A constant-factor approximation algorithm for the asymmetric travelling salesman problem

László Végh
London School of Economics
Joint work with
Ola Svensson and Jakub Tarnawski
École Polytechnique Fédérale de Lausanne
Travelling salesman problem

Given n cities and their pairwise distances, find a shortest tour visiting all n cities.

- One of the best known NP-hard optimization problems
- Studied since the 19th century
- Symmetric TSP: $d(i, j) = d(j, i) \ \forall i, j$
- Asymmetric TSP: $d(i, j) \neq d(j, i)$ is possible

Triangle inequality:

$d(i, j) \leq d(i, k) + d(k, j) \ \forall i, j, k$

UK pub tour
[Cook et al., 2015]
Symmetric vs Asymmetric TSP

Symmetric TSP

• 1.5-approximation algorithm [Christofides ’76]

• Graphic TSP: unweighted graph shortest path metric
 • Current best 1.4 [Sebő & Vygen ’14], following
 [Oveis Gharan, Saberi & Singh ’11]
 [Mömke & Svensson ’11]
 [Mucha ’12]
Symmetric vs Asymmetric TSP

Asymmetric TSP

- $\log_2 n$-approximation algorithm [Frieze, Galbiati & Maffioli ’82]
- $0.99 \log_2 n$ [Bläser ’03]
- $0.84 \log_2 n$ [Kaplan, Lewenstein, Shafrir & Sviridenko ’03]
- $0.67 \log_2 n$ [Feige & Singh ’07]

- $O \left(\frac{\log n}{\log \log \log n} \right)$ [Asadpour, Goemans, Mądry, Oveis Gharan & Saberi ’10]

 via thin trees.
Asymmetric TSP – recent developments

• $O(poly \log \log n)$ bound on integrality gap of LP
 [Anari & Oveis Gharan ’15]

Constant-factor approximations:
• Bounded genus graphs [Oveis Gharan & Saberi ’11]
• Node-weighted graphs [Svensson ’15]
• Graphs with 2 edge weights [Svensson, Tarnawski & V. ’16]

Our result: constant-factor approximation for general ATSP with respect to the Held-Karp relaxation.
ATSP – Graphic formulation

Input: directed graph $G = (V, E)$, edge weights $w: E \rightarrow \mathbb{R}_+$
Find a minimum weight tour F.

• Tour = closed walk visiting every vertex at least once = Eulerian and connected edge multiset
• Eulerian: $\delta_F^{in}(v) = \delta_F^{out}(v) \ \forall v \in V$
• Subtour = closed walk (not necessarily connected)

In-degree & out-degree in F
ATSP – Graphic formulation

Input: directed graph $G = (V, E)$, edge weights $w: E \to \mathbb{R}_+$
Find a minimum weight tour F.

- **Tour** = closed walk visiting every vertex at least once =
 = Eulerian and connected edge multiset
- **Eulerian**: $\delta_F^{in}(v) = \delta_F^{out}(v) \forall v \in V$
- **Subtour** = closed walk (not necessarily connected)

In-degree & out-degree in F
Held-Karp relaxation

- **Input:** $G = (V, E)$, edge weights $w: E \to \mathbb{R}_+$.
- **Variables** $x_e : E \to \mathbb{R}_+$: multiplicity of selecting edge e.

\[
\begin{align*}
\text{minimize} \quad & w^T x \\
\text{subject to} \quad & x(\delta^{in}(v)) = x(\delta^{out}(v)) \quad \forall v \in V \\
& x(\delta(S)) \geq 2 \quad \forall S \subseteq V, S \neq \emptyset \\
& x \geq 0
\end{align*}
\]

- **Eulerian degree constraints**
- **Subtour elimination constraints**

Undirected degree:
\[
\delta(S) = \delta^{in}(S) + \delta^{out}(S)
\]
Held-Karp relaxation

• Input: $G = (V, E)$, edge weights $w: E \to \mathbb{R}_+$.
• Variables $x_e: E \to \mathbb{R}_+$: multiplicity of selecting edge e.

minimize $w^\top x$

subject to $x(\delta^{\text{in}}(v)) = x(\delta^{\text{out}}(v)) \quad \forall v \in V$

$x(\delta(S)) \geq 2 \quad \forall S \subseteq V, S \neq \emptyset$

$x \geq 0$

• Can be solved in polynomial time
• Integrality gap ≥ 2 [Charikar, Goemans & Karloff '06]
Pick any two...
Pick any two...

