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Travelling salesman problem =

Given n cities and their pairwise distances, Fen.
find a shortest tour visiting all n cities.

* One of the best known NP-hard optimization problems
e Studied since the 19t century

e Symmetric TSP: d(i,j) =d(j,i) Vi,j

* Asymmetric TSP: d(i,j) # d(j, i) is possible .

g ! = :
. 5’& e [Cook et al., 2015]

Triangle inequality:

d(i,)) < d(i, k) +d(k,j) Vi,j,k




Symmetric vs Asymmetric TSP

Symmetric TSP
* 1.5-approximation algorithm [Christofides "76]

e Graphic TSP: unweighted graph shortest path metric

* Current best 1.4 [Sebd & Vygen "14], following
[Oveis Gharan, Saberi & Singh "11]

Momke & Svensson '11]

‘Mucha "12]




Symmetric vs Asymmetric TSP

Asymmetric TSP

* log, n-approximation algorithm [Frieze, Galbiati & Maffioli '82]
* 0.991log, n [Blaser '03]

* 0.84log, n [Kaplan, Lewenstein, Shafrir & Sviridenko 03]

* 0.67log, n [Feige & Singh '07]

0 ( lo gn ) [Asadpour, Goemans, Madry, Oveis Gharan & Saberi "10]
lo glo gn

via thin trees.



Asymmetric TSP — recent developements

* O(polyloglogn) bound on integrality gap of LP
[Anari & Oveis Gharan ’15]

Constant-factor approximations:

* Bounded genus graphs [Oveis Gharan & Saberi’11]

* Node-weighted graphs [Svensson "15]

* Graphs with 2 edge weights [Svensson, Tarnawski & V. "16]

Our result: constant-factor approximation for general ATSP

with respect to the Held-Karp relaxation.



ATSP — Graphic formulation

Input: directed graph ¢ = (V, E), edge weights w: E —- R,

Find a minimum weight tour F.

* Tour = closed walk visiting every vertex at least once =
= Eulerian and connected edge multiset

e Eulerian: 65*(v) = 62¥ (V) Vv €V
* Subtour = closed walk (not necessarily connected) '“'degfee & out-degree in F
o 0O
100 3 5 1

¢ o ©




ATSP — Graphic formulation

Input: directed graph ¢ = (V, E), edge weights w: E —- R,

Find a minimum weight tour F.

* Tour = closed walk visiting every vertex at least once =
= Eulerian and connected edge multiset

e Eulerian: 65*(v) = 62¥ (V) Vv €V
* Subtour = closed walk (not necessarily connected) '“'degfee & out-degree in F
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Held-Karp relaxation

 Input: G = (V/, E), edge weights w: E — R,.
* Variables x,.: E — R, : multiplicity of selecting edge e.

minimize @ w'x .
_ Eulerian degree
subject to x(6m(v)) = x(§°%(v)) VYvevV constraints

x(5(5)) > 2 VSSV,S+0 -

x =0 Subtour elimination
constraints

Undirected degree:

5(S) = 5™ (S) + 6°%(S)




Held-Karp relaxation

* Input: ¢ = (V,E), edge weights w: E — R,.
* Variables x,.: E — R, : multiplicity of selecting edge e.

5 o o T
minimize w'x .
e Can be solved in

subject to x(6™(v)) = x(6°“(v)) Vv eV polynomial time
x(6(5)) > 2 VSGV,S#0 e« Integrality gap > 2
x =0 [Charikar, Goemans

& Karloff ‘06]
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Repeated cycle cover algorithm
[Frieze, Galbiati & Maffioli '82]

Relaxing connectivity:
1. Find minimum weight cycle cover
2. Contract and repeat

* Each cycle cover has cost < OPT
* Overall log, n rounds
* log, n approximation



Node-weighted case [Svensson’15]

Directed graph G = (V/,E), node weights h: V — R,
w(u,v) = h(u) +h(v) VuveE

Local-Connectivity ATSP: relaxing connectivity constraints to “local”

a-light algorithm for
Local-Connectivity ATSP

Theorem [Svensson’15]
There exists a polytime (27 + ¢€)-

approximation for node-weighted ATSP.

(9 + &)a-approximation
for ATSP
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Dual of the Held-Karp relaxation

VO+S GV

minimize w'x
subject to
x(6M()) = x(6°“(v)) Vv eV
x(6(S)) > 2
x =0

maximize

subject to

ZS:(u,v)e6(S) ys +ay —a, <w(u,v) Y(u,v) EE

2. 9sscy Vs

y=0

* Dual can be solved in polynomial

time.

