

A constant-factor approximation

algorithm for the asymmetric
travelling salesman problem

London School of Economics

Joint work with

Ola Svensson and Jakub Tarnawski

́cole Polytechnique

F́d ŕale de Lausanne

Travelling salesman problem

• One of the best known NP-hard optimization problems

• Studied since the 19th century

• Symmetric TSP:

 ݀ ݅ , ݆ = ݀ ݆ , ݅ ∀ ݅ , ݆
• Asymmetric TSP:

 ݀ ݅ , ݆ ≠ ݀ ሺ ݆ , ݅ ሻ is possible

UK pub tour

[Cook et al., 2015]

Given n cities and their pairwise distances,

find a shortest tour visiting all n cities.

Triangle inequality: ݀ ݅ , ݆ ൑ ݀ ݅ , ݇ + ݀ ݇ , ݆ ∀ ݅ , ݆ , ݇

Symmetric vs Asymmetric TSP

Symmetric TSP

• 1.5-approximation algorithm [Christofides ’76]

• Graphic TSP: unweighted graph shortest path metric

• Current best 1.4 following

Symmetric vs Asymmetric TSP

Asymmetric TSP

•
 log ଶ ݊-approximation algorithm [Frieze, Galbiati & Maffioli ’82]

• 0.99

 log ଶ ݊

• 0.84

 log ଶ ݊ [Kaplan, Lewenstein, Shafrir & Sviridenko ’03]

• 0.67

 log ଶ ݊ [Feige & Singh ’07]

•
 ܱ lo g ௡ lo g lo g ௡ [Asadpour, Goemans, M dry, Oveis Gharan & Saberi ’10]

 via thin trees.

Asymmetric TSP – recent developements

•
 ܱ ሺ ݕ݈݋݌ log log ݊ ሻ bound on integrality gap of LP

[Anari & Oveis Gharan ’15]

Constant-factor approximations:

• Bounded genus graphs [Oveis Gharan & Saberi ’11]

• Node-weighted graphs [Svensson ’15]

• Graphs with 2 edge weights [Svensson, Tarnawski & V. ’16]

Our result: constant-factor approximation for general ATSP

with respect to the Held-Karp relaxation.

ATSP – Graphic formulation

• Tour = closed walk visiting every vertex at least once =
 = Eulerian and connected edge multiset

• Eulerian:

ݒ ி ௢௨௧ ߜ = ݒ ி �௡ ߜ

 � א ݒ ∀

• Subtour = closed walk (not necessarily connected)

Input: directed graph
 ሻ, edge weights ܧ , � ሺ = ܩ
 + ℝ → ܧ : ݓ

Find a minimum weight tour
 .ܨ

100

4

5 3

3

1

1

1

In-degree & out-degree in F

ATSP – Graphic formulation

• Tour = closed walk visiting every vertex at least once =
 = Eulerian and connected edge multiset

• Eulerian:

ݒ ி ௢௨௧ ߜ = ݒ ி �௡ ߜ

 � א ݒ ∀

• Subtour = closed walk (not necessarily connected)

Input: directed graph
 ሻ, edge weights ܧ , � ሺ = ܩ
 + ℝ → ܧ : ݓ

Find a minimum weight tour
 .ܨ

100

4

5 3

3

1

1

1

In-degree & out-degree in F

Held-Karp relaxation

• Input:
ܧ , � = ܩ , edge weights
 .+ ℝ → ܧ : ݓ

• Variables

 E → ℝ + : multiplicity of selecting edge : � ݔ

 ݁ .

minimize

 ݔ ⊤ ݓ

subject to

 ൒ Ͳ ݔ ∅ ≠ ܵ , � ⊋ ܵ ∀ ʹ ൒ ܵ ߜ ݔ � א ݒ ∀ ݒ ௢௨௧ ߜ ݔ = ݒ ௡� ߜ ݔ

Eulerian degree

constraints

Subtour elimination

constraints

Undirected degree: ߜ = ܵ ߜ �௡ ܵ + ߜ ௢௨௧ ሺ ܵ ሻ

Held-Karp relaxation

• Input:
ܧ , � = ܩ , edge weights
 .+ ℝ → ܧ : ݓ

• Variables

 E → ℝ + : multiplicity of selecting edge : � ݔ

 ݁ .