- integral
- connecting Eulerian cycle
- spanning tree
- cycle cover
- ATSP
- Held-Karp
- connected
Repeated cycle cover algorithm
[Frieze, Galbiati & Maffioli ’82]

Relaxing connectivity:
1. Find minimum weight cycle cover
2. Contract and repeat

• Each cycle cover has cost $\leq OPT$
• Overall $\log_2 n$ rounds
• $\log_2 n$ approximation
Node-weighted case [Svensson’15]

Directed graph $G = (V, E)$, node weights $h: V \rightarrow \mathbb{R}_+$

$w(u, v) = h(u) + h(v) \quad \forall u, v \in E$

Local-Connectivity ATSP: relaxing connectivity constraints to “local”

\[\alpha \]-light algorithm for Local-Connectivity ATSP

\[(9 + \varepsilon)\alpha \]-approximation for ATSP

Theorem [Svensson’15]
There exists a polytime $(27 + \varepsilon)$-approximation for node-weighted ATSP.
Roadmap

General ATSP

Laminarily weighted ATSP

LP duality + uncrossing

Irreducible instances

Graph theory: contractions

Node weighted algorithm + contractions

Vertebrate pairs

O(1)-light lcATSP algorithm in vertebrate pairs

Local-connectivity ATSP

[SVENSSON ’15]
Roadmap

General ATSP

Laminarly weighted ATSP

LP duality + uncrossing

Irreducible instances

Graph theory: contractions

Node weighted algorithm + contractions

Vertebrate pairs

O(1)-light lcATSP algorithm in vertebrate pairs

Local-connectivity ATSP

[Svensson ’15]
Dual of the Held-Karp relaxation

minimize \(w^T x \)
subject to
\[
x(\delta^{in}(v)) = x(\delta^{out}(v)) \quad \forall v \in V
\]
\[
x(\delta(S)) \geq 2 \quad \forall \emptyset \neq S \subseteq V
\]
\[
x \geq 0
\]

maximize \(2 \sum_{\emptyset \neq S \subseteq V} y_S \)
subject to
\[
\sum_{S: (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v) \quad \forall (u,v) \in E
\]
\[
y \geq 0
\]

• Dual can be solved in polynomial time.
• One can efficiently find an optimal \((\alpha, y)\) such that the support of \(y\) is a laminar family of sets.
 Efficient uncrossing [Karzanov’96]
Laminarly weighted ATSP: \(J = (G, \mathcal{L}, x, y) \)

\[
\begin{align*}
\text{minimize} & \quad w^T x \\
\text{subject to} & \quad x(\delta^{\text{in}}(v)) = x(\delta^{\text{out}}(v)) \quad \forall v \in V \\
& \quad x(\delta(S)) \geq 2 \quad \forall \emptyset \neq S \subsetneq V \\
& \quad x \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{maximize} & \quad 2 \sum_{\emptyset \neq S \subsetneq V} y_S \\
\text{subject to} & \quad \sum_{S: (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v) \quad \forall (u, v) \in E \\
& \quad y \geq 0
\end{align*}
\]

- \(G \): directed graph
- \(\mathcal{L} \): laminar family of sets
- \(x \): feasible Held-Karp solution
 - tight on every set in \(\mathcal{L} \):
 \(x(\delta(S)) = 2 \ \forall S \in \mathcal{L} \)
- \(y \): \(\mathcal{L} \rightarrow \mathbb{R}_+ \)
Laminarly weighted ATSP: $I = (G, \mathcal{L}, x, y)$

minimize $w^T x$
subject to
\[
x(\delta^{in}(v)) = x(\delta^{out}(v)) \quad \forall v \in V
\]
\[
x(\delta(S)) \geq 2 \quad \forall \emptyset \neq S \subsetneq V
\]
\[
x \geq 0
\]

maximize $2 \sum_{\emptyset \neq S \subsetneq V} y_S$
subject to
\[
\sum_{S: (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v) \quad \forall (u,v) \in E
\]
\[
y \geq 0
\]

- G: directed graph
- \mathcal{L}: laminar family of sets
- x: feasible Held-Karp solution

 tight on every set in \mathcal{L}: $x(\delta(S)) = 2 \ \forall S \in \mathcal{L}$
- $y: \mathcal{L} \to \mathbb{R}_+$

Induced weight function: $w(u,v) = \sum_{S: (u,v) \in \delta(S)} y_S$
Laminarly weighted ATSP: \(J = (G, \mathcal{L}, x, y) \)

