
Surviving in Directed Graphs:
A Quasi-Polynomial-Time

Poly-logarithmic Approximation for
2-Connected Directed Steiner Tree

(STOC’17)	

Fabrizio Grandoni
IDSIA, University of Lugano

fabrizio@idsia.ch

Bundit Laekhanukit
Weizmann Institute of Science

Survivable Network Design	
Prob: Design (cheap) networks that satisfy given connectivity
requirements (between pairs or groups of nodes) despite a few
edge/vertex failures

E.g.: Connect red nodes

Many SND problems are NP-hard, we will focus on approximation
algorithms

Surviving in Directed Graphs?	
Many approximation algorithms are known for SND problems on
undirected graphs

Steiner Network Problem: edge-
connectivity r(u,v) between

every pair of nodes (u,v)

[Jain’01] 2-apx

k-Vertex Connected Steiner
Tree: k-vertex connectivity from

terminals to a root

[Fleisher et al.’06] 2-apx, k=2
[Nutov’12] O(k log k)-apx

k-Vertex Connected Steiner
Subgraph: k-vertex connectivity

between terminals

[Fleisher et al.’06] 2-apx, k=2
[Nutov’12] O(k log2 k)-apx

[Cheriyan,Vetta’07]
O(1)-apx, metric edge costs

k-Vertex Connected Spanning
Subgraph: k-vertex connectivity

between all nodes

[Nutov’14] O(log (n/(n-k))log k)-apx,
n=# nodes

[Cheriyan,Vegh’14] 6-apx, n≥2​k↑3 

Prob: What about directed graph?

Directed Steiner Tree (DST)	
Def: In the Directed Steiner Tree problem (DST) we are given an n-
node directed edge-weighted graph G, a root r, and a set of
terminals S={1,...,h}. Our goal is to compute a min-cost subgraph H
that contains a directed path from each terminal to r

r

= terminal Thr [Zelikosky’97, Charikar et al.’99]:
For any D>0 in ​n↑O(D)  time one can
compute a O(D ​𝐡↑𝟏/𝐃 𝐥𝐨𝐠𝟐𝐡))
approximation for DST

Cor1: For fixed 𝜀>0, O(​𝒉↑𝜺 ) >0, O(​𝒉↑𝜺 )
approximation in poly-time

Cor2: O(​𝐥𝐨𝐠↑𝟑  h) approximation in
quasi-polynomial-time ​2↑polylog(n) 
(QPT)

Thr [Halpering,Krauthgamer’03]: DST is O(​𝐥𝐨𝐠↑𝟐−𝛆 𝐧) hard to) hard to
approximate

k-Connected Directed Steiner Tree (k-DST)	
Def: the k-(Edge)-Connected Directed Steiner Tree problem (k-DST) is
the generalization of DST where one wants k edge-disjoint paths from
each terminal to the root r

r

= terminal k=2

k-Connected Directed Steiner Tree (k-DST)	
Def: the k-(Edge)-Connected Directed Steiner Tree problem (k-DST) is
the generalization of DST where one wants k edge-disjoint paths from
each terminal to the root r

[Cheriyan, Laekhanukit, Naves,
Vetta ‘14]

 ​2↑​log↑1−ε n  hard to apx.
​𝑘↑𝛿  hard to apx.

[Laekhanukit ‘14] ​𝑘↑​1/2 −ε  hard to apx.

[Laekhanukit ‘16]

O(​k↑D−1 D​log ⁠n )-apx,
D-shallow instances (directed paths

of hop-length at most D)

Prob [Feldam, Kortsarz, Nutov ‘12]:
•  Can we get any non-trivial approximation for the general case?
•  Possibly analogous to the DST case?
•  Say for k=O(1)? Even just for k=2?

k-Connected Directed Steiner Tree (k-DST)	
Def: the k-(Edge)-Connected Directed Steiner Tree problem (k-DST) is
the generalization of DST where one wants k edge-disjoint paths from
each terminal to the root r

