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Privacy in the Cloud 
•  Alice owns a large data set, 

which she outsources to an 
honest-but-curious server, Bob. 
–   Alice trusts Bob to reliably maintain her 

data, to update it as requested, and to 
accurately answer queries on this data. 

–  But she does not trust Bob to keep her 
information confidential. 

Alice Bob read cell i 
write x to cell j 



Encryption is not Sufficient 
•  Alice certainly should use a 

semantically-secure encryption 
scheme, for each cell of her 
data. 

•  But this is not enough. 

Alice Bob read E(x) from cell i 
write E(y) to cell j 

e.g., Bob can see the 
hot spots 



Oblivious Data Storage 
•  Alice has a private memory, of size K, which she 

can use as local scratch space so that she can 
access her data on a untrusted server in a 
private fashion. 
–  She wants to do this with low overhead 
–  She wants to use this to hide her access patterns 



Data-oblivious Algorithms 
•  Alice can encrypt her data and then hide her 

access patterns by using data-oblivious 
algorithms. 
–  A data-oblivious computation consists of a sequence 

of data accesses that do not depend on the input 
values.  

–  All functions that combine data values are 
encapsulated into black box operations, with a 
constant number of inputs and outputs.  

–  The control flow depends only on the input size, and, 
in the case of randomized algorithms, the values of 
random variables. 



Two Approaches 
•  Design general methods to efficiently simulate 

an arbitrary RAM algorithm, A, in a data-
oblivious fashion. 
–  These methods typically have an overhead per 

access of O(log n), O(log2 n), or even O(log3 n). 
•  Design efficient data-oblivious algorithms for 

specific problems of interest. 
–  These methods tend to be more efficient, but are 

more specialized 
•  We are taking a unified view, which allows for 

both approaches. 



Our General Simulation Results 
•  We give methods for oblivious RAM 

simulation: 
–  O(1) local memory and has O(log2 n) overhead 
–  O(nε) local memory and has O(log n) overhead. 
–  O(nε) local memory and message size, and has 

O(1) overhead 

•  Our methods use the following 
techniques: 
– MapReduce cuckoo hashing 
– Data-oblivious external-memory sorting 
– cuckoo hashing with a shared stash 



Our Results for Specific Problems 
•  We give data-oblivious algorithms for  

–  Planar convex hull construction,  
–  Minimum spanning trees,  
–  Graph drawing problems, 
–  All nearest neighbor finding  

Image from http://cdn.venturebeat.com/wp-content/uploads/2009/03/28811286_e1671e30a9.jpg 



Cuckoo Hashing 
•  Uses two lookup tables T0 and T1 and two 

pseudo-random hash functions, f0 and f1. 
•  Each item x is stored either in T0[h0(x)] or 

T1[h1(x)]. 
–  When an item x is added, we put it in T0[h0(x)]. 

•  If there was already an item y there, we put it in T1[h1(y)]. 
–  If there was already an item z there, we put it in T0[h0(z)]. 

»  … 

•  Will add a new item in O(log n) time w/ 
probability 1-1/n. 



Cuckoo Hashing Technique 
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Cuckoo Insertion 
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Using a Stash 

•  [Kirsch et al., 09] introduce the idea of 
using a stash with a cuckoo table. 
– A small cache where we store items that 

cannot be added to the cuckoo table without 
causing an infinite loop. 

•  A stash of size c improves the failure 
probability to be 1/nc.  
– Unfortunately, this is too large a failure bound 

for us… 



Using a Big Stash 

•  We show that a stash of size O(log n) 
reduces the failure probability to be 
negligible. 
– But now lookups will no longer be O(1) time. 

•  Still, in some cases, like in ORAM 
simulation, we may have several cuckoo 
tables that share the same big stash. 

•  Ok, but there is still the issue of 
constructing a cuckoo table obliviously… 



MapReduce 

•  A framework for designing computations for 
large clusters of computers. 

•  Decouples location from data and 
computation 

Image from taken from Yahoo! Hadoop Presentation: Part 2, OSCON 2007. 



Map-Shuffle-Reduce   
•  Map:  

•  (k,v) -> [(k1,v1),(k2,v2),…] 
•  must depend only on this one pair, (k,v)  

•  Shuffle: 
•  For each key k used in the first coordinate of a pair, 

collect all pairs with k as first coordinate 
•  [(k,v1),(k,v2),…] 

•  Reduce: 
•  For each list, [(k,v1),(k,v2),…]: 

•  Perform a sequential computation to produce a set of 
pairs, [(k’1,v’1),(k’2,v’2),…]  

•  Pairs from this reduce step can be output or used in 
another map-shuffle-reduce cycle. 

Image from http://www.wvculture.org/shpo/es/graphics/6-sorting%20shell.jpg 



MapReduce Cuckoo Hashing 
•  We give a MapReduce Algorithm for constructing 

a cuckoo table. 
•  It performs O(n) parallel steps of item insertions 
•  With very high probability, this reduces the 

number of remaining uninserted items to be n/c, 
for some constant c. 
–  Recursively add these items 

•  Total work is O(n). 
•  But now we need an oblivious way to simulate a 

MapReduce algorithm… 



Oblivious Deterministic Sorting 
•  For internal-memory: AKS is the only 

deterministic oblivious method running in 
O(n log n) time. 

•  Randomized Shellsort [Goodrich ‘10] runs 
in O(n log n) time and sorts with high 
probability, but this isn’t good enough 
here. 

•  We show how to design an oblivious 
external-memory sorting method that uses 
O((N/B)log2

M/B (N/B)) I/Os. 