- \(G \): directed graph
- \(\mathcal{L} \): laminar family of sets
- \(x \): feasible Held-Karp solution tight on every set in \(\mathcal{L} \): \(x(\delta(S)) = 2 \ \forall S \in \mathcal{L} \)
- \(y \): \(\mathcal{L} \to \mathbb{R}_+ \)

minimize \(w^T x \)

subject to

\[
x(\delta^{in}(v)) = x(\delta^{out}(v)) \quad \forall v \in V \\
x(\delta(S)) \geq 2 \quad \forall \emptyset \neq S \subsetneq V \\
x \geq 0
\]

maximize \(2 \sum_{\emptyset \neq S \subsetneq V} y_S \)

subject to

\[
\sum_{S: (u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u, v) \quad \forall (u, v) \in E \\
y \geq 0
\]

Induced weight function: \(w(u, v) = \sum_{S: (u,v) \in \delta(S)} y_S \)
Reduction to laminarily weighted ATSP

- Start with any G and w.
- Compute Held-Karp optimal solution x and dual y supported on laminar family \mathcal{L}
- Delete all edges with $x_e = 0$.

\[
\begin{align*}
\text{maximize} & \quad 2 \sum_{\emptyset \neq S \subseteq V} y_S \\
\text{subject to} & \quad \sum_{S:(u,v) \in \delta(S)} y_S + \alpha_u - \alpha_v \leq w(u,v) \quad \forall (u,v) \in E \\
& \quad y \geq 0
\end{align*}
\]

Observations:
- Optimal solutions and optimum value are the same for w and for $w'(u,v) = w(u,v) + \alpha_v - \alpha_u$
- All remaining edges have $w'(u,v) = \sum_{S:(u,v) \in \delta(S)} y_S$
Roadmap

General ATSP

LP duality + uncrossing

Laminarily weighted ATSP

Irreducible instances

Graph theory: contractions

Node weighted algorithm + contractions

Vertebrate pairs

O(1)-light lcATSP algorithm in vertebrate pairs

Local-connectivity ATSP

[Svensson ’15]
Vertebrate pairs

Vertebrate pair \((J, B)\)

- \(J = (G, \mathcal{L}, x, y)\) instance
- \(B\): backbone = subtour that crosses every nonsingleton set in \(\mathcal{L}\)
Vertebrate pairs

• We will reduce general ATSP to solving ATSP for a vertebrate pair \((J, B)\) with \(w(B) = \Theta(OPT)\) (more or less...)

• Solve Local-Connectivity ATSP on such instances, and apply [Svensson’15]
Local-Connectivity ATSP [Svensson’15]

Instance $I = (G, \mathcal{L}, x, y)$ with induced weights $w: E \to \mathbb{R}_+$

Lower bound function $lb: V \to \mathbb{R}_+$ with $\sum_{v \in V} lb(v) = OPT$

Input: partition of the vertex set $V = V_1 \cup V_2 \cup \cdots \cup V_k$
Local-Connectivity ATSP [Svensson’15]

Instance $\mathcal{I} = (G, \mathcal{L}, x, y)$ with induced weights $w: E \rightarrow \mathbb{R}_+$

Lower bound function $\text{lb}: V \rightarrow \mathbb{R}_+$ with $\sum_{v \in V} \text{lb}(v) = OPT$

Input: partition of the vertex set $V = V_1 \cup V_2 \cup \cdots \cup V_k$

Output: Eulerian edge set F with $|\delta(V_i) \cap F| > 0$ for each V_i
Local-Connectivity ATSP [Svensson’15]

Instance $I = (G, \mathcal{L}, x, y)$ with induced weights $w: E \to \mathbb{R}_+$

Lower bound function $lb: V \to \mathbb{R}_+$ with $\sum_{v \in V} lb(v) = OPT$

Input: partition of the vertex set $V = V_1 \cup V_2 \cup \ldots \cup V_k$

Output: Eulerian F with $|\delta(V_i) \cap F| > 0$ for each V_i

α-light algorithm: for every component C of F,

$$\frac{w(E(C))}{lb(V(C))} \leq \alpha$$

“Every component pays for itself locally”
Local-Connectivity ATSP [Svensson’15]

Theorem [Svensson’15]
There exists a polytime \((27 + \varepsilon)\)-approximation for node-weighted ATSP.