Thr [G.,Laekhanukit’17]: For any D>0 in ​n↑O(D)  time one can
compute a O(​​𝐃↑𝟑  𝐥𝐨𝐠 𝐃 𝐡↑𝟐/𝐃 𝐥𝐨𝐠 𝐧) approximation for 2-DST) approximation for 2-DST

Cor1: For 𝜀>0, O(​𝒉↑𝜺 ) >0, O(​𝒉↑𝜺 )
apx

Cor2: O(​𝐥𝐨𝐠↑𝟑 𝐡 𝐥𝐨𝐠 𝐧 𝐥𝐨𝐠𝐥𝐨𝐠 𝐡) apx in) apx in
QPT •  Complex LP where we combine:

o  Zelikowsky’s height reduction
o  Divergent Steiner trees
o  Embedding into shallow trees [Laekhanukit’16]
o  Group-Steiner-Tree (GST) LP

•  LP rounding where we combine:
o  GKR rounding for GST [Garg,Kojevod,Ravi’00]
o  Random path mapping
o  Cut-based connectivity analysis [Chalermsook,G.,Laekhanukit’15]

Divergent Steiner Trees	

r

Prob: Can we decompose a 2-DST solution into 2
edge disjoint DST solutions? NO!

Divergent Steiner Trees	

r

Def: two (possibly not edge disjoint) DST solutions ​T↓1  and ​T↓2  are
divergent if for any terminal t, the t-r path in ​T↓1  and ​T↓2  are edge
disjoint

Thr [Georgiadis,Tarjan’05;Berczi,Kovacz’11]: any 2-DST solution can be
“decomposed” into 2 divergent Directed Steiner trees

r r

Height Reduction	

r

Thr [Zelikovsky’97]: for any D>0 and DST T, there exists a DST ​T  in the
metric closure of T of depth ≤D and cost w(​𝐓 )≤O(D ​𝐡↑𝟏/𝐃 )w(T)

r

Rem: for DST apx. (T=OPT) one
can consider the metric
closure of the overall graph G

Rem: the proof defines a mapping
𝜙 from edges of ​T  to paths of T
(between the same endpoints)
where each edge of T is used
≤𝛃=O(D ​𝐡↑𝟏/𝐃 ) times altogether
(bounded congestion)

p

𝜙(𝒑
)

D

r

Def: in the Group Steiner Tree problem (GST) we are given an
undirected edge-weighted graph G, a root r, and h subsets of nodes ​
G↓1 ,..., ​G↓h  (groups). The goal is to compute the cheapest tree that
contains r and at least one node per group

Group Steiner Tree (GST)	

Rem: We will consider the
2-GST generalization, with
connectivity 2 between
each group and the root

Group Steiner Tree (GST)	

r

Thr [Garg,Kojevod,Ravi’00]: there is a O(​𝐥𝐨𝐠↑𝟐  h)-apx for GST on a
tree T

min	 ∑p↑▒w(p) ​y↓p  	 (GST LP)	

s.t.	 ​f↓p↑i ≤ ​y↓p 	 ∀i∈[h]∀p∈E(T)	

∑p∈​δ↑in (w)↑▒​f↓p↑i  
=∑p∈​δ↑out (w)↑▒​f↓p↑i  	

∀i∈[h]

∀w∈V(T)∖({r}∪ ​
G↓i )	

∑p∈​δ↑out (​G↓i )↑▒​f↓p↑i  
≥1	

∀i∈[h]	

​y↓p , ​f↓p↑i ∈[0,1]	 ∀i∈[h]∀p∈E(T)	

•  Apply GKR rounding O(​log↑2  h)
times:
o  select edge p incident to r

independently with probability ​
y↓p 

o  otherwise select p with
probability ​y↓p / ​y↓e  if parent
edge e of p was selected before

Rem: If the tree has height
D, O(D log h) rounds are
sufficient

Rem: The same works if the
flow leaving ​G↓i  is 𝜴(1) (1)

•  Solve GST LP

Rem: We will use a similar
LP for 2-GST...

