​f↓p,e  = ​y↓p 	 ∀p=(u,v)∈E(T)	

∑e∈ ​δ↑in (w)↑▒​f↓p,e  =∑e∈ ​δ↑out (w)↑▒​
f↓p,e  	

∀p=(u,v)∈E(T)	
∀w∈V(G)∖{u,v}	

∑p↑▒​f↓p,e  ≤2β ​x↓e ∈O(D​h↑1/D ) ​x↓e 	 ∀e∈E(G)	

•  Define a (u,v)-flow ​f↓p,e  of value ​y↓p  in G for each p=(u,v) ∈E(T) 

•  Enforce bounded congestion (to keep cost under control)  

Rem: We will interpret this flow as a distribution over paths 

Rem: ​x↓e  
choice 
variable for 
e∈E(G) 



Problem Fixing	
Prob: Cannot use metric closure in Height Reduction (we would lose 
connectivity properties of original graph) 

Idea: Let an LP create the mapping! 

•  Define a similar flow for each terminal i 

•  Enforce divergency (useful for connectivity analysis)  

​f↓p,e↑i ≤ ​f↓p,e 	 ∀p∈E(T)	
∀e∈E(G)	

∀i∈[h]	
∑e∈ ​δ↑out (u)↑▒​f↓p,e↑i  = ​f↓p↑i 	 ∀p=(u,v)∈E(T)	

∀i∈[h]	
∑e∈ ​δ↑in (w)↑▒​f↓p,e↑i  =∑e∈ ​δ↑out 

(w)↑▒​f↓p,e↑i  	
∀p=(u,v)∈E(T)	

∀i∈[h]

∀w∈V(G)∖{u,v}	

∑p↑▒​f↓p,e↑i  ≤ ​x↓e 	 ∀e∈E(G)	
∀i∈[h]	



The LP	
min	 ∑e↑▒w(e) ​x↓e  	 (2-DST LP)	

s.t.	 ​f↓p↑i ≤ ​y↓p 	 ∀p∈E(T) ∀i∈[h]	

∑p∈​δ↑in (w)↑▒​f↓p↑i  =∑p∈​
δ↑out (w)↑▒​f↓p↑i  	

∀i∈[h] ∀w∈V(T)∖({r}∪ ​G↓i )	

∑p∈​δ↑out ( ​G↓i )↑▒​f↓p↑i  ≥2	 ∀i∈[h]	

​f↓p,e ≤ ​x↓e 	 ∀p∈E(T) ∀e∈E(G)	

∑e∈ ​δ↑out (u)↑▒​f↓p,e  = ​y↓p 	 ∀p=(u,v) ∈E(T)	

∑e∈ ​δ↑in (w)↑▒​f↓p,e  =∑e∈ ​
δ↑out (w)↑▒​f↓p,e  	

∀p=(u,v)∈E(T) 
∀w∈V(G)∖{u,v}	

∑p↑▒​f↓p,e  ≤2β ​x↓e 	 ∀e∈E(G)	

​f↓p,e↑i ≤ ​f↓p,e 	 ∀p∈E(T) ∀e∈E(G) ∀i∈[h]	

∑e∈ ​δ↑out (u)↑▒​f↓p,e↑i  = ​
f↓p↑i 	

∀p=(u,v)∈E(T) ∀i∈[h]	

∑e∈ ​δ↑in (w)↑▒​f↓p,e↑i  =∑e∈ ​
δ↑out (w)↑▒​f↓p,e↑i  	

∀p=(u,v)∈E(T) ∀i∈[h]


∀w∈V(G)∖{u,v}	

∑p↑▒​f↓p,e↑i  ≤ ​x↓e 	 ∀e∈E(G) ∀i∈[h]	

​x↓e , ​y↓p , ​f↓p↑i , ​f↓p,e , ​f↓p,e↑i 
∈[0,1]	

∀p∈E(T) ∀e∈E(G) ∀i∈[h]	

2-GST LP 

Path 
mapping 

Divergency 



The Algorithm	
1.  Solve 2-DST LP ⟹ ( ​x↓e , ​y↓p , ​f↓p↑i , ​f↓p,e , ​f↓p,e↑i ) 

2.  For j=1,..., O(D log n) 

I.  Round { ​y↓p } with GKR rounding ⟹ ​T↓j ⊆T   

II.  For q=1,...,O(D​𝐡↑𝟏/𝐃  log D)  

a)  For each p=(u,v)∈ ​T↓j , sample (u,v)-path ​P↓p,q  “from” ​f↓p,e / ​y↓p  

III.  Let ​H↓j =∪ ​P↓p,q ⊆G 

3.  Return H=∪​H↓j  

Lem: the expected cost is O(​​𝐃↑𝟑  𝐥𝐨𝐠 𝐃 𝐡↑𝟐/𝐃 𝐥𝐨𝐠 𝐧) times the LP ) times the LP 
value 

•  Using bounded congestion, in each execution of step a) each edge 
e∈G belongs to O(𝜷)=O(D​𝒉↑𝟏/𝑫 ) paths ​P↓p,q  in expectation )=O(D​𝒉↑𝟏/𝑫 ) paths ​P↓p,q  in expectation 



Lem: w.h.p., for each terminal i and 
edge e, H\{e} contains an i-r path 

•  We discard “bad” edges p∈T such that ​𝑃↓𝑝,𝑞  has “large” probability 
to contain e 

Rem: inspired by [Chalermsook, 
G., Laekhanukit ’15] for k-GST 

•  Using divergency and bounded congestion, we show that remaining 
“good” edges support flow ≥1/2 from ​𝐺↓𝑖  to r 

•  Hence ​H↓𝑗 \{e} has “large enough” probability to connect i to r 

The Algorithm	
1.  Solve 2-DST LP ⟹ ( ​x↓e , ​y↓p , ​f↓p↑i , ​f↓p,e , ​f↓p,e↑i ) 

2.  For j=1,..., O(D log n) 

I.  Round { ​y↓p } with GKR rounding ⟹ ​T↓j ⊆T   

II.  For q=1,...,O(D​𝐡↑𝟏/𝐃  log D)  

a)  For each p=(u,v)∈ ​T↓j , sample (u,v)-path ​P↓p,q  “from” ​f↓p,e / ​y↓p  

III.  Let ​H↓j =∪ ​P↓p,q ⊆G 

3.  Return H=∪​H↓j  



 Open Problems	
Prob: Obtaining similar approximation for k-DST (say, up to a factor 
f(k)polylog(n)) 

Rem: the divergency theorem doesn’t hold for k≥3 

Idea: our approach would still work with a weakened form of the 
divergency theorem where: 
•  We decompose OPT into f(k)polylog(n) trees  ​T↓i (rather than k) 
•  For any i and set F of k-1 edges, at least one ​𝑻↓𝒊 \F connects i with r 