minimize

 ݔ ⊤ ݓ

subject to

 ൒ Ͳ ݔ ∅ ≠ ܵ , � ⊋ ܵ ∀ ʹ ൒ ܵ ߜ ݔ � א ݒ ∀ ݒ ௢௨௧ ߜ ݔ = ݒ ௡� ߜ ݔ

• Can be solved in

polynomial time

• Integrality gap
 ൒ ʹ

[Charikar, Goemans

& Karloff ’06]

Pick any two…
integral

connected Eulerian

cycle

cover
ATSP

spanning

tree

Held-Karp

Pick any two…
integral

connected Eulerian

cycle

cover
ATSP

spanning

tree

Held-Karp

Repeated cycle cover algorithm
[Frieze, Galbiati & Maffioli ’82]

Relaxing connectivity:

1. Find minimum weight cycle cover

2. Contract and repeat

• Each cycle cover has cost

 ൑ ܱܲܶ

• Overall

 log ଶ ݊ rounds

•
 log ଶ ݊ approximation

Node-weighted case [Svensson’15]

Directed graph
 node weights , ܧ , � = ܩ
 ℎ : � → ℝ + ݒ , ݑ ݓ = ℎ ݑ + ℎ ܧ א ݒ , ݑ ∀ ݒ

Local-Connectivity ATSP: relaxing connectivity constraints to ͞local͟

 �-light algorithm for

Local-Connectivity ATSP

 ͻ + ߝ �-approximation

for ATSP

Theorem [Svensson’15]

There exists a polytime
 ሺ ʹ͹ + ߝ)-

approximation for node-weighted ATSP.

Roadmap General ATSP

Laminarly

weighted ATSP
Irreducible

instances

Vertebrate pairs

LP duality +

uncrossing

Graph theory:

contractions

Node weighted algorithm

+ contractions

Local-connectivity

ATSP
[Svensson ’15]

O(1)-light lcATSP

algorithm in

vertebrate pairs

Roadmap General ATSP

Laminarly

weighted ATSP
Irreducible

instances

Vertebrate pairs

LP duality +

uncrossing

Graph theory:

contractions

Node weighted algorithm

+ contractions

Local-connectivity

ATSP
[Svensson ’15]

O(1)-light lcATSP

algorithm in

vertebrate pairs

Dual of the Held-Karp relaxation

minimize
 ݔ ⊤ ݓ

subject to

 � א ݒ ∀ ݒ ௢௨௧ ߜ ݔ = ݒ ௡� ߜ ݔ

 ൒ Ͳ ݔ � ⊋ ܵ ≠ ∅ ∀ ʹ ൒ ܵ ߜ ݔ

maximize
 � ⊋ ௌ ∅ ≠ ௌ ݕ ʹ
subject to ݕ ௌ ௌ : ௨ , ௩ א � ሺ ௌ ሻ + � ௨ − � ௩ ൑ ݒ , ݑ ݓ ∀ ሺ ݒ , ݑ ሻ ݕ ܧ א ൒ Ͳ

• Dual can be solved in polynomial
time.

• One can efficiently find an optimal � , ݕ such that the support of
 is ݕ

a laminar family of sets.
Efficient uncrossing [Karzanov’96]

Laminarly weighted ATSP:
 ℐ = ሺ ܩ , ℒ , ݕ , ݔ ሻ

minimize
 ݔ ⊤ ݓ

subject to

 � א ݒ ∀ ݒ ௢௨௧ ߜ ݔ = ݒ ௡� ߜ ݔ

 ൒ Ͳ ݔ � ⊋ ܵ ≠ ∅ ∀ ʹ ൒ ܵ ߜ ݔ

•
 directed graph : ܩ

•
 ℒ: laminar family of sets

•
 feasible Held-Karp solution :ݔ

tight on every set in
 ℒ:
 א ܵ ∀ ʹ = ܵ ߜ ݔ
 ℒ

•
 :ݕ

 ℒ → ℝ +

12

3

8
1

5

4
2

maximize
 � ⊋ ௌ ∅ ≠ ௌ ݕ ʹ
subject to ݕ ௌ ௌ : ௨ , ௩ א � ሺ ௌ ሻ + � ௨ − � ௩ ൑ ݒ , ݑ ݓ ∀ ሺ ݒ , ݑ ሻ ݕ ܧ א ൒ Ͳ