The Big Plan	
OPT

​
𝐃↓
𝟏 

​
𝐃↓
𝟐 

​
𝐇↓
𝟏 

​
𝐇↓
𝟐  𝑻

​f↓𝑝↑i ≤ ​𝑦↓𝑝 	 ∀𝑖∈[h]∀𝑝∈E
(T)	

∑p∈​δ↑in 
(w)↑▒​f↓𝑝↑i  
=∑p∈​δ↑out 
(w)↑▒​f↓𝑝↑i  	

∀𝑖∈[h]

∀𝑤∈𝑉(𝑇)∖({r}

∪ ​G↓i )	

∑p∈​δ↑out (​
G↓i )↑▒​f↓𝑝↑i  
≥𝟐	

∀𝑖∈[h]	

​𝑦↓𝑝 , ​f↓𝑝↑i 
∈[0,1]	

∀𝑖∈[h]∀𝑝∈E
(T)	

𝑨𝑷
𝑿′

𝑨𝑷
𝑿

1.  Divergent Steiner Trees

2.  D-Height Reduction
3.  Embedding into 2-GST

instance in a D-
Shallow Tree

4.  GKR Rounding for 2-
GST LP

5.  Map back to G

Prob: Differently from DST,
cannot use metric closure
in Height Reduction

Problem Fixing	
Prob: Cannot use metric closure in Height Reduction (we would lose
connectivity properties of original graph)

Idea: Let an LP create the mapping!

​f↓p,e ≤ ​x↓e 	 ∀p∈E(T)∀e∈E(G)	

∑e∈ ​δ↑out (u)↑▒​f↓p,e  = ​y↓p 	 ∀p=(u,v)∈E(T)	

∑e∈ ​δ↑in (w)↑▒​f↓p,e  =∑e∈ ​δ↑out (w)↑▒​
f↓p,e  	

∀p=(u,v)∈E(T)	
∀w∈V(G)∖{u,v}	

∑p↑▒​f↓p,e  ≤2β ​x↓e ∈O(D​h↑1/D ) ​x↓e 	 ∀e∈E(G)	

•  Define a (u,v)-flow ​f↓p,e  of value ​y↓p  in G for each p=(u,v) ∈E(T)

•  Enforce bounded congestion (to keep cost under control)

Rem: We will interpret this flow as a distribution over paths

Rem: ​x↓e 
choice
variable for
e∈E(G)

Problem Fixing	
Prob: Cannot use metric closure in Height Reduction (we would lose
connectivity properties of original graph)

Idea: Let an LP create the mapping!

•  Define a similar flow for each terminal i

•  Enforce divergency (useful for connectivity analysis)

​f↓p,e↑i ≤ ​f↓p,e 	 ∀p∈E(T)	
∀e∈E(G)	

∀i∈[h]	
∑e∈ ​δ↑out (u)↑▒​f↓p,e↑i  = ​f↓p↑i 	 ∀p=(u,v)∈E(T)	

∀i∈[h]	
∑e∈ ​δ↑in (w)↑▒​f↓p,e↑i  =∑e∈ ​δ↑out 

(w)↑▒​f↓p,e↑i  	
∀p=(u,v)∈E(T)	

∀i∈[h]

∀w∈V(G)∖{u,v}	

∑p↑▒​f↓p,e↑i  ≤ ​x↓e 	 ∀e∈E(G)	
∀i∈[h]	

The LP	
min	 ∑e↑▒w(e) ​x↓e  	 (2-DST LP)	

s.t.	 ​f↓p↑i ≤ ​y↓p 	 ∀p∈E(T) ∀i∈[h]	

∑p∈​δ↑in (w)↑▒​f↓p↑i  =∑p∈​
δ↑out (w)↑▒​f↓p↑i  	

∀i∈[h] ∀w∈V(T)∖({r}∪ ​G↓i )	

∑p∈​δ↑out (​G↓i )↑▒​f↓p↑i  ≥2	 ∀i∈[h]	

​f↓p,e ≤ ​x↓e 	 ∀p∈E(T) ∀e∈E(G)	

∑e∈ ​δ↑out (u)↑▒​f↓p,e  = ​y↓p 	 ∀p=(u,v) ∈E(T)	

