Surviving in Directed Graphs: A Quasi-Polynomial-Time Poly-logarithmic Approximation for 2-Connected Directed Steiner Tree (STOC'17)

Bundit Laekhanukit

Weizmann Institute of Science

Fabrizio Grandoni

IDSIA, University of Lugano fabrizio@idsia.ch

Survivable Network Design

Prob: Design (cheap) networks that satisfy given connectivity requirements (between pairs or groups of nodes) **despite** a few **edge/vertex failures**

E.g.: Connect red nodes

Many SND problems are **NP-hard**, we will focus on **approximation algorithms**

Surviving in Directed Graphs?

Many approximation algorithms are known for SND problems on **undirected graphs**

Steiner Network Problem: edge- connectivity r(u,v) between every pair of nodes (u,v)	[Jain'01] 2-apx
k-Vertex Connected Steiner Tree: k-vertex connectivity from terminals to a root	[Fleisher et al.'06] 2-apx, k=2 [Nutov'12] O(k log k)-apx
k-Vertex Connected Steiner Subgraph: k-vertex connectivity between terminals	[Fleisher et al.'06] 2-apx, k=2 [Nutov'12] O(k log² k)-apx [Cheriyan,Vetta'07] O(1)-apx, metric edge costs
k-Vertex Connected Spanning Subgraph: k-vertex connectivity between all nodes	[Nutov'14] O(log (n/(n-k))log k)-apx, n=# nodes [Cheriyan,Vegh'14] 6-apx, n≥2k13

Prob: What about directed graph?

Directed Steiner Tree (DST)

Def: In the **Directed Steiner Tree** problem (**DST**) we are given an **n**node **directed edge-weighted** graph G, a **root** r, and a set of **terminals** S={1,...,**h**}. Our goal is to compute a min-cost subgraph H that contains a directed path from each terminal to r

Thr [Zelikosky'97, Charikar et al.'99]: For any D>0 in n*1*O(D) time one can compute a **O(Dh***1***1/D log2h)** approximation for DST

Cor1: For fixed ε>0, **O(***h***îε)** approximation in poly-time

Cor2: O(log73 h) approximation in quasi-polynomial-time 27polylog(n) (QPT)

Thr [Halpering,Krauthgamer'03]: DST is **O(log12–ε n)** hard to approximate

k-Connected Directed Steiner Tree (k-DST)

Def: the **k-(Edge)-Connected Directed Steiner Tree** problem (**k-DST**) is the generalization of DST where one wants **k edge-disjoint paths** from each terminal to the root r

k-Connected Directed Steiner Tree (k-DST) Def: the k-(Edge)-Connected Directed Steiner Tree problem (k-DST) is the generalization of DST where one wants k edge-disjoint paths from each terminal to the root r

[Cheriyan, Laekhanukit, Naves,
Vetta '14] $2 f \log f 1 - \varepsilon n$ hard to apx.
 $k t \delta$ hard to apx.[Laekhanukit '14] $k t 1/2 - \varepsilon$ hard to apx.[Laekhanukit '16] $O(k t D - 1 D \log n) - apx$,
D-shallow instances (directed paths
of hop-length at most D)

Prob [Feldam, Kortsarz, Nutov '12]:

- Can we get any non-trivial approximation for the general case?
- Possibly analogous to the DST case?
- Say for k=O(1)? Even just for k=2?

k-Connected Directed Steiner Tree (k-DST)

Def: the **k-(Edge)-Connected Directed Steiner Tree** problem (**k-DST**) is the generalization of DST where one wants **k edge-disjoint paths** from each terminal to the root r

Thr [G.,Laekhanukit'17]: For any D>0 in $n \uparrow O(D)$ time one can compute a O(D $\uparrow 3 \log D h \uparrow 2/D \log n$) approximation for 2-DST

Cor1: For ε>0, **Ο(***h*îε)

Cor2: O(log 73 h log n loglog h) apx in

- Complex LP where we combine:
 - Zelikowsky's height reduction
 - Divergent Steiner trees
 - o Embedding into shallow trees [Laekhanukit'16]
 - Group-Steiner-Tree (GST) LP
- LP rounding where we combine:
 - **GKR rounding** for GST [Garg,Kojevod,Ravi'00]
 - Random path mapping
 - o **Cut-based** connectivity analysis [Chalermsook,G.,Laekhanukit'15]

Divergent Steiner Trees

Prob: Can we decompose a 2-DST solution into 2 edge disjoint DST solutions?