4

2

Laminarly weighted ATSP:
 ℐ = ሺ ܩ , ℒ , ݕ , ݔ ሻ

minimize
 ݔ ⊤ ݓ

subject to

 � א ݒ ∀ ݒ ௢௨௧ ߜ ݔ = ݒ ௡� ߜ ݔ

 ൒ Ͳ ݔ � ⊋ ܵ ≠ ∅ ∀ ʹ ൒ ܵ ߜ ݔ

•
 directed graph : ܩ

•
 ℒ: laminar family of sets

•
 feasible Held-Karp solution :ݔ

tight on every set in
 ℒ:
 א ܵ ∀ ʹ = ܵ ߜ ݔ
 ℒ

•
 :ݕ

 ℒ → ℝ +

12

3

8
1

5

4
2

Induced weight function:
= ݒ , ݑ ݓ ሺ ௌ ሻ � א ௌ ௌ : ௨ , ௩ ݕ

25

maximize
 � ⊋ ௌ ∅ ≠ ௌ ݕ ʹ
subject to ݕ ௌ ௌ : ௨ , ௩ א � ሺ ௌ ሻ + � ௨ − � ௩ ൑ ݒ , ݑ ݓ ∀ ሺ ݒ , ݑ ሻ ݕ ܧ א ൒ Ͳ

4

2

Laminarly weighted ATSP:
 ℐ = ሺ ܩ , ℒ , ݕ , ݔ ሻ

minimize
 ݔ ⊤ ݓ

subject to

 � א ݒ ∀ ݒ ௢௨௧ ߜ ݔ = ݒ ௡� ߜ ݔ

 ൒ Ͳ ݔ � ⊋ ܵ ≠ ∅ ∀ ʹ ൒ ܵ ߜ ݔ

•
 directed graph : ܩ

•
 ℒ: laminar family of sets

•
 feasible Held-Karp solution :ݔ

tight on every set in
 ℒ:
 א ܵ ∀ ʹ = ܵ ߜ ݔ
 ℒ

•
 :ݕ

 ℒ → ℝ +

12

3

8
1

5

4
2

Induced weight function:
= ݒ , ݑ ݓ ሺ ௌ ሻ � א ௌ ௌ : ௨ , ௩ ݕ

23

maximize
 � ⊋ ௌ ∅ ≠ ௌ ݕ ʹ
subject to ݕ ௌ ௌ : ௨ , ௩ א � ሺ ௌ ሻ + � ௨ − � ௩ ൑ ݒ , ݑ ݓ ∀ ሺ ݒ , ݑ ሻ ݕ ܧ א ൒ Ͳ

4

2

Reduction to laminarly weighted ATSP

• Start with any
 and ܩ
 . ݓ
• Compute Held-Karp

optimal solution
 and ݔ

dual
 supported on ݕ

laminar family
 ℒ

• Delete all edges with ݔ � = Ͳ.

Observations:

• Optimal solutions and optimum value are

the same for
 ௩ − � ௨ � + ݒ , ݑ ݓ = ݒ , ݑ ′ ݓ and for ݓ

• All remaining edges have ݒ , ݑ ′ ݓ = ௌ ݕ

ௌ

:

௨

,

௩

א

�

ሺ

ௌ

ሻ

maximize
 � ⊋ ௌ ∅ ≠ ௌ ݕ ʹ
subject to ݕ ௌ ௌ : ௨ , ௩ א � ሺ ௌ ሻ + � ௨ − � ௩ ൑ ݒ , ݑ ݓ ∀ ሺ ݒ , ݑ ሻ ݕ ܧ א ൒ Ͳ

Roadmap General ATSP

Laminarly

weighted ATSP
Irreducible

instances

LP duality +

uncrossing

Graph theory:

contractions

Node weighted algorithm

+ contractions

Local-connectivity

ATSP
[Svensson ’15]

O(1)-light lcATSP

algorithm in

vertebrate pairs

Vertebrate pairs

Vertebrate pairs

 Vertebrate pair
 ℐ , ܤ

•
 ℐ = ܩ , ℒ , ݕ , ݔ instance

•
 backbone = subtour that crosses every nonsingleton set in :ܤ

 ℒ

Vertebrate pairs

• We will reduce general ATSP to solving ATSP for a vertebrate pair
 ℐ , ܤ

with
ܱܶܲ = ܤ ݓ (more or less…)

• Solve Local-Connectivity ATSP on such instances, and apply
[Svensson’15]

Local-Connectivity ATSP [Svensson’15]

