Using Data-Oblivious Algorithms for Private Cloud Storage Access

Privacy in the Cloud

- Alice owns a large data set, which she outsources to an honest-but-curious server, Bob.
 - Alice trusts Bob to reliably maintain her data, to update it as requested, and to accurately answer queries on this data.
 - But she does not trust Bob to keep her information confidential.

Alice

read cell i write x to cell j

Bob

Encryption is not Sufficient

- Alice certainly should use a semantically-secure encryption scheme, for each cell of her data.
- But this is not enough.

Alice

e.g., Bob can see the hot spots

Oblivious Data Storage

- Alice has a private memory, of size K, which she can use as local scratch space so that she can access her data on a untrusted server in a private fashion.
 - She wants to do this with low overhead
 - She wants to use this to hide her access patterns

Data-oblivious Algorithms

- Alice can encrypt her data and then hide her access patterns by using data-oblivious algorithms.
 - A data-oblivious computation consists of a sequence of data accesses that do not depend on the input values.
 - All functions that combine data values are encapsulated into **black box** operations, with a constant number of inputs and outputs.
 - The control flow depends only on the input size, and, in the case of randomized algorithms, the values of random variables.

Two Approaches

- Design general methods to efficiently simulate an arbitrary RAM algorithm, A, in a dataoblivious fashion.
 - These methods typically have an overhead per access of O(log n), O(log² n), or even O(log³ n).
- Design efficient data-oblivious algorithms for specific problems of interest.
 - These methods tend to be more efficient, but are more specialized
- We are taking a unified view, which allows for both approaches.

Our General Simulation Results

- We give methods for oblivious RAM simulation:
 - O(1) local memory and has O(log² n) overhead
 - $O(n^{\epsilon})$ local memory and has $O(\log n)$ overhead.
 - O(n^ε) local memory and message size, and has
 O(1) overhead
- Our methods use the following techniques:
 - MapReduce cuckoo hashing
 - Data-oblivious external-memory sorting
 - cuckoo hashing with a shared stash

Our Results for Specific Problems

- We give data-oblivious algorithms for
 - Planar convex hull construction,
 - Minimum spanning trees,
 - Graph drawing problems,
 - All nearest neighbor finding

Image from http://cdn.venturebeat.com/wp-content/uploads/2009/03/28811286_e1671e30a9.jpg

Cuckoo Hashing

- Uses two lookup tables T₀ and T₁ and two pseudo-random hash functions, f₀ and f₁.
- Each item x is stored either in T₀[h₀(x)] or T₁[h₁(x)].
 - When an item x is added, we put it in $T_0[h_0(x)]$.
 - If there was already an item y there, we put it in T₁[h₁(y)].
 If there was already an item z there, we put it in T₀[h₀(z)].
- Will add a new item in O(log n) time w/ probability 1-1/n.

Cuckoo Hashing Technique

Using a Stash

- [Kirsch et al., 09] introduce the idea of using a stash with a cuckoo table.
 - A small cache where we store items that cannot be added to the cuckoo table without causing an infinite loop.
- A stash of size c improves the failure probability to be 1/n^c.
 - Unfortunately, this is too large a failure bound for us...

Using a Big Stash

- We show that a stash of size O(log n) reduces the failure probability to be negligible.
 - But now lookups will no longer be O(1) time.
- Still, in some cases, like in ORAM simulation, we may have several cuckoo tables that share the same big stash.

 Ok, but there is still the issue of constructing a cuckoo table obliviously...

MapReduce

- A framework for designing computations for large clusters of computers.
- Decouples location from data and computation

Image from taken from Yahoo! Hadoop Presentation: Part 2, OSCON 2007.

Map-Shuffle-Reduce

- Map:
 - $(k,v) \rightarrow [(k_1,v_1),(k_2,v_2),...]$
 - must depend only on this one pair, (k,v)
- Shuffle:
 - For each key k used in the first coordinate of a pair, collect all pairs with k as first coordinate
 - $[(k,v_1),(k,v_2),...]$
- Reduce:
 - For each list, $[(k,v_1),(k,v_2),...]$:
 - Perform a sequential computation to produce a set of pairs, [(k'₁,v'₁),(k'₂,v'₂),...]
 - Pairs from this reduce step can be output or used in another map-shuffle-reduce cycle.

