Using Data-Oblivious Algorithms
for Private Cloud Storage Access

Michael T. Goodrich
Dept. of Computer Science

UNIVERSITY of CALIFORNIA {) IRVINE

Privacy in the Cloud

* Alice owns a large data set,
which she outsources to an

honest-but-curious server, Bob.

— Alice trusts Bob to reliably maintain her
data, to update it as requested, and to
accurately answer queries on this data.

— But she does not trust Bob to keep her
information confidential.

read cell |
write x to cell |

Encryption is not Sufficient

 Alice certainly should use a
semantically-secure encryption

scheme, for each cell of her
data.

* But this is not enough.

read E(x) from cell i
write E(y) to cell |

e.g., Bob can see the
hot spots

Oblivious Data Storage

 Alice has a private memory, of size K, which she
can use as local scratch space so that she can
access her data on a untrusted server in a
private fashion.
— She wants to do this with low overhead
— She wants to use this to hide her access patterns

C\WINDOWS\Shf_mig$\KB951698\SP3QFE
ll
EEENEEE BN EEER AEEEEEEEE EEEC HEE B SaaEEEE BN

llllllllllllllll

1]

EEEEEE EEEEEEEEISNEETESEE BN SEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENENEEEEEEEEEE

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
llllllllllllllllllll

ju]
lllll
lllllllllllllllllll

Data-oblivious Algorithms

 Alice can encrypt her data and then hide her
access patterns by using data-oblivious
algorithms.

— A data-oblivious computation consists of a sequence
of data accesses that do not depend on the input
values.

— All functions that combine data values are
encapsulated into black box operations, with a
constant number of inputs and outputs.

— The control flow depends only on the input size, and,
in the case of randomized algorithms, the values of
random variables.

Two Approaches

* Design general methods to efficiently simulate
an arbitrary RAM algorithm, A, in a data-
oblivious fashion.

— These methods typically have an overhead per
access of O(log n), O(log? n), or even O(log? n).

* Design efficient data-oblivious algorithms for

specific problems of interest.

— These methods tend to be more efficient, but are
more specialized

* We are taking a unified view, which allows for

both approaches. E=&

i : £ ‘E/[’
- S
—rhat =
—

Our General Simulation Results

* \We give methods for oblivious RAM

simulation:
— O(1) local memory and has O(log® n) overhead

— O(n¢) local memory and has O(log n) overhead.

— O(n¢) local memory and message size, and has
O(1) overhead

* Our methods use the following
techniques:
— MapReduce cuckoo hashing —
— Data-oblivious external-memory sorting
— cuckoo hashing with a shared stash

Our Results for Specific Problems

* We give data-oblivious algorithms for
— Planar convex hull construction,
— Minimum spanning trees,
— Graph drawing problems,
— All nearest neighbor finding

[Map _Satellte j(Hyorid [
\va' yq;r KM '

f. (NIEI L [
3

0HoY%0
W G
{00 PAYAC

Lolo\
N4 9@‘
A POVAR9” (040

| 9
WAoo
O Q»‘;')c v Q y

f

A
)
/

Image from http://cdn.venturebeat.com/wp-content/uploads/2009/03/28811286_e1671e30a9.jp«

Cuckoo Hashing

* Uses two lookup tables T, and T, and two
pseudo-random hash functions, f, and f,.

« Each item x is stored either in T,[hy(x)] or
T4[h4(X)].

— When an item x is added, we put it in T,[hy(x)].

« If there was already an item y there, we putitin T,[h,(y)].
— If there was already an item z there, we put it in T,[hy(2)].

» ...

« Will add a new item in O(log n) time w/
probability 1-1/n.

Cuckoo Hashing Technique

T, 1,

put 7

Cuckoo Insertion

1,

4 lands in
an empty cell

Using a Stash

 [Kirsch et al., 09] introduce the idea of
using a stash with a cuckoo table.

— A small cache where we store items that
cannot be added to the cuckoo table without
causing an infinite loop.

» A stash of size ¢ improves the failure
probability to be 1/n°.

— Unfortunately, this is too large a failure bound
for us...

Using a Big Stash

* We show that a stash of size O(log n)
reduces the failure probability to be
negligible.

— But now lookups will no longer be O(1) time.

o Still, iIn some cases, like in ORAM
simulation, we may have several cuckoo
tables that share the same big stash.

* Ok, but there is still the issue of
constructing a cuckoo table obliviously...

* A framework for designing computations for
large clusters of computers.

* Decouples location from data and

computation
Image from taken from Yahoo! Hadoop Presentation: Part 2, OSCON 2007.