Instance
 ℐ = ܩ , ℒ , ݕ , ݔ with induced weights
 + ℝ → ܧ : ݓ

Lower bound function

 lb : � →

 ℝ + with lb ሺ ݒ ሻ ௩ א � = ܱܲܶ

Input: partition of the vertex set

 � = � ଵ ׫ � ଶ ׫ ⋯ ׫ � �

 � ଵ
 � ଶ

 � ଷ
 � ସ

Local-Connectivity ATSP [Svensson’15]

Instance
 ℐ = ܩ , ℒ , ݕ , ݔ with induced weights
 w : ܧ → ℝ +

Lower bound function

 lb : � →

 ℝ + with lb ሺ ݒ ሻ ௩ א � = ܱܲܶ

Input: partition of the vertex set

 � = � ଵ ׫ � ଶ ׫ ⋯ ׫ � �

Output: Eulerian edge set

 with ܨ

 Ͳ for each < ܨ ת � � ߜ

 � �

 � ଵ
 � ଶ

 � ଷ
 � ସ

Local-Connectivity ATSP [Svensson’15]

Instance
 ℐ = ܩ , ℒ , ݕ , ݔ with induced weights
 w : ܧ → ℝ +

Lower bound function
 lb : � →
 ℝ + with lb ሺ ݒ ሻ ௩ א � = ܱܲܶ

Input: partition of the vertex set
 � = � ଵ ׫ � ଶ ׫ ⋯ ׫ � �

Output: Eulerian
 with ܨ
 Ͳ for each < ܨ ת � � ߜ
 � �
 �-light algorithm: for every component
 of ܥ
 � ሻ ൑ ܥ � ሻ lb ሺ ܥ ሺ ܧ ݓ ,ܨ

Every component pays for itself locally

Local-Connectivity ATSP [Svensson’15]

Theorem [Svensson’15]

There exists a polytime
 ሺ ʹ͹ + ߝ)-

approximation for node-weighted ATSP.

 �-light algorithm for

Local-Connectivity ATSP

 ͻ + ߝ �-approximation

for ATSP

Local-Connectivity ATSP:
node-weighted case

• Instance
 ℐ = ܩ , ℒ , ݕ , ݔ , with
 ℒ containing only singletons (ignore
 { ௩ } ݕ + { ௨ } ݕ = ݒ , ݑ ݓ (ܤ
• Define

 lb ݕ ʹ = ݑ { ௨ } ∀ א ݑ �

• Partition

 � = � ଵ ׫ � ଶ ׫ ⋯ ׫ � � all strongly connected

• Modify

 and ܩ

 and solve an integer circulation problem ,ݔ

 � � 0.5

0.75 0.5

0.25

0.75

0.75

0.5

Local-Connectivity ATSP:
node-weighted case

• Instance
 ℐ = ܩ , ℒ , ݕ , ݔ , with
 ℒ containing only singletons (ignore
 { ௩ } ݕ + { ௨ } ݕ = ݒ , ݑ ݓ (ܤ
• Define

 lb ݕ ʹ = ݑ { ௨ } ∀ א ݑ �

• Partition

 � = � ଵ ׫ � ଶ ׫ ⋯ ׫ � � all strongly connected

• Modify

 and ܩ

 and solve an integer circulation problem ,ݔ

 � � 0.25

0.375 0.25

0.125

0.375

0.375

0.25

• For each
 � � , create auxiliary vertex
 � �
• Reroute 1 fractional unit of incoming