NO!

Divergent Steiner Trees

Def: two (possibly not edge disjoint) DST solutions $T \not\downarrow 1$ and $T \not\downarrow 2$ are **divergent** if for any terminal t, the t-r path in $T \not\downarrow 1$ and $T \not\downarrow 2$ are edge disjoint

Thr [Georgiadis,Tarjan'05;Berczi,Kovacz'11]: any 2-DST solution can be "decomposed" into 2 divergent Directed Steiner trees

Height Reduction

Thr [Zelikovsky'97]: for any D>0 and DST T, there exists a DST T in the metric closure of T of depth $\leq D$ and cost w(T) $\leq O(Dh \hbar D) w(T)$

Group Steiner Tree (GST)

Def: in the **Group Steiner Tree** problem (**GST**) we are given an undirected edge-weighted graph G, a root r, and **h** subsets of nodes $G \downarrow 1$,..., $G \downarrow h$ (**groups**). The goal is to compute the cheapest tree that contains r and **at least one node per group**

Rem: We will consider the **2-GST** generalization, with connectivity 2 between each group and the root

Group Steiner Tree (GST)

Thr [Garg,Kojevod,Ravi'00]: there is a O(log12 h)-apx for GST on a

Problem Fixing

Prob: Cannot use metric closure in Height Reduction (we would lose connectivity properties of original graph)

Idea: Let an LP create the mapping!

- Define a (u,v)-flow $f \downarrow p, e$ of value $y \downarrow p$ in G for each $p=(u,v) \in E(T)$
- Enforce **bounded congestion** (to keep cost under control)

f↓p,e ≤x↓e	$\forall p \in E(T) \forall e \in E(G)$	
∑e∈δ <i>î</i> out (u) <i>î‱</i> f↓p,e =y↓p	$\forall p = (u, v) \in E(T)$	Rem: x↓e
$\sum e \in \delta f \text{ in } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \in \delta f \text{ out } (w) f = \int e \int e \delta f \text{ out } (w) f = \int e \delta f$	$\forall p = (u, v) \in E(T)$ $\forall w \in V(G) \setminus \{u, v\}$	choice variable for e∈E(G)
$\sum p^{T} t^{I} p, e \leq 2\beta x l e \in O(Dh^{T}/D) x l e$	$\forall e \in E(G)$	

Rem: We will interpret this flow as a **distribution over paths**

Problem Fixing

Prob: Cannot use metric closure in Height Reduction (we would lose connectivity properties of original graph)

Idea: Let an LP create the mapping!

- Define a similar flow for each terminal i
- Enforce **divergency** (useful for connectivity analysis)

```
 \begin{aligned} f \downarrow p, e \uparrow i \leq f \downarrow p, e \\ & \forall p \in E(T) \\ & \forall e \in E(G) \\ & \forall i \in [h] \end{aligned}   \begin{aligned} & \sum p \in \delta \uparrow out (u) \uparrow & f \downarrow p, e \uparrow i = f \downarrow p \uparrow i \\ & \sum p \uparrow & f \downarrow p, e \uparrow i \leq x \downarrow e \end{aligned}
```