Map-Shuffle-Reduce

 Map:

* (k) ->[(ky,vq), (Ko, Vo), -]
* must depend only on this one pair, (k,v)

 Shuffle:

* For each key k used in the first coordinate of a pair,
collect all pairs with k as first coordinate

° [(k,V1),(k,V2),...]
 Reduce:
» For each list, [(k,v4),(K,V5),...]:
* Perform a sequential computation to produce a set of
pairs, [(K'{,v'y),(K'5,V'5,),...]
« Pairs from this reduce step can be output or used in
another map-shuffle-reduce cycle.

Image from http://www.wvculture.org/shpo/es/graphics/6-sorting%20shell.jpg

MapReduce Cuckoo Hashing

We give a MapReduce Algorithm for constructing
a cuckoo table.

It performs O(n) parallel steps of item insertions

With very high probabillity, this reduces the
number of remaining uninserted items to be n/c,
for some constant c.

— Recursively add these items
Total work is O(n).

But now we need an oblivious way to simulate a
MapReduce algorithm...

Oblivious Deterministic Sorting

* For internal-memory: AKS is the only
deterministic oblivious method running in
O(n log n) time.

 Randomized Shellsort [Goodrich ‘10] runs
iIn O(n log n) time and sorts with high
probability, but this isn’'t good enough
here.

* We show how to design an oblivious

external-memory sorting method that uses
O((N/B)log?,,5 (N/B)) I/Os.

Generalized Odd-Even Sort

« We divide A into k = (M/B)'3 subarrays of size N/k and recursively sort each subarray.
« Let us therefore focus on merging k sorted arrays of size n = N/k each.

« If nk <M, then we copy all the lists into internal memory, merge them, and copy them
back.

« Otherwise, let A]i, j] denote the jth element in the ith array. We form a set of m new
subproblems, where the pth subproblem involves merging the k sorted subarrays

defined by A[i, j] elements such that j mod m = p, for m = (M/B)1/3.

« Let D[, j] denote the jth element in the output of the ith subproblem. That is, we can
view

« D as a two-dimensional array, with each row corresponding to the solution to a
recursive merge.

Lemma: Each row and column of D is in sorted order and all the elements in column j are
less than or equal to every element in column j + k.

Proof: The lemma follows from Theorem 1 of Lee and Batcher [32].

« To complete the k-way merge, then, we imagine that we slide an m x k rectangle
across D, from left to right. When it finishes, A will be sorted (obliviously)

* Runs in O((N/B)log2M/B (N/B)) I/Os.
* Note that this is O(N)-time sorting if B=1 and M=O(Ng).

Our Simulation

Construct O(log n) cuckoo tables in a hierarchy,
Ho, H1, H2,

Each table is twice the size of the previous
They all share a single stash of size O(log n)
Store all the items (i,v) in these tables
Initially, they are all empty except for the largest.

H, B

H,

H,

H, EEE——

For each Access to |

First look in Hy (which is just a list)

Then look in H,, H,, ..., doing a cuckoo
lookup for i

As soon as you find it, say in Hg, store it

But to be oblivious, continue doing cuckoo
lookups in H-, Hg, ..., for a random
(previously unused) dummy index

When we are done, but the updated value
of (i,v) in H,

Cascading

« Each time a table H. fills up, we dump its
contents in H,,,, using the oblivious
MapReduce construction

— (...a few more details — please see the paper)
« We can do ORAM simulation with O(log? n)

overhead with O(1) local memory or O(log n)
overhead with O(n?) local memory

Convex Hull Representation

* We want the entire algorithm to be data-
oblivious, except for low-level blackbox functions

* Given a set of points, A, ordered by their x-
coordinates, we define the upper hull, UH(A), of
A, to be as follows
— For each point p in A, we label p with the edge, e(p),

of the upper convex hull that is intersected by a
vertical line through the point p. If p is itself on the

upper hull, then we label p with the upper hull edge
iIncident to p on the right.

e(p)

Our Approach

Do an oblivious sort of A

* Divide A into left half and right half and
recursively find UH of each side

Merge Step

* Find the common upper tangent
» Relabel points under the tangent

Tangent-Finding Cases

[from Overmars & van Leeuwen]

Difficulty

* The classic binary search algorithm is not data-
oblivious

 We need a new way to do this “search”

* We aim to assign each edge e of UH(A,) and
UH(A,) one of two labels:

— L: the tangent line of UH(A; U A,) with the same
slope as e is tangent to UH(A1).

— R: the tangent line of UH(A; U A,) with the same
slope as e is tangent to UH(A2).

— In some intermediate steps, we may be unable to
determine yet whether an edge should be labeled L or
R; In such cases, we temporarily label it with an X.