and outgoing flow
 to ݔ
 � �
• Solve integer circulation problem

routing =1 unit through each
 � �
• Map back to original
 ܩ

 � �

Local-Connectivity ATSP:
node-weighted case

• The rerouted
 is feasible to the circulation problem of weight ݔ
 ܱܲܶ

• Flow integrality: there exists integer solution of weight

 ൑ ܱܲܶ

• After mapping back, every vertex with

 ௩ > Ͳ has in-degree ݕ

 ൑ ʹ

• For a component

= ܥ ܧ ݓ , ܥ � א ௩ { ௩ } ݕ ா ሺ � ሻ ൑ Ͷ א ሺ ௨ , ௩ ሻ { ௩ } ݕ + { ௨ } ݕ

•
 lb � ݕ ʹ = ܥ { ௩ } ௩ א �

 ⟹ 2-light algorithm

 � � 0.25

0.375 0.25

0.125

0.375

0.375

0.25 � �

Local-Connectivity ATSP:
one nonsingular set in
 ℒ

• Vertebrate pair
 ℐ , ܤ . Assume
 ℒ has a single non-singleton

component
 ܵ . Thus, ݒ , ݑ ݓ = ݅ ௌ ݕ + ௩ ݕ + { ௨ } ݕ ݕ ሺ ܵ ሻ ߜ א ݒ , ݑ ݂

{

௨

}
 ݕ +

{

௩

}
 ݅ ሺ ܵ ሻ ߜ ב ݒ , ݑ ݂
• Define l b ሺ ݑ ሻ = ݅ { ௨ } ݕ ʹ ܤ ݓ ሻ ܤ ሺ � ∖ � א ݑ ݂

�

ܤ
 ݅ ሻ ܤ ሺ � א ݑ ݂

• lb ሺ ݒ ሻ ௩ א � = ܱ ܱܲܶ , since

 (ܱܶܲ ሺ = ܤ ݓ

Local-Connectivity ATSP:
one nonsingular set in
 ℒ

• By assumption,
 ௢௨௧ ܵ ሻ =1 ߜ ሺ ݔ = ௡ ܵ ሻ� ߜ ሺ ݔ

• Backbone property: there is a node

 ܵ ת ܤ � א �

• Simple flow argument: we can route the incoming 1 unit of flow to ܵ to
 s

 ܵ

 ܤ

 �

Local-Connectivity ATSP:
one nonsingular set in
 ℒ

• Partition
 � = � ଵ ׫ � ଶ ׫ ⋯ ׫ � �

• Add backbone

 into Eulerian set ܤ

 .ܨ

• Via flow splitting, ͞force͟ all edges entering

 ܵ to proceed to

 ሻ ܤ ሺ � א �
• Create auxiliary vertices

 � � as before

• Solve integral circulation problem, and add solution to

 .ܨ

Local-Connectivity ATSP:
one nonsingular set in
 ℒ

Analysis

• For all components

,not crossing S ܥ

ܥ � lb / ܥ ܧ ݓ

 ൑ ʹ exactly

as in the node-weighted case

• Giant component

 ଴ containing ܥ

 .ܤ

• Contains all edges crossing
 ܵ

• Has lower bound
 lb � ܥ ଴ ൒ lb ሺ � ሺ ܤ ሻ ሻ = ሺ ܱܲܶ)

•
 ൑ ܨ ݓ ଴ ൑ ܥ ܧ ݓ
 ܱ ሺ ܱܲܶ)

• Therefore solution is

 ܱ ሺ ͳ ሻ-light.

• Same approach extends to arbitrary

 ℒ : enforce that every subtour
crossing a set in

 ℒ must intersect the backbone.

Roadmap General ATSP

Laminarly

weighted ATSP
Irreducible

instances

Vertebrate pairs

LP duality +

uncrossing

Graph theory:

contractions

Node weighted algorithm

+ contractions

Local-connectivity

ATSP
[Svensson’15]

O(1)-light lcATSP

algorithm in

vertebrate pairs

Motivation: reducing by contraction

• All sets in the family
 ℒ are singletons: node-weighted ATSP

• Would like to reduce the problem by contracting nonsingleton sets in

 ℒ

Motivation: reducing by contraction

• All sets in the family
 ℒ are singletons: node-weighted ATSP

• Would like to reduce the problem by contracting nonsingleton sets in

 ℒ

Motivation: reducing by contraction

• All sets in the family
 ℒ are singletons: node-weighted ATSP

• Would like to reduce the problem by contracting nonsingleton sets in

 ℒ

• Irreducible set
 S א ℒ:

There exists
 ܵ א ݒ , ݑ

such that the shortest
path between

 and ݑ
 ݒ

inside
 ܵ visits almost

all sets
 א � , ܵ ⊇ �
 ℒ

• Irreducible instance ℐ = ܩ , ℒ , ݕ , ݔ :

all sets in
 ℒ are

irreducible

Irreducible instances

Irreducible instances

• Irreducible set
 S א ℒ:

There exists
 ܵ א ݒ , ݑ

such that the shortest
path between

 and ݑ
 ݒ

inside
 ܵ visits almost

all sets
 א � , ܵ ⊇ �
 ℒ

• Irreducible instance ℐ = ܩ , ℒ , ݕ , ݔ :

all sets in
 ℒ are

irreducible

Irreducible instances

• Reducible set
 S א ℒ: For every pair
 there is a ͞cheap͟ path ,ܵ א ݒ , ݑ

connecting them (if they are connected).