\(\alpha\)-light algorithm for Local-Connectivity ATSP

\((9 + \varepsilon)\alpha\)-approximation for ATSP
Local-Connectivity ATSP: node-weighted case

• Instance $\mathcal{I} = (G, \mathcal{L}, x, y)$, with \mathcal{L} containing only singletons (ignore B)
 \[w(u, v) = y_u + y_v \]

• Define $lb(u) = 2y_u \quad \forall u \in V$

• Partition $V = V_1 \cup V_2 \cup \cdots \cup V_k$ all strongly connected

• Modify G and x, and solve an integer circulation problem
Local-Connectivity ATSP: node-weighted case

• Instance $I = (G, \mathcal{L}, x, y)$, with \mathcal{L} containing only singletons (ignore B)

 \[w(u, v) = y_u + y_v \]

• Define $lb(u) = 2y_u$ $\forall u \in V$

• Partition $V = V_1 \cup V_2 \cup \cdots \cup V_k$ all strongly connected

• Modify G and x, and solve an integer circulation problem

 • For each V_i, create auxiliary vertex a_i

 • Reroute 1 fractional unit of incoming and outgoing flow x to a_i

 • Solve integer circulation problem routing =1 unit through each a_i

 • Map back to original G
Local-Connectivity ATSP: node-weighted case

• The rerouted x is feasible to the circulation problem of weight OPT
• Flow integrality: there exists integer solution of weight $\leq OPT$
• After mapping back, every vertex with $y_v > 0$ has in-degree ≤ 2
• For a component C, $w(E(C)) = \sum_{(u,v)\in E(C)} y_u + y_v \leq 4 \sum_{v\in C} y_v$
• $lb(V(C)) = 2 \sum_{v\in C} y_v \implies 2$-light algorithm
Local-Connectivity ATSP: one nonsingular set in \mathcal{L}

- Vertebrate pair (J, B). Assume \mathcal{L} has a single non-singleton component S. Thus,

$$w(u, v) = \begin{cases} y_u + y_v + y_s & \text{if } (u, v) \in \delta(S) \\ y_u + y_v & \text{if } (u, v) \notin \delta(S) \end{cases}$$

- Define

$$lb(u) = \begin{cases} 2y_u & \text{if } u \in V \setminus V(B) \\ \frac{w(B)}{|V(B)|} & \text{if } u \in V(B) \end{cases}$$

- $\sum_{v \in V} lb(v) = O(OPT)$, since $w(B) = \Theta(OPT)$
Local-Connectivity ATSP: one nonsingular set in \mathcal{L}

- By assumption, $x(\delta^{in}(S)) = x(\delta^{out}(S)) = 1$
- Backbone property: there is a node $s \in V(B) \cap S$
- Simple flow argument: we can route the incoming 1 unit of flow to S to s
Local-Connectivity ATSP: one nonsingular set in \mathcal{L}

- Partition $V = V_1 \cup V_2 \cup \cdots \cup V_k$
- Add backbone B into Eulerian set F.
- Via flow splitting, "force" all edges entering S to proceed to $s \in V(B)$
- Create auxiliary vertices a_i as before
- Solve integral circulation problem, and add solution to F.
Local-Connectivity ATSP: one nonsingular set in \mathcal{L}

Analysis

- For all components C not crossing S, $w(E(C))/\text{lb}(V(C)) \leq 2$ exactly as in the node-weighted case
- Giant component C_0 containing B.
 - Contains all edges crossing S
 - Has lower bound $\text{lb}(V(C_0)) \geq \text{lb}(V(B)) = \Theta(\text{OPT})$
 - $w(E(C_0)) \leq w(F) \leq O(\text{OPT})$
- Therefore solution is $O(1)$-light.
- Same approach extends to arbitrary \mathcal{L}: enforce that every subtour crossing a set in \mathcal{L} must intersect the backbone.
Roadmap

- General ATSP
- Laminarly weighted ATSP
- Irreducible instances
 - LP duality + uncrossing
 - Graph theory: contractions
- Node weighted algorithm + contractions
- Vertebrate pairs
- \(O(1) \)-light lcATSP algorithm in vertebrate pairs
- Local-connectivity ATSP
- [Svensson’15]
Motivation: reducing by contraction

- All sets in the family \mathcal{L} are singletons: node-weighted ATSP
- Would like to reduce the problem by contracting nonsingleton sets in \mathcal{L}
Motivation: reducing by contraction

• All sets in the family \mathcal{L} are singletons: node-weighted ATSP
• Would like to reduce the problem by contracting nonsingleton sets in \mathcal{L}
Motivation: reducing by contraction