New Approach

Divide UH(A,) and UH(A,) at every n'/?
edges

Do brute-force comparisons

See if we can reduce one of A, or A, to a
region of size n'?

Repeat until we have found the tangent

— This sounds non-oblivious, but we can make it
oblivious by trying all O(1) possible reductions
In turn (one of them will work).

New Case Analysis

* For edge e in H,, let d be the edge in H, with
smallest slope greater than e and let f be the
edge in H, with largest slope less than e

Case (i): a,b <
V.

(impossible)

Case (iii): a <
V < b.
e— R

(e1,d): Case f

e —
' de— L.
— (ez,d): Case g
A e +— R,
N d— X.

Case (ii): V <
a, b.

e — R or
d,f— L,R

(e,dy): Caseh
e —

d+— L.

(e,d2): Case f

€ —

dw~— L.
(e, f1): Case g

e —
f— X.
(e, f2): Case i2
e — X,
f— R.

Case (iv): b <
V < a.
e— L

(e2, f) C'lseh
e +— L,
f— L.

Result

 This gives us an oblivious linear-time method for
finding the common upper tangent

* This, in turn, results in a data-oblivious convex
hull algorithm running in O(n log n) time.

Data-Oblivious Nearest Neighbors

« Based primarily on
two new oblivious
algorithms

— compressed quadtree
construction

— well-separated pair
decomposition

The Geography Lesson (Portrait of Monsieur Gaudry and His Daughter),
oil on canvas painting by Louis-Léopold Boilly, 1812, Kimbell Art Museum

Quadtree Construction

» Use sorting and bit-
interleaving trick
(e.g., see Samet) to
construct a
compressed
guadtree in a data-
oblivious manner

T

0
99
9

—Poo

Well-Separated Pairs

« Given a parameter s construct a set of pairs,
(A,,B,), (A,,B,), ..., (A,By), such that every pair
of points p and q are represented by a pair
(A,,B;) such that p is in A, and q is in B;, and such
that there are balls of radius r containing A; and
B, so that these balls are of distance at least sr
apart.

o ° (A, B) .. .e ?
. \\.. .fi.- """""" .. :
® o N\ [)Irll) e 0

C D(B) §®

o
by

* : PRl e o. ®
LIt * e,
& ee
®e T #*),

Conclusion and Open Problems

We have shown how to solve several geometric
problems efficiently with data-oblivious algorithms

These methods lead to efficient SMC protocols for
privacy-preserving location-based methods

Open: Is there a data-oblivious method for building a
representation of the Voronoi diagram (or Delaunay
triangulation) of a set of n points in O(n log n) time?

T s S

http://vbgraphic.altervista.org/terrain4.htm

Relevant Publications

M.T. Goodrich, “Randomized Shellsort: A Simple Data-Oblivious Sorting Algorithm," Journal
of the ACM, 58(6), Article No. 27, 2011.

D. Eppstein, M.T. Goodrich, R. Tamassia, “Privacy-Preserving Data-Oblivious Geometric
Algorithms for Geographic Data," Proc. 18th ACM GIS, 2010, 13-22.

M.T. Goodrich, “Spin-the-bottle Sort and Annealing Sort: Oblivious Sorting via Round-robin
Random Comparisons," 8" ANALCO, 2011.

M.T. Goodrich, Data-Oblivious “External-Memory Algorithms for the Compaction, Selection,
and Sorting of Outsourced Data," 23rd ACM SPAA, 2011, 379-388.

M.T. Goodrich and M. Mitzenmacher, “Privacy-Preserving Access of Outsourced Data via
Oblivious RAM Simulation," 38t ICALP, vol. 6756, 2011, 576-587.

M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia, “Oblivious RAM
Simulation with Efficient Worst-Case Access Overhead," ACM Cloud Computing Security
Workshop (CCSW), 95-100, 2011.

M.T. Goodrich, O. Ohrimenko, M. Mitzenmacher, and R. Tamassia, “Privacy-Preserving
Group Data Access via Stateless Oblivious RAM Simulation," 234 SODA, 157-167, 2012.

M.T. Goodrich, O. Ohrimenko, M. Mitzenmacher, and R. Tamassia, “Practical Oblivious
Storage," 2nd ACM CODASPY, 13-24, 2012.

M.T. Goodrich and M. Mitzenmacher, “Anonymous Card Shuffling and its Applications to
Parallel Mixnets," 39t ICALP, Springer, LNCS, vol. 6756, 576-587, 2012.

. M.T. Goodrich, O. Ohrimenko, and R. Tamassia, “Graph Drawing in the Cloud: Privately
Visualizing Relational Data using Small Working Storage," 20t Graph Drawing 2012.