• Reducible sets can be contracted.

Theorem:

polytime
 �-approximation for irreducible instances ⟹

polytime
 ͺ�-approximation for arbitrary instances

Roadmap General ATSP

Laminarly

weighted ATSP
Irreducible

instances

Vertebrate pairs

LP duality +

uncrossing

Graph theory:

contractions

Node weighted algorithm

+ contractions

Local-connectivity

ATSP
[Svensson ’15]

O(1)-light lcATSP

algorithm in

vertebrate pairs

Vertebrate pairs

 Vertebrate pair
 ℐ , ܤ

•
 ℐ = ܩ , ℒ , ݕ , ݔ instance

•
 backbone = subtour that crosses every nonsingleton set in :ܤ

 ℒ

Finding a vertebrate pair in an irreducible
instance
 ℐ = ܩ , ℒ , ݕ , ݔ

1. Obtain a node-weighted instance by contracting all maximal sets in
 ℒ

2. Use [Svensson ’15] to find a tour here, and blow it back to a subtour ܤ in the original instance
 ℐ in a pessimistic way:

inside each maximal
 S א ℒ,
 crosses ܤ
 ൒ Ͳ . ͹ͷ݁ݑ݈�ݒ ሺ ܵ ሻ
3. If it crosses every set in

 ℒ, then

 ℐ , ܤ is a vertebrate pair

4. Otherwise, recurse by contracting all maximal sets in

 ℒ not crossed by ܤ.
This works because their total weight is

 ൑ Ͳ . ʹͷ݁ݑ݈�ݒ ሺ ℐ ሻ

Roadmap General ATSP

Laminarly

weighted ATSP
Irreducible

instances

Vertebrate pairs

LP duality +

uncrossing

Graph theory:

contractions

Node weighted algorithm

+ contractions

Local-connectivity

ATSP
[Svensson ’15]

O(1)-light lcATSP

algorithm in

vertebrate pairs

Summary

• Via all these reductions, we obtain an -approximation
algorithm for ATSP.

• Squeezing the arguments a bit more and opening up black boxes, can
be probably decreased to a few hundreds.

• Still very far from lower bound 2 on the integrality gap of Held-Karp

Open questions

• Improve to a constant
 < ͳͲͲ

• Thin tree conjecture is still open.

• Bottleneck ATSP.

• Better than 3/2 approximation for symmetric TSP.

5500

• ERC Starting Grant 2018-22

• Openings for post docs and PhD students

http://personal.lse.ac.uk/veghl/scaleopt.html

SCALEOPT
Scaling Methods for Discrete

and Continuous Optimization

Thank you!

http://personal.lse.ac.uk/veghl/scaleopt.html

Simplifying assumption for the talk

Not true in general, but the connected components have a nice path

structure:

Assumption: all sets in the family
 ℒ are strongly connected in
 .ܩ

Paths traversing a set

• How much is the weight of connecting an incoming and an outgoing
edge in a set

 S א ℒ? ܦ ௌ ݒ , ݑ =

 ݑ
 ݒ

 ͵

 ͷ
 ͳ

 ܵ ͳͲ

Paths traversing a set

• How much is the weight of connecting an incoming and an outgoing
edge in a set

 S א ℒ? ܦ ௌ ݒ , ݑ = ோ ݕ

ோ

:

௨

א

ோ

,

ோ

⊊

ௌ

 ݑ
 ݒ

 ͵

 ͷ
 ͳ

 ܵ

6
 ͳͲ

Paths traversing a set

• How much is the weight of connecting an incoming and an outgoing
edge in a set

 S א ℒ? ܦ ௌ ݒ , ݑ = ோ ݕ

ோ

:

௨

א

ோ

,

ோ

⊊

ௌ
 + ݀ ௌ ݒ , ݑ

 ݑ
 ݒ

 ͵

 ͷ
 ͳ

 ܵ

6

3

1

5

 ͳͲ

Min weight path inside
 ܵ .