Image from http://www.wvculture.org/shpo/es/graphics/6-sorting%20shell.jpg

MapReduce Cuckoo Hashing

- We give a MapReduce Algorithm for constructing a cuckoo table.
- It performs O(n) parallel steps of item insertions
- With very high probability, this reduces the number of remaining uninserted items to be n/c, for some constant c.
 - Recursively add these items
- Total work is O(n).
- But now we need an oblivious way to simulate a MapReduce algorithm...

Oblivious Deterministic Sorting

- For internal-memory: AKS is the only deterministic oblivious method running in O(n log n) time.
- Randomized Shellsort [Goodrich '10] runs in O(n log n) time and sorts with high probability, but this isn't good enough here.

 We show how to design an oblivious external-memory sorting method that uses O((N/B)log²_{M/B} (N/B)) I/Os.

Generalized Odd-Even Sort

- We divide A into $k = (M/B)^{1/3}$ subarrays of size N/k and recursively sort each subarray.
- Let us therefore focus on merging k sorted arrays of size n = N/k each.
- If nk < M, then we copy all the lists into internal memory, merge them, and copy them back.
- Otherwise, let A[i, j] denote the jth element in the ith array. We form a set of m new subproblems, where the pth subproblem involves merging the k sorted subarrays defined by A[i, j] elements such that j mod m = p, for m = (M/B)1/3.
- Let D[i, j] denote the jth element in the output of the ith subproblem. That is, we can view
- D as a two-dimensional array, with each row corresponding to the solution to a recursive merge.

Lemma: Each row and column of D is in sorted order and all the elements in column j are less than or equal to every element in column j + k.

Proof: The lemma follows from Theorem 1 of Lee and Batcher [32].

- To complete the k-way merge, then, we imagine that we slide an m x k rectangle across D, from left to right. When it finishes, A will be sorted (obliviously)
- Runs in O((N/B)log2M/B (N/B)) I/Os.
- Note that this is O(N)-time sorting if B=1 and M=O(N^ε).

Our Simulation

- Construct O(log n) cuckoo tables in a hierarchy, H₀, H₁, H₂, …
- Each table is twice the size of the previous
- They all share a single stash of size O(log n)
- Store all the items (i,v) in these tables

 H_0

H₁

 H_2

 H_3

• Initially, they are all empty except for the largest.

For each Access to i

- First look in H₀ (which is just a list)
- Then look in H₁, H₂, ..., doing a cuckoo lookup for i
- As soon as you find it, say in H₆, store it
- But to be oblivious, continue doing cuckoo lookups in H₇, H₈, ..., for a random (previously unused) dummy index
 When we are done, but the updated value of (i,v) in H₀

Cascading

 Each time a table H_i fills up, we dump its contents in H_{i+1}, using the oblivious MapReduce construction

- (...a few more details - please see the paper)

 We can do ORAM simulation with O(log² n) overhead with O(1) local memory or O(log n) overhead with O(n^ε) local memory

Convex Hull Representation

- We want the entire algorithm to be dataoblivious, except for low-level blackbox functions
- Given a set of points, A, ordered by their xcoordinates, we define the upper hull, UH(A), of A, to be as follows
 - For each point p in A, we label p with the edge, e(p), of the upper convex hull that is intersected by a vertical line through the point p. If p is itself on the upper hull, then we label p with the upper hull edge incident to p on the right.

e(p)

Our Approach

- Do an oblivious sort of A
- Divide A into left half and right half and recursively find UH of each side

Merge Step

- Find the common upper tangent
- Relabel points under the tangent

Tangent-Finding Cases

Difficulty

- The classic binary search algorithm is not dataoblivious
- We need a new way to do this "search"
- We aim to assign each edge e of UH(A₁) and UH(A₂) one of two labels:
 - L: the tangent line of $UH(A_1 U A_2)$ with the same slope as e is tangent to UH(A1).
 - R: the tangent line of $UH(A_1 U A_2)$ with the same slope as e is tangent to UH(A2).
 - In some intermediate steps, we may be unable to determine yet whether an edge should be labeled L or R; In such cases, we temporarily label it with an X.