- All sets in the family \mathcal{L} are singletons: node-weighted ATSP
- Would like to reduce the problem by contracting nonsingleton sets in \mathcal{L}
Irreducible instances

- **Irreducible set** $S \in \mathcal{L}$: There exists $u, v \in S$ such that the shortest path between u and v inside S visits "almost all" sets $X \subseteq S, X \in \mathcal{L}$

- **Irreducible instance** $I = (G, \mathcal{L}, x, y)$: all sets in \mathcal{L} are irreducible
Irreducible instances

- Irreducible set $S \in \mathcal{L}$: There exists $u, v \in S$ such that the shortest path between u and v inside S visits “almost all” sets $X \subseteq S, X \in \mathcal{L}$

- Irreducible instance $I = (G, \mathcal{L}, x, y)$: all sets in \mathcal{L} are irreducible
Irreducible instances

• Reducible set $S \in \mathcal{L}$: For every pair $u, v \in S$, there is a “cheap” path connecting them (if they are connected).
• Reducible sets can be contracted.

Theorem:
polytime ρ-approximation for irreducible instances

\Rightarrow

polytime 8ρ-approximation for arbitrary instances
Roadmap

General ATSP

LP duality + uncrossing

Laminarly weighted ATSP

Graph theory: contractions

Irreducible instances

Node weighted algorithm + contractions

Vertebrate pairs

O(1)-light lcATSP algorithm in vertebrate pairs

Local-connectivity ATSP

[Svensson ’15]
Vertebrate pairs

Vertebrate pair \((J, B)\)

- \(J = (G, \mathcal{L}, x, y)\) instance
- \(B\): backbone = subtour that crosses every nonsingleton set in \(\mathcal{L}\)
Finding a vertebrate pair in an irreducible instance \(J = (G, \mathcal{L}, x, y) \)

1. Obtain a node-weighted instance by contracting all maximal sets in \(\mathcal{L} \)
2. Use [Svensson ‘15] to find a tour here, and blow it back to a subtour \(B \) in the original instance \(J \) in a pessimistic way:
 inside each maximal \(S \in \mathcal{L} \), \(B \) crosses \(\geq 0.75 \text{value}(S) \)
3. If it crosses every set in \(\mathcal{L} \), then \((J, B) \) is a vertebrate pair
4. Otherwise, recurse by contracting all maximal sets in \(\mathcal{L} \) not crossed by \(B \).
 This works because their total weight is \(\leq 0.25 \text{value}(J) \)
Roadmap

General ATSP

LP duality + uncrossing

Laminarily weighted ATSP

Irreducible instances

Graph theory: contractions

Node weighted algorithm + contractions

Vertebrate pairs

O(1)-light lcATSP algorithm in vertebrate pairs

Local-connectivity ATSP

[Svensson ’15]
Summary

• Via all these reductions, we obtain an \(5500 \)-approximation algorithm for ATSP.
• Squeezing the arguments a bit more and opening up black boxes, can be probably decreased to a few hundreds.
• Still very far from lower bound 2 on the integrality gap of Held-Karp

Open questions

• Improve to a constant \(< 100 \)
• Thin tree conjecture is still open.
• Bottleneck ATSP.
• Better than 3/2 approximation for symmetric TSP.
SCALEOPT
Scaling Methods for Discrete and Continuous Optimization

- ERC Starting Grant 2018-22
- Openings for post docs and PhD students

http://personal.lse.ac.uk/veghl/scaleopt.html

Thank you!
Simplifying assumption *for the talk*

Assumption: all sets in the family \mathcal{L} are strongly connected in G.

Not true in general, but the connected components have a nice path structure:
Paths traversing a set

• How much is the weight of connecting an incoming and an outgoing edge in a set $S \in \mathcal{L}$?

$$D_S(u, v) =$$
Paths traversing a set

- How much is the weight of connecting an incoming and an outgoing edge in a set $S \in \mathcal{L}$?

$$D_S(u, v) = \sum_{R: u \in R, R \subseteq S} y_R$$
Paths traversing a set

- How much is the weight of connecting an incoming and an outgoing edge in a set $S \in \mathcal{L}$?

$$D_S(u, v) = \sum_{R: u \in R, R \subset S} y_R + d_S(u, v)$$

Min weight path inside S.
Paths traversing a set

• How much is the weight of connecting an incoming and an outgoing edge in a set $S \in \mathcal{L}$?