* One can efficiently find an optimal
(a, y) such that the support of y is
a laminar family of sets.
Efficient uncrossing [Karzanov’96]

=l



Laminarly weighted ATSP: 7 = (G, L, x, y)

VO+S GV

minimize w'x
subject to
x(6™M(v)) = x(6°% (v)) Vv eV
x(5(5)) > 2
x =0

* (;: directed graph

* L:laminar family of sets

* x: feasible Held-Karp solution

tight on every set in L: x(cY(S)) =2VSEL

cyv: L > R,

maximize 2 p-scy Vs
subject to
ZS:(u,v)e&(S) ys +ay —a, <w(u,v) Y(u,v) EE
y=0
1 2
(T D%
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Laminarly weighted ATSP: 7 = (G, L, x, V)

. T
minimize w'x aximize 2% 0uscy Vs
SUB|CEE subject to
x(6™M(v)) = x(6°% (v)) Vv eV gl
x(6(S) =2 Vop+ScV Ls:up)es(s) ¥s T a;, 6 wlu,v) V(u,v) € E
x=0 V=
€O T o
* (: directed graph 3 Q =
* L:laminar family of sets = = 5

 x: feasible Held-Karp solution
tight on every set in L: x(S(S)) =2VSEL

cyv: L > R,

Induced weight function: w(u, v) = Y. v)es(s) Vs




Laminarly weighted ATSP: 7 = (G, L, x, V)

minimize w ' x =
maximize 2 p2scy Vs
subject to .
(Si"( )) (59% () Vv eV subject to
X v))=x v v
— <
x(6(8)=2 VO+SGV Ls:(upes(s) Vs T Ay ya;; ’ w(u,v) V(u,v) €EE
x =0 =

* (;: directed graph
* L:laminar family of sets

 x: feasible Held-Karp solution
tight on every set in L: x(S(S)) =2VSEL

cyv: L > R,

Induced weight function: w(u, v) = Y. v)es(s) Vs




Reduction to laminarly weighted ATSP

e Start with any G and w.

 Compute Held-Karp
optimal solution x and
dual v supported on
laminar family L

* Delete all edges with
x, = 0.

maximize

subject to

22pscy Vs

ZS:(‘u,,v)E(S(S) ys +ay —a, <w(u,v) Y(u,v) EE

y=0

Observations:
* Optimal solutions and optimum value are
the same for w and for

w'(u,v) =w(u,v) + a, — ay

* All remaining edges have

w'(u,v) = 2 Vs
S:(u,v)EH(S)
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Vertebrate pairs SemF

Vertebrate pair (7, B)
«J =(G,L, x,y) instance
* B: backbone = subtour that crosses every nonsingleton set in L




Vertebrate pairs

* We will reduce general ATSP to solving ATSP for a vertebrate pair (7, B)
with w(B) = O(OPT) (more or less...)

* Solve Local-Connectivity ATSP on such instances, and apply
[Svensson’15]




Local-Connectivity ATSP [Svensson’15]

Instance 7 = (G, L, x, y) with induced weights w: E — R,
Lower bound function Ib: V - R, with ),y 1b(v) = OPT
Input: partition of the vertexsetV =V, UV, U---UV,

o) ()



Local-Connectivity ATSP [Svensson’15]

Instance 7 = (G, L, x, y) with induced weights w: E — R,
Lower bound function Ib: V - R, with ),y 1b(v) = OPT
Input: partition of the vertexsetV =V, UV, U---UV,
Output: Eulerian edge set F with [6(1/;) N F| > 0 for each V;

A v, Vs v,



Local-Connectivity ATSP [Svensson’15]

Instance 7 = (G, L, x, y) with induced weights w: E — R,
Lower bound function Ib: V = R, with ),y 1b(v) = OPT
Input: partition of the vertexset/ =V, UV, U---UV,

Output: Eulerian F with [6(1/;) N F| > 0 for each V/;

a-light algorithm: for every component C of F,
W(E(C)) _

lb(V(C)) i
“Every component pays for itself locally”




Local-Connectivity ATSP [Svensson’15]

a-light algorithm for
Local-Connectivity ATSP

Theorem [Svensson’15]
There exists a polytime (27 + ¢)-

approximation for node-weighted ATSP.

(9 + &)a-approximation
for ATSP




Local-Connectivity ATSP:
node-weighted case

* Instance 7 = (G, L, x, y), with L containing only singletons (ignore B)
w(u,v) = yay + Y

* Definelb(u) = 2y, VU eV

* Partition V. =1V, UV, U--- UV, all strongly connected

* Modify G and x, and solve an integer circulation problem




Local-Connectivity ATSP:
node-weighted case

* Instance 7 = (G, L, x, y), with L containing only singletons (ignore B)
w(w, v) = yay + Vo)