Generalized Odd-Even Sort 
•  We divide A into k = (M/B)1/3 subarrays of size N/k and recursively sort each subarray.  
•  Let us therefore focus on merging k sorted arrays of size n = N/k each.  
•  If nk < M, then we copy all the lists into internal memory, merge them, and copy them 

back.  
•  Otherwise, let A[i, j] denote the jth element in the ith array. We form a set of m new 

subproblems, where the pth subproblem involves merging the k sorted subarrays 
defined by A[i, j] elements such that j mod m = p, for m = (M/B)1/3. 

•  Let D[i, j] denote the jth element in the output of the ith subproblem. That is, we can 
view 

•  D as a two-dimensional array, with each row corresponding to the solution to a 
recursive merge. 

 
Lemma: Each row and column of D is in sorted order and all the elements in column j are 

less than or equal to every element in column j + k. 
Proof: The lemma follows from Theorem 1 of Lee and Batcher [32]. 
•  To complete the k-way merge, then, we imagine that we slide an m x k rectangle 

across D, from left to right. When it finishes, A will be sorted (obliviously) 
•  Runs in O((N/B)log2M/B (N/B)) I/Os. 
•  Note that this is O(N)-time sorting if B=1 and M=O(Nε). 



Our Simulation 

•  Construct O(log n) cuckoo tables in a hierarchy, 
H0, H1, H2, … 

•  Each table is twice the size of the previous 
•  They all share a single stash of size O(log n) 
•  Store all the items (i,v) in these tables 
•  Initially, they are all empty except for the largest.  

H0 

H3 

H1 

H2 



For each Access to i 

•  First look in H0 (which is just a list) 
•  Then look in H1, H2, …, doing a cuckoo 

lookup for i 
•  As soon as you find it, say in H6, store it 
•  But to be oblivious, continue doing cuckoo 

lookups in H7, H8, …, for a random 
(previously unused) dummy index 

•  When we are done, but the updated value 
of (i,v) in H0 



Cascading 

•  Each time a table Hi fills up, we dump its 
contents in Hi+1, using the oblivious 
MapReduce construction 
–  (…a few more details – please see the paper) 

•  We can do ORAM simulation with O(log2 n) 
overhead with O(1) local memory or O(log n) 
overhead with O(nε) local memory 



Convex Hull Representation 
•  We want the entire algorithm to be data-

oblivious, except for low-level blackbox functions 
•  Given a set of points, A, ordered by their x-

coordinates, we define the upper hull, UH(A), of 
A, to be as follows 
–  For each point p in A, we label p with the edge, e(p), 

of the upper convex hull that is intersected by a 
vertical line through the point p. If p is itself on the 
upper hull, then we label p with the upper hull edge 
incident to p on the right. 

p 

e(p) 



Our Approach 

•  Do an oblivious sort of A 
•  Divide A into left half and right half and 

recursively find UH of each side 



Merge Step 

•  Find the common upper tangent 
•  Relabel points under the tangent 



Tangent-Finding Cases 
p

q
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p q
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[from Overmars & van Leeuwen] 



Difficulty 
•  The classic binary search algorithm is not data-

oblivious 
•  We need a new way to do this “search” 
•  We aim to assign each edge e of UH(A1) and 

UH(A2) one of two labels: 
–   L: the tangent line of UH(A1 U A2) with the same 

slope as e is tangent to UH(A1). 
–   R: the tangent line of UH(A1 U A2) with the same 

slope as e is tangent to UH(A2). 
–  In some intermediate steps, we may be unable to 

determine yet whether an edge should be labeled L or 
R; In such cases, we temporarily label it with an X. 



New Approach 

•  Divide UH(A1) and UH(A2) at every n1/2 

edges 
•  Do brute-force comparisons 
•  See if we can reduce one of A1 or A2 to a 

region of size n1/2 

•  Repeat until we have found the tangent 
– This sounds non-oblivious, but we can make it 

oblivious by trying all O(1) possible reductions 
in turn (one of them will work). 



New Case Analysis 
•  For edge e in H1, let d be the edge in H2 with 

smallest slope greater than e and let f be the 
edge in H2 with largest slope less than e 



Result 
•  This gives us an oblivious linear-time method for 

finding the common upper tangent 
•  This, in turn, results in a data-oblivious convex 

hull algorithm running in O(n log n) time. 



Data-Oblivious Nearest Neighbors 

•  Based primarily on 
two new oblivious 
algorithms 
–  compressed quadtree 

construction 
–  well-separated pair 

decomposition  

The Geography Lesson (Portrait of Monsieur Gaudry and His Daughter),  
oil on canvas painting by Louis-Léopold Boilly, 1812, Kimbell Art Museum 



Quadtree Construction 

•  Use sorting and bit-
interleaving trick 
(e.g., see Samet) to 
construct a 
compressed 
quadtree in a data-
oblivious manner 



Well-Separated Pairs 
•  Given a parameter s construct a set of pairs, 

(A1,B1), (A2,B2), …, (Ak,Bk), such that every pair 
of points p and q are represented by a pair 
(Ai,Bi) such that p is in Ai and q is in Bi, and such 
that there are balls of radius r containing Ai and 
Bi so that these balls are of distance at least sr 
apart. 

Images from http://graphics.stanford.edu/~jgao/researchstatement/jie_research.html 



Conclusion and Open Problems 
•  We have shown how to solve several geometric 

problems efficiently with data-oblivious algorithms 
•  These methods lead to efficient SMC protocols for 

privacy-preserving location-based methods 
•  Open: Is there a data-oblivious method for building a 

representation of the Voronoi diagram (or Delaunay 
triangulation) of a set of n points in O(n log n) time? 

http://vbgraphic.altervista.org/terrain4.htm 
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