∑e∈ ​δ↑in (w)↑▒​f↓p,e  =∑e∈ ​
δ↑out (w)↑▒​f↓p,e  	

∀p=(u,v)∈E(T)
∀w∈V(G)∖{u,v}	

∑p↑▒​f↓p,e  ≤2β ​x↓e 	 ∀e∈E(G)	

​f↓p,e↑i ≤ ​f↓p,e 	 ∀p∈E(T) ∀e∈E(G) ∀i∈[h]	

∑e∈ ​δ↑out (u)↑▒​f↓p,e↑i  = ​
f↓p↑i 	

∀p=(u,v)∈E(T) ∀i∈[h]	

∑e∈ ​δ↑in (w)↑▒​f↓p,e↑i  =∑e∈ ​
δ↑out (w)↑▒​f↓p,e↑i  	

∀p=(u,v)∈E(T) ∀i∈[h]

∀w∈V(G)∖{u,v}	

∑p↑▒​f↓p,e↑i  ≤ ​x↓e 	 ∀e∈E(G) ∀i∈[h]	

​x↓e , ​y↓p , ​f↓p↑i , ​f↓p,e , ​f↓p,e↑i 
∈[0,1]	

∀p∈E(T) ∀e∈E(G) ∀i∈[h]	

2-GST LP

Path
mapping

Divergency

The Algorithm	
1.  Solve 2-DST LP ⟹ (​x↓e , ​y↓p , ​f↓p↑i , ​f↓p,e , ​f↓p,e↑i )

2.  For j=1,..., O(D log n)

I.  Round { ​y↓p } with GKR rounding ⟹ ​T↓j ⊆T

II.  For q=1,...,O(D​𝐡↑𝟏/𝐃  log D)

a)  For each p=(u,v)∈ ​T↓j , sample (u,v)-path ​P↓p,q  “from” ​f↓p,e / ​y↓p 

III.  Let ​H↓j =∪ ​P↓p,q ⊆G

3.  Return H=∪​H↓j 

Lem: the expected cost is O(​​𝐃↑𝟑  𝐥𝐨𝐠 𝐃 𝐡↑𝟐/𝐃 𝐥𝐨𝐠 𝐧) times the LP) times the LP
value

•  Using bounded congestion, in each execution of step a) each edge
e∈G belongs to O(𝜷)=O(D​𝒉↑𝟏/𝑫 ) paths ​P↓p,q  in expectation)=O(D​𝒉↑𝟏/𝑫 ) paths ​P↓p,q  in expectation

Lem: w.h.p., for each terminal i and
edge e, H\{e} contains an i-r path

•  We discard “bad” edges p∈T such that ​𝑃↓𝑝,𝑞  has “large” probability
to contain e

Rem: inspired by [Chalermsook,
G., Laekhanukit ’15] for k-GST

•  Using divergency and bounded congestion, we show that remaining
“good” edges support flow ≥1/2 from ​𝐺↓𝑖  to r

•  Hence ​H↓𝑗 \{e} has “large enough” probability to connect i to r

The Algorithm	
1.  Solve 2-DST LP ⟹ (​x↓e , ​y↓p , ​f↓p↑i , ​f↓p,e , ​f↓p,e↑i )

2.  For j=1,..., O(D log n)

I.  Round { ​y↓p } with GKR rounding ⟹ ​T↓j ⊆T

II.  For q=1,...,O(D​𝐡↑𝟏/𝐃  log D)

a)  For each p=(u,v)∈ ​T↓j , sample (u,v)-path ​P↓p,q  “from” ​f↓p,e / ​y↓p 

III.  Let ​H↓j =∪ ​P↓p,q ⊆G

3.  Return H=∪​H↓j 

 Open Problems	
Prob: Obtaining similar approximation for k-DST (say, up to a factor
f(k)polylog(n))

Rem: the divergency theorem doesn’t hold for k≥3

Idea: our approach would still work with a weakened form of the
divergency theorem where:
•  We decompose OPT into f(k)polylog(n) trees ​T↓i (rather than k)
•  For any i and set F of k-1 edges, at least one ​𝑻↓𝒊 \F connects i with r