The LP

min	∑eî‱(e)x↓e	(2-DST LP)		
s.t.	f↓p↑i ≤y↓p	$\forall p \in E(T) \forall i \in [h]$]	
	∑p∈δ <i>î</i> in (w) <i>î‱f↓pî</i> i <i>=∑</i> p∈ δ <i>î</i> out (w) <i>î‱f↓pî</i> i	$\forall i \in [h] \forall w \in V(T) \setminus (\{r\} \cup G \neq i)$	- 2-GST LP	
	$\sum p \in \delta \text{fout } (G \downarrow i) \text{for } f \downarrow p \text{f} i \ge 2$	∀i∈[h]		
	f↓p,e ≤x↓e	$\forall p \in E(T) \forall e \in E(G)$		
	∑e∈δ <i>î</i> out (u) <i>î‱</i> f↓p,e =y↓p	$\forall p=(u,v) \in E(T)$	- Path	
	∑e∈δ1̇́in (w)1̇́∰f↓p,e =∑e∈ δ1̇́out (w)1̇́∰f↓p,e	$\forall p=(u,v)\in E(T)$ $\forall w\in V(G)\setminus_{\{u,v\}}$	mapping	
	∑pî‱f↓p,e ≤2βx↓e	$\forall e \in E(G)$	1	
	f↓p,e↑i ≤f↓p,e	$\forall p \in E(T) \forall e \in E(G) \forall i \in [h]$		
	∑e∈δ <i>î</i> out (u) <i>î‱</i> f↓p,e <i>î</i> i = f↓p <i>î</i> i	$\forall p = (u,v) \in E(T) \forall i \in [h]$	- Divergency	
	∑e∈δ†in (w)î‱f↓p,e†i =∑e∈ δîout (w)î‱f↓p,e†i	$\forall \mathbf{p} = (\mathbf{u}, \mathbf{v}) \in E(T) \forall \mathbf{i} \in [h] \\ \forall \mathbf{w} \in V(G) \setminus_{\{\mathbf{u}, \mathbf{v}\}}$		
	∑pî‱f↓p,eîi ≤x↓e	$\forall e \in E(G) \forall i \in [h]$		

The Algorithm

- 1. Solve 2-DST LP \Rightarrow (x4e,y4p,f4p7i,f4p,e,f4p,e7i)
- 2. For j=1,..., O(D log n)
 - I. Round $\{y \downarrow p\}$ with GKR rounding $\Rightarrow T \downarrow j \subseteq T$
 - II. For q=1,...,O(Dh*†*1/D log D)

a) For each $p=(u,v)\in T_{ij}$, sample (u,v)-path $P_{ij}p,q$ "from" $f_{ij}p,e/y$

- III. Let $H \downarrow j = \bigcup P \downarrow p, q \subseteq G$
- 3. Return H=∪H↓j

Lem: the expected cost is $O(D^{13} \log D h^{12}/D \log n)$ times the LP

value

 Using bounded congestion, in each execution of step a) each edge e∈G belongs to O(β)=O(Dhî1/D) paths PJp,q in expectation

The Algorithm

- 1. Solve 2-DST LP \Rightarrow (x1e,y1p,f1p1i,f1p,e,f1p,e1i)
- 2. For j=1,..., O(D log n)
 - I. Round $\{y \downarrow p\}$ with GKR rounding $\Rightarrow T \downarrow j \subseteq T$
 - II. For q=1,...,O(Dh*†*1/D log D)

a) For each $p=(\cup, v) \in T i_j$, sample (\cup, v) -path $P i_{p,q}$ "from" fip,e/y

- III. Let $H \downarrow j = \bigcup P \downarrow p, q \subseteq G$
- 3. Return H=∪H↓j

Lem: w.h.p., for each terminal i and edge e, H\{e} contains an i-r path G., Laekhanukit '15] for k-GST

- We discard "bad" edges $p \in T$ such that $P \downarrow p, q$ has "large" probability to contain e
- Using divergency and bounded congestion, we show that remaining "good" edges support flow $\geq 1/2$ from $G\downarrow i$ to r
- Hence $H_{ij} \setminus \{e\}$ has "large enough" probability to connect i to r

Open Problems

Prob: Obtaining similar approximation for k-DST (say, up to a factor f(k)polylog(n))

Rem: the divergency theorem doesn't hold for $k \ge 3$

Idea: our approach would still work with a weakened form of the divergency theorem where:

- We decompose OPT into f(k)polylog(n) trees T↓i (rather than k)
- For any i and set F of k-1 edges, **at least one T***i* **F** connects i with r