$$D_S(u, v) = \sum_{R:u \in R, R \subsetneq S} y_R + d_S(u, v) + \sum_{R:v \in R, R \subsetneq S} y_R = 18$$
Paths traversing a set

- How much is the weight of connecting an incoming and an outgoing edge in a set $S \in \mathcal{L}$?

$$D_S(u, v) = \sum_{R: u \in R, R \not\subseteq S} y_R + d_S(u, v) + \sum_{R: v \in R, R \not\subseteq S} y_R = 18 \leq 38$$

Lemma:

$$D_S(u, v) \leq 2 \sum_{R \not\subseteq S} y_R = \text{value}(S)$$
Irreducible instances

• Reducible set $S \in \mathcal{L}$:
 $$\text{Max}_{u,v \in S} \ D_S(u, v) \leq \frac{3}{4} \text{value}(S)$$

• Irreducible instance $I = (G, \mathcal{L}, x, y)$:
 no set $S \in \mathcal{L}$ is reducible

Lemma:
$$D_S(u, v) \leq 2 \sum_{R \subseteq S} y_R = \text{value}(S)$$

Theorem:
polytime ρ-approximation for irreducible instances \Rightarrow
polytime 8ρ-approximation for arbitrary instances
Recursive algorithm via contractions

- Instance $I = (G, \mathcal{L}, x, y)$
- $\text{value}(I) = 2 \sum_{R \subseteq V} y_R = \text{Held-Karp optimum}$
- S: minimal reducible set in \mathcal{L}.

8ρ-approximation for $I = 8\rho$-approximation on instance by contracting S
ρ-approximation of irreducible instance “inside” S
Recursive algorithm via contractions

- Instance $I = (G, L, x, y)$
- $value(I) = 2 \sum_{R \subseteq V} y_R$
 $= $ Held-Karp optimum
- S: minimal reducible set in L.
- $I' = I/S$: contract S in I.
- $S \rightarrow s$
- $y_s = y_S + \frac{3}{8} value(S)$
- $value(I') = value(I) - \frac{1}{4} value(S)$

$\text{value}(I) = 64$

$\text{value}(I') = 58$

$11 = 2 + \frac{3}{8} \cdot 24$
Recursive algorithm via contractions

Inductive assumption: We have a polytime 8ρ-approximation for smaller instances

- Apply recursively on J' to obtain tour T'

 \[w(T') \leq 8\rho \cdot \text{value}(J') \]
 \[= 8\rho \left(\text{value}(J) - \frac{1}{4} \text{value}(S) \right) \]

\[\text{value}(J) = 64 \]

\[\text{value}(J') = 58 \]

\[11 = 2 + \frac{3}{8} \cdot 24 \]

\[\leq 464\rho \]
Contracting S

Inductive assumption: We have a polytime 8ρ-approximation for smaller instances.

- Apply recursively on I' to obtain tour T'

 $w(T') \leq 8value(I')$

 $= 8\rho(value(I) - \frac{1}{4}value(S))$

- Map back to subtour T in I with $w(T) \leq w(T')$

\[
value(I) = 64 \\
value(I') = 58 \\
11 = 2 + \frac{3}{8} \cdot 24 \\
\leq 464\rho
\]
Inducing on S

- We add a tour F_S inside S, using the ρ-approximation on irreducible instances.
- I'': remove S, and contract $V \setminus S$ to \bar{s}, with $y_{\{\bar{s}\}} = \text{value}(S)/2$
- I'' is irreducible.
Inducing on S

- We add a tour F_S inside S, using the ρ-approximation on irreducible instances.
- J'': remove S, and contract $V \setminus S$ to \bar{S}, with
 \[
y_{\{\bar{S}\}} = \frac{\text{value}(S)}{2} \]
- J'' is irreducible.
- Find tour F'' in J'' with weight
 \[
 w(F'') \leq \rho \text{value}(J'') = 2\rho \text{value}(S) \]

\[\text{value}(J) = 32\]
Inducing on S

- Find tour F'' in J'' with weight $w(F'') \leq \rho \text{value}(J'') = 2\rho \text{value}(S)$
- Map back F'' to F_S in J with $w(F_S) \leq w(F) \leq 2\rho \text{value}(S)$
- $T \cup F_S$ is a tour in J

$$w(T \cup F_S) \leq 8\rho \left(\text{value}(J) - \frac{1}{4} \text{value}(S) \right) + 2\rho \text{value}(S) = 8\rho \text{value}(J)$$

$\text{value}(J) = 32$