* Definelb(u) = 2y, VU eV

* Partition V. =1V, UV, U--- UV, all strongly connected

* Modify G and x, and solve an integer circulation problem

* ForeachV;, create auxiliary vertex a;
0375 * Reroute 1 fractional unit of incoming
and outgoing flow x to a;
0.2 ]/\&125 * Solve integer circulation problem

routing =1 unit through each a;
0. 375 0. 25  Map back to original G



Local-Connectivity ATSP:
node-weighted case

* The rerouted x is feasible to the circulation problem of weight OPT
* Flow integrality: there exists integer solution of weight < OPT
* After mapping back, every vertex with y,, > 0 has in-degree < 2

* For a component C, W(E(C)) — Z(u,v)EE(C) Ve T Yoy < 4% cc Vi)
. lb(V(C)) = 2 Ypec Yy = 2-light algorithm

037
2
0.375 0:25 -
9

0.2 {/ 6,125
/ | Vi\

GEVER -



Local-Connectiv

ity ATSP:

one nonsingular setin L

* Vertebrate pair (7,B).
component S. Thus,

Assume L has a single non-singleton

w(u, v) :{y{u}"'Y{v}‘l‘YS i f(u,v) €6(S)
| Yo T V) i f(u,v) & 6(S)
* Define
(2Yu) i fueV\V(B)
b = B
(W) <k |VI;]§B§I i fu € V(B)

e ¥ cv1b(v) = O(OPT), since w(B) = O(OPT)



Local-Connectivity ATSP:
one nonsingular setin L

e By assumption, x(§*(S)) = x(5§°%(S)) =1
» Backbone property: thereisanodes e V(B)N S

e Simple flow argument: we can route the incoming 1 unit of flow to
Stos




Local-Connectivity ATSP:
one nonsingular setin L

* PartitionV =V, UV, U---U

* Add backbone B into Eulerian set F.

* Via flow splitting, “force” all edges entering S to proceed to s € V' (B)
* Create auxiliary vertices a; as before

* Solve integral circulation problem, and add solution to F.



Local-Connectivity ATSP:
one nonsingular setin L

Analysis

* For all components C not crossing S, W(E(C))/lb(V(C)) < 2 exactly
as in the node-weighted case

* Giant component C, containing B.
* Contains all edges crossing S

* Has lower bound lb(V(Co)) > b(V(B)) = O(0OPT)
* w(E(Cy)) < w(F) <0(0OPT)
* Therefore solution is O(1)-light.

 Same approach extends to arbitrary L: enforce that every subtour
crossing a set in L must intersect the backbone.
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Motivation: reducing by contraction

* All sets in the family L are singletons: node-weighted ATSP
* Would like to reduce the problem by contracting nonsingleton sets in L

T=Yers
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Motivation: reducing by contraction

* All sets in the family L are singletons: node-weighted ATSP
* Would like to reduce the problem by contracting nonsingleton sets in L

COC D)



Irreducible instances

* Irreducible set S € L:
There exists u, v € §
such that the shortest

path between uand v

hws red ants, beetles and scorpio

inside S visits “almost
all”sets X € S, X € L

* I[rreducible instance
J=(G,L,x,7y):
all setsin L are
irreducible

wait to get a closer look. First

bline. He'd have to watch out for

was Aunt Cleo? She had promised

Can you find a safe way along the pa
the pyramid? Can you spot Aunt Cle




Irreducible instances

* Irreducible set S € L:
There exists u, v € §
such that the shortest

o et

path betweenuandv 0
was Aunt Cleo? She had promised fo mc.ei_

inside S visits “GImMost e i o e s

the pyramid? Can you spot Aunt Cleo?

all”sets X € S, X € L

* I[rreducible instance
J=(G,L,x,7y):
all setsin L are
irreducible




Irreducible instances

* Reducible set S € L: For every pair u, v € S, there is a “cheap” path
connecting them (if they are connected).

 Reducible sets can be contracted.

Theorem:
polytime p-approximation for irreducible instances

—
polytime 8p-approximation for arbitrary instances
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Vertebrate pairs

Vertebrate pair (7, B)
7 =(G,L, x,y) instance
* B: backbone = subtour that crosses every nonsingleton set in L




Finding a vertebrate pair in an irreducible
instance 7 = (G, L, x,y)

1. Obtain a node-weighted instance by contracting all maximal sets in L

2. Use [Svensson "15] to find a tour here, and blow it back to a subtour
B in the original instance J in a pessimistic way:
inside each maximal S € L, B crosses = 0.75value(S)

3. Ifit crosses every setin L, then (7, B) is a vertebrate pair

4. Otherwise, recurse by contracting all maximal sets in L not crossed by

B.
This works because their total weight is < 0.25value(J)



General ATSP ROadmap

LP duality +
uncrossing

Node weighted algorithm
+ contractions

Laminarly Irreducible

instances

weighted ATSP

Graph theory:

contractions
Vertebrate pairs

O(1)-light IcATSP

Local-connectivity

ATSP [Svensson "15]

algorithm in
vertebrate pairs




Summary

* Via all these reductions, we obtain an §50(0-approximation
algorithm for ATSP.