Paths traversing a set

• How much is the weight of connecting an incoming and an outgoing
edge in a set

 S א ℒ? ܦ ௌ ݒ , ݑ = ோ ݕ

ோ

:

௨

א

ோ

,

ோ

⊊

ௌ
 + ݀ ௌ ݒ , ݑ + ோ ݕ

ோ

:

௩

א

ோ

,

ோ

⊊

ௌ
 = ͳͺ

 ݑ
 ݒ

 ͵

 ͷ
 ͳ

 ܵ

6

3

1

5

3
 ͳͲ

Paths traversing a set

• How much is the weight of connecting an incoming and an outgoing
edge in a set

 S א ℒ? ܦ ௌ ݒ , ݑ = ோ ݕ

ோ

:

௨

א

ோ

,

ோ

⊊

ௌ
 + ݀ ௌ ݒ , ݑ + ோ ݕ

ோ

:

௩

א

ோ

,

ோ

⊊

ௌ
 = ͳͺ

 ݑ
 ݒ

 ͵

 ͷ
 ͳ

 ܵ

6

3

1

5

3 Lemma: ܦ ௌ ݒ , ݑ ൑ ʹ ோ ݕ

ோ

⊊

ௌ
 ሺ ܵ ሻ ͳͲ ݁ݑ݈�ݒ =

 ൑ ͵ͺ

 ݑ
 ݒ

 ͵

 ͷ
 ͳ

 ܵ

6

3

1

5

3

Irreducible instances

• Reducible set
 S א ℒ : M ax ௨ , ௩ א ௌ ܦ ௌ ݒ , ݑ ൑ ͵ Ͷ ݁ݑ݈�ݒ ܵ
• Irreducible instance

 ℐ = ሺ ܩ , ℒ , ݕ , ݔ ሻ:
no set

 S א ℒ is reducible

Lemma: ܦ ௌ ݒ , ݑ ൑ ʹ ோ ݕ

ோ

⊊

ௌ
 ሺ ܵ ሻ ݁ݑ݈�ݒ =

Theorem:

polytime
 �-approximation for

irreducible instances
 ⟹

polytime
 ͺ�-approximation for

arbitrary instances

 ͳͲ

Recursive algorithm via contractions

• Instance
 ℐ = ሺ ܩ , ℒ , ݕ , ݔ ሻ
•
 � ⊋ ோ ோ ݕ ʹ = ℐ ݁ݑ݈�ݒ

 =Held-Karp optimum

•
 ܵ : minimal reducible set in

 ℒ .
 ͷ

 ʹ

 ͸ ͸

 ͵

 ʹ ͳ

 ͵ Ͷ

 ℐ = ͸Ͷ ݁ݑ݈�ݒ

 ͺ �-approximation for
 ℐ = ͺ �-approximation on instance by contracting
 ܵ

+ �-approximation of irreducible instance ͞inside͟
 ܵ

Recursive algorithm via contractions

• Instance
 ℐ = ሺ ܩ , ℒ , ݕ , ݔ ሻ
•
 � ⊋ ோ ோ ݕ ʹ = ℐ ݁ݑ݈�ݒ

 =Held-Karp optimum

•
 ܵ : minimal reducible set in

 ℒ .

•
 ℐ ′ = ℐ / ܵ: contract

 ܵ in

 ℐ.