New Approach

- Divide UH(A₁) and UH(A₂) at every n^{1/2} edges
- Do brute-force comparisons
- See if we can reduce one of A_1 or A_2 to a region of size $n^{1/2}$
- Repeat until we have found the tangent

 This sounds non-oblivious, but we can make it oblivious by trying all O(1) possible reductions in turn (one of them will work).

New Case Analysis

 For edge e in H₁, let d be the edge in H₂ with smallest slope greater than e and let f be the edge in H₂ with largest slope less than e

Result

- This gives us an oblivious linear-time method for finding the common upper tangent
- This, in turn, results in a data-oblivious convex hull algorithm running in O(n log n) time.

Data-Oblivious Nearest Neighbors

- Based primarily on two new oblivious algorithms
 - compressed quadtree construction
 - well-separated pair decomposition

The Geography Lesson (Portrait of Monsieur Gaudry and His Daughter), oil on canvas painting by Louis-Léopold Boilly, 1812, Kimbell Art Museum

Quadtree Construction

 Use sorting and bitinterleaving trick (e.g., see Samet) to construct a compressed quadtree in a dataoblivious manner

Well-Separated Pairs

Given a parameter s construct a set of pairs, (A₁,B₁), (A₂,B₂), ..., (A_k,B_k), such that every pair of points p and q are represented by a pair (A_i,B_i) such that p is in A_i and q is in B_i, and such that there are balls of radius r containing A_i and B_i so that these balls are of distance at least sr apart.

Images from http://graphics.stanford.edu/~jgao/researchstatement/jie_research.html

Conclusion and Open Problems

- We have shown how to solve several geometric problems efficiently with data-oblivious algorithms
- These methods lead to efficient SMC protocols for privacy-preserving location-based methods
- Open: Is there a data-oblivious method for building a representation of the Voronoi diagram (or Delaunay triangulation) of a set of n points in O(n log n) time?

http://vbgraphic.altervista.org/terrain4.htm

Relevant Publications

- 1. M.T. Goodrich, "Randomized Shellsort: A Simple Data-Oblivious Sorting Algorithm," Journal of the ACM, 58(6), Article No. 27, 2011.
- 2. D. Eppstein, M.T. Goodrich, R. Tamassia, "Privacy-Preserving Data-Oblivious Geometric Algorithms for Geographic Data," Proc. 18th ACM GIS, 2010, 13-22.
- 3. M.T. Goodrich, "Spin-the-bottle Sort and Annealing Sort: Oblivious Sorting via Round-robin Random Comparisons," 8th ANALCO, 2011.
- 4. M.T. Goodrich, Data-Oblivious "External-Memory Algorithms for the Compaction, Selection, and Sorting of Outsourced Data," 23rd ACM SPAA, 2011, 379-388.
- 5. M.T. Goodrich and M. Mitzenmacher, "Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation," 38th ICALP, vol. 6756, 2011, 576-587.
- M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia, "Oblivious RAM Simulation with Efficient Worst-Case Access Overhead," ACM Cloud Computing Security Workshop (CCSW), 95-100, 2011.
- 7. M.T. Goodrich, O. Ohrimenko, M. Mitzenmacher, and R. Tamassia, "Privacy-Preserving Group Data Access via Stateless Oblivious RAM Simulation," 23rd SODA, 157-167, 2012.
- 8. M.T. Goodrich, O. Ohrimenko, M. Mitzenmacher, and R. Tamassia, "Practical Oblivious Storage," 2nd ACM CODASPY, 13-24, 2012.
- 9. M.T. Goodrich and M. Mitzenmacher, "Anonymous Card Shuffling and its Applications to Parallel Mixnets," 39th ICALP, Springer, LNCS, vol. 6756, 576-587, 2012.
- 10. M.T. Goodrich, O. Ohrimenko, and R. Tamassia, "Graph Drawing in the Cloud: Privately Visualizing Relational Data using Small Working Storage," 20th Graph Drawing 2012.