* Squeezing the arguments a bit more and opening up black boxes, can
be probably decreased to a few hundreds.

e Still very far from lower bound 2 on the integrality gap of Held-Karp
Open questions

* Improve to a constant < 100

* Thin tree conjecture is still open.

* Bottleneck ATSP.

* Better than 3/2 approximation for symmetric TSP.
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http://personal.lse.ac.uk/veghl/scaleopt.html

Simplifying assumption for the talk

Assumption: all sets in the family L are strongly connected in G.

Not true in general, but the connected components have a nice path

structure:




Paths traversing a set

* How much is the weight of connecting an incoming and an outgoing
edgeinasetS € L?

Ds(u,v) =

o 10




Paths traversing a set

* How much is the weight of connecting an incoming and an outgoing
edgeinasetS € L?

Ds(u,v) = 2 YR

R:UER,RCS

o 10




Paths traversing a set

* How much is the weight of connecting an incoming and an outgoing
edgeinasetS € L?

DS(U,U) : 2 YR +d5(u,v)

R:ueR,RCS

Min weight path inside S.

o 10




Paths traversing a set

* How much is the weight of connecting an incoming and an outgoing
edgeinasetS € L?

Ds(u,v) = 2 yr + dgs(u,v) + z yr = 18

R:UER,RCS R:VER,RCS

o 10




Paths traversing a set

* How much is the weight of connecting an incoming and an outgoing
edgeinasetS € L?

D¢(u,v) = z yr + ds(u,v) + z yr = 18< 38

R:ueR,RCS R:vER,RES

Lemma: 6 3

e 10

Ds(u,v) <2 z yr = value(S) 3 > 3"

R&S N 3




Irreducible instances

 Reducible set S € L:

3
Max,, yes Ds(u,v) < 7 value(S)

Lemma:

Ds(u,v) < 2 z yr = value(S)
* Irreducible instance I = (G, L, x,y): RTs
noset S € L is reducible

Theorem: 6 3
polytime p-approximation for o 10 —
irreducible instances = U 5 3"
polytime 8p-approximation for
arbitrary instances




Recursive algorithm via contractions
* Instance 7 = (G, L, x,y) value(J) = 64

* value(7) = 2 Ypcy VR
=Held-Karp optimum

 S: minimal reducible set in L. @ @ 6@

8p-approximation for J =
8p-approximation on instance by contracting S

+
p-approximation of irreducible instance “inside” S




Recursive algorithm via contractions

* Instance 7 = (G, L, x,y) value(J) = 64

* value(7) = 2 Ypcy VR 3
=Held-Karp optimum

* S: minimal reducible set in L. @ @ g)

* 7' =7/S: contract S in J.
*S5—>S "

3
* Visy = Ys + gvalue(S) 3

e value(7') = value(J) — lvalue(S) @ 11=2+>.24
4 'y 38

value(J") = 58



Recursive algorithm via contractions

: _ value(J) = 64
Inductive assumption: We have a

polytime 8p-approximation for
smaller instances
 Apply recursively on 7’ to obtain
tour T'
w(T") < 8pvalue(J")
1
= 8p(value(J) — Zvalue(S))

value(J") = 58

3
11=2+—--24
+8

5 < 464p




Contracting S

: _ value(J) = 64
Inductive assumption: We have a

polytime 8p-approximation for
smaller instances

 Apply recursively on 7’ to obtain
tour T'
w(T') < 8value(d")

= 8p(value(J) — %value(S))

* Map back to subtour T in J with
w(T) <w(T")

5 < 464p




Inducing on S

* We add a tour Fs inside S, using value(7) = 64
the p-approximation on
irreducible instances.

* 7": remove S, and contractV \ S
to S, with
Visy = value(S)/2

» 7" is irreducible. @

value(3'") = 36

o O
12=24/2 O



Inducing on S

* We add a tour Fs inside S, using value(7) = 32
the p-approximation on
irreducible instances.

* 7": remove S, and contractV \ S
to S, with
Visy = value(S)/2

e 7" is irreducible.

* Find tour F"" in 7"" with weight
w(F'") < pvalue(7"") = 2pvalue(S)

@

4
6
12=24/2 \_/ D

O



Inducing on S
* Find tour F"" in 7" with weight value(7) = 32
w(F'") < pvalue(7'") = 2pvalue(S)
* Map back F'’ to Fg in 7 with

w(Fs) < w(F) < 2pvalue(S) |
*TUFsisatourinJ o

w(T U Fs) < 8p (value(?) — %value(S)) ﬁ
+2pvalue(S) = 8pvalue(T)

) / 6
6
12=24/2 \_/ D