•
 ܵ → �

•
 ሺ ܵ ሻ ݁ݑ݈�ݒ ௌ + ଷ 8 ݕ = { ௦ } ݕ
•
 ሺ ܵ ሻ ݁ݑ݈�ݒ ℐ − ଵ ସ ݁ݑ݈�ݒ = ′ ℐ ݁ݑ݈�ݒ

 ͷ

 ʹ

 ͸ ͸

 ͵

 ʹ ͳ

 ͵ Ͷ

 ℐ = ͸Ͷ ݁ݑ݈�ݒ

 ͵

 ʹ ͳ

 ͵ Ͷ

 ͳ ͳ = ʹ + ͵ ͺ ⋅ ʹͶ

 ℐ ′ = ͷͺ ݁ݑ݈�ݒ

 ͷ

Recursive algorithm via contractions

 ͷ

 ʹ

 ͸ ͸

 ͵

 ʹ ͳ

 ͵ Ͷ

 ℐ = ͸Ͷ ݁ݑ݈�ݒ

 ͵

 ʹ ͳ

 ͵ Ͷ

 ℐ ′ = ͷͺ ݁ݑ݈�ݒ

Inductive assumption: We have a

polytime
 ͺ �-approximation for

smaller instances

 ͷ

• Apply recursively on
 ℐ ′ to obtain

tour
′ ℐ ݁ݑ݈�ݒ �൑ ͺ ′ ܶ ݓ ′ ܶ = ͺ� ሺ ݁ݑ݈�ݒ ℐ − ͳ Ͷ ݁ݑ݈�ݒ ܵ ሻ

 ͳ ͳ = ʹ + ͵ ͺ ⋅ ʹͶ

 ൑ Ͷ͸Ͷ�

Contracting
 ܵ

 ͷ

 ʹ

 ͸ ͸

 ͵

 ʹ ͳ

 ͵ Ͷ

 ͵

 ʹ ͳ

 ͵ Ͷ

Inductive assumption: We have a

polytime
 ͺ �-approximation for

smaller instances

 ͷ

• Apply recursively on
 ℐ ′ to obtain

tour
′ ℐ ݁ݑ݈�ݒ ൑ ͺ ′ ܶ ݓ ′ ܶ = ͺ � ሺ ݁ݑ݈�ݒ ℐ − ͳ Ͷ ݁ݑ݈�ݒ ܵ ሻ
• Map back to subtour

 ܶ in

 ℐ with ݓ ܶ ൑ ݓ ሺ ܶ ′ ሻ

 ℐ ′ = ͷͺ ݁ݑ݈�ݒ

 ℐ = ͸Ͷ ݁ݑ݈�ݒ

 ͳ ͳ = ʹ + ͵ ͺ ⋅ ʹͶ

 ൑ Ͷ͸Ͷ�

 ൑ Ͷ͸Ͷ�

Inducing on
 ܵ

 ͷ

 ʹ

 ͸ ͸

 ͵

 ʹ ͳ

 ͵ Ͷ

• We add a tour
 ௌ inside S, using ܨ

the
 �-approximation on

irreducible instances.

•
 ℐ ′ ′: remove S, and contract

 � ∖ ܵ
to

 � , with ݕ { ௦ } = ݁ݑ݈�ݒ ሺ ܵ ሻ / ʹ

•
 ℐ ′′ is irreducible.

12=
 ʹͶ/2

 ͸ ͸

 ℐ ′′ = ͵͸ ݁ݑ݈�ݒ

 ℐ = ͸Ͷ ݁ݑ݈�ݒ

 ͷ

 ʹ

 ͸ ͸

 ͵

 ʹ ͳ

 ͵ Ͷ

• ʹ͵ = ℐ ݁ݑ݈�ݒ We add a tour
 ௌ inside S, using ܨ

the
 �-approximation on

irreducible instances.

•
 ℐ ′ ′: remove S, and contract

 � ∖ ܵ
to

 � , with ݕ { ௦ } = ݁ݑ݈�ݒ ሺ ܵ ሻ / ʹ

•
 ℐ ′′ is irreducible.

• Find tour

 in ′′ ܨ

 ℐ ′′ with weight ܨ ݓ ′′ ൑ �݁ݑ݈�ݒ ℐ ′′ = ʹ� ݁ݑ݈�ݒ ሺ ܵ ሻ

12=
 ʹͶ/2

 ͸ ͸

 ൑ ͵͸�

Inducing on
 ܵ

Inducing on
 ܵ

 ͷ

 ʹ

 ͸ ͸

 ͵

 ʹ ͳ

 ͵ Ͷ

• ʹ͵ = ℐ ݁ݑ݈�ݒ Find tour
 in ′′ ܨ
 ℐ ′′ with weight ܨ ݓ ′′ ൑ �݁ݑ݈�ݒ ℐ ′′ = ʹ� ݁ݑ݈�ݒ ሺ ܵ ሻ
• Map back

 to ′′ ܨ

 ௌ in ܨ

 ℐ with ܨ ݓ ௌ ൑ ܨ ݓ ൑ ʹ� ݁ݑ݈�ݒ ሺ ܵ ሻ
•
 ௌ is a tour in ܨ ׫ ܶ

 ℐ

 ℐ − ଵ ݁ݑ݈�ݒ �ௌ ൑ ͺ ܨ ׫ ܶ ݓ

ସ
ܵ ݁ݑ݈�ݒ
ℐ ݁ݑ݈�ݒ�ͺ = ܵ ݁ݑ݈�ݒ �ʹ +

12=
 ʹͶ/2

 ͸ ͸

 ൑ ͵͸�

