
Using Data-Oblivious Algorithms
for Private Cloud Storage Access

Michael T. Goodrich
Dept. of Computer Science

Privacy in the Cloud
•  Alice owns a large data set,

which she outsources to an
honest-but-curious server, Bob.
–  Alice trusts Bob to reliably maintain her

data, to update it as requested, and to
accurately answer queries on this data.

–  But she does not trust Bob to keep her
information confidential.

Alice Bob read cell i
write x to cell j

Encryption is not Sufficient
•  Alice certainly should use a

semantically-secure encryption
scheme, for each cell of her
data.

•  But this is not enough.

Alice Bob read E(x) from cell i
write E(y) to cell j

e.g., Bob can see the
hot spots

Oblivious Data Storage
•  Alice has a private memory, of size K, which she

can use as local scratch space so that she can
access her data on a untrusted server in a
private fashion.
–  She wants to do this with low overhead
–  She wants to use this to hide her access patterns

Data-oblivious Algorithms
•  Alice can encrypt her data and then hide her

access patterns by using data-oblivious
algorithms.
–  A data-oblivious computation consists of a sequence

of data accesses that do not depend on the input
values.

–  All functions that combine data values are
encapsulated into black box operations, with a
constant number of inputs and outputs.

–  The control flow depends only on the input size, and,
in the case of randomized algorithms, the values of
random variables.

Two Approaches
•  Design general methods to efficiently simulate

an arbitrary RAM algorithm, A, in a data-
oblivious fashion.
–  These methods typically have an overhead per

access of O(log n), O(log2 n), or even O(log3 n).
•  Design efficient data-oblivious algorithms for

specific problems of interest.
–  These methods tend to be more efficient, but are

more specialized
•  We are taking a unified view, which allows for

both approaches.

Our General Simulation Results
•  We give methods for oblivious RAM

simulation:
–  O(1) local memory and has O(log2 n) overhead
–  O(nε) local memory and has O(log n) overhead.
–  O(nε) local memory and message size, and has

O(1) overhead

•  Our methods use the following
techniques:
– MapReduce cuckoo hashing
– Data-oblivious external-memory sorting
– cuckoo hashing with a shared stash

Our Results for Specific Problems
•  We give data-oblivious algorithms for

–  Planar convex hull construction,
–  Minimum spanning trees,
–  Graph drawing problems,
–  All nearest neighbor finding

Image from http://cdn.venturebeat.com/wp-content/uploads/2009/03/28811286_e1671e30a9.jpg

Cuckoo Hashing
•  Uses two lookup tables T0 and T1 and two

pseudo-random hash functions, f0 and f1.
•  Each item x is stored either in T0[h0(x)] or

T1[h1(x)].
–  When an item x is added, we put it in T0[h0(x)].

•  If there was already an item y there, we put it in T1[h1(y)].
–  If there was already an item z there, we put it in T0[h0(z)].

»  …

•  Will add a new item in O(log n) time w/
probability 1-1/n.

Cuckoo Hashing Technique

h1 h2

2 9 3 5 8

T1 T2

2
2

2

3

3
3

5
5

5
8

8

8

9 9 9

Cuckoo Insertion

2

put 7

4 lands in
an empty cell

T1 T2

7
3
4

9

5

1
8

2 evicts 6

6

Using a Stash

•  [Kirsch et al., 09] introduce the idea of
using a stash with a cuckoo table.
– A small cache where we store items that

cannot be added to the cuckoo table without
causing an infinite loop.

•  A stash of size c improves the failure
probability to be 1/nc.
– Unfortunately, this is too large a failure bound

for us…

Using a Big Stash

•  We show that a stash of size O(log n)
reduces the failure probability to be
negligible.
– But now lookups will no longer be O(1) time.

•  Still, in some cases, like in ORAM
simulation, we may have several cuckoo
tables that share the same big stash.

•  Ok, but there is still the issue of
constructing a cuckoo table obliviously…

MapReduce

•  A framework for designing computations for
large clusters of computers.

•  Decouples location from data and
computation

Image from taken from Yahoo! Hadoop Presentation: Part 2, OSCON 2007.

Map-Shuffle-Reduce
•  Map:

•  (k,v) -> [(k1,v1),(k2,v2),…]
•  must depend only on this one pair, (k,v)

•  Shuffle:
•  For each key k used in the first coordinate of a pair,

collect all pairs with k as first coordinate
•  [(k,v1),(k,v2),…]

•  Reduce:
•  For each list, [(k,v1),(k,v2),…]:

•  Perform a sequential computation to produce a set of
pairs, [(k’1,v’1),(k’2,v’2),…]

•  Pairs from this reduce step can be output or used in
another map-shuffle-reduce cycle.

Image from http://www.wvculture.org/shpo/es/graphics/6-sorting%20shell.jpg

MapReduce Cuckoo Hashing
•  We give a MapReduce Algorithm for constructing

a cuckoo table.
•  It performs O(n) parallel steps of item insertions
•  With very high probability, this reduces the

number of remaining uninserted items to be n/c,
for some constant c.
–  Recursively add these items

•  Total work is O(n).
•  But now we need an oblivious way to simulate a

MapReduce algorithm…

Oblivious Deterministic Sorting
•  For internal-memory: AKS is the only

deterministic oblivious method running in
O(n log n) time.

•  Randomized Shellsort [Goodrich ‘10] runs
in O(n log n) time and sorts with high
probability, but this isn’t good enough
here.

•  We show how to design an oblivious
external-memory sorting method that uses
O((N/B)log2

M/B (N/B)) I/Os.

Generalized Odd-Even Sort
•  We divide A into k = (M/B)1/3 subarrays of size N/k and recursively sort each subarray.
•  Let us therefore focus on merging k sorted arrays of size n = N/k each.
•  If nk < M, then we copy all the lists into internal memory, merge them, and copy them

back.
•  Otherwise, let A[i, j] denote the jth element in the ith array. We form a set of m new

subproblems, where the pth subproblem involves merging the k sorted subarrays
defined by A[i, j] elements such that j mod m = p, for m = (M/B)1/3.

•  Let D[i, j] denote the jth element in the output of the ith subproblem. That is, we can
view

•  D as a two-dimensional array, with each row corresponding to the solution to a
recursive merge.

Lemma: Each row and column of D is in sorted order and all the elements in column j are

less than or equal to every element in column j + k.
Proof: The lemma follows from Theorem 1 of Lee and Batcher [32].
•  To complete the k-way merge, then, we imagine that we slide an m x k rectangle

across D, from left to right. When it finishes, A will be sorted (obliviously)
•  Runs in O((N/B)log2M/B (N/B)) I/Os.
•  Note that this is O(N)-time sorting if B=1 and M=O(Nε).

Our Simulation

•  Construct O(log n) cuckoo tables in a hierarchy,
H0, H1, H2, …

•  Each table is twice the size of the previous
•  They all share a single stash of size O(log n)
•  Store all the items (i,v) in these tables
•  Initially, they are all empty except for the largest.

H0

H3

H1

H2

For each Access to i

•  First look in H0 (which is just a list)
•  Then look in H1, H2, …, doing a cuckoo

lookup for i
•  As soon as you find it, say in H6, store it
•  But to be oblivious, continue doing cuckoo

lookups in H7, H8, …, for a random
(previously unused) dummy index

•  When we are done, but the updated value
of (i,v) in H0

Cascading

•  Each time a table Hi fills up, we dump its
contents in Hi+1, using the oblivious
MapReduce construction
–  (…a few more details – please see the paper)

•  We can do ORAM simulation with O(log2 n)
overhead with O(1) local memory or O(log n)
overhead with O(nε) local memory

Convex Hull Representation
•  We want the entire algorithm to be data-

oblivious, except for low-level blackbox functions
•  Given a set of points, A, ordered by their x-

coordinates, we define the upper hull, UH(A), of
A, to be as follows
–  For each point p in A, we label p with the edge, e(p),

of the upper convex hull that is intersected by a
vertical line through the point p. If p is itself on the
upper hull, then we label p with the upper hull edge
incident to p on the right.

p

e(p)

Our Approach

•  Do an oblivious sort of A
•  Divide A into left half and right half and

recursively find UH of each side

Merge Step

•  Find the common upper tangent
•  Relabel points under the tangent

Tangent-Finding Cases
p

q

Case a:

p q

Case b:

p
q

Case d:

p
q

Case c:

p q

Case f:

p

q

Case e:

Case g: Case h:

p q

Case i1:

p
q

Case i2:

p q
p

q

[from Overmars & van Leeuwen]

Difficulty
•  The classic binary search algorithm is not data-

oblivious
•  We need a new way to do this “search”
•  We aim to assign each edge e of UH(A1) and

UH(A2) one of two labels:
–  L: the tangent line of UH(A1 U A2) with the same

slope as e is tangent to UH(A1).
–  R: the tangent line of UH(A1 U A2) with the same

slope as e is tangent to UH(A2).
–  In some intermediate steps, we may be unable to

determine yet whether an edge should be labeled L or
R; In such cases, we temporarily label it with an X.

New Approach

•  Divide UH(A1) and UH(A2) at every n1/2

edges
•  Do brute-force comparisons
•  See if we can reduce one of A1 or A2 to a

region of size n1/2

•  Repeat until we have found the tangent
– This sounds non-oblivious, but we can make it

oblivious by trying all O(1) possible reductions
in turn (one of them will work).

New Case Analysis
•  For edge e in H1, let d be the edge in H2 with

smallest slope greater than e and let f be the
edge in H2 with largest slope less than e

Result
•  This gives us an oblivious linear-time method for

finding the common upper tangent
•  This, in turn, results in a data-oblivious convex

hull algorithm running in O(n log n) time.

Data-Oblivious Nearest Neighbors

•  Based primarily on
two new oblivious
algorithms
–  compressed quadtree

construction
–  well-separated pair

decomposition

The Geography Lesson (Portrait of Monsieur Gaudry and His Daughter),
oil on canvas painting by Louis-Léopold Boilly, 1812, Kimbell Art Museum

Quadtree Construction

•  Use sorting and bit-
interleaving trick
(e.g., see Samet) to
construct a
compressed
quadtree in a data-
oblivious manner

Well-Separated Pairs
•  Given a parameter s construct a set of pairs,

(A1,B1), (A2,B2), …, (Ak,Bk), such that every pair
of points p and q are represented by a pair
(Ai,Bi) such that p is in Ai and q is in Bi, and such
that there are balls of radius r containing Ai and
Bi so that these balls are of distance at least sr
apart.

Images from http://graphics.stanford.edu/~jgao/researchstatement/jie_research.html

Conclusion and Open Problems
•  We have shown how to solve several geometric

problems efficiently with data-oblivious algorithms
•  These methods lead to efficient SMC protocols for

privacy-preserving location-based methods
•  Open: Is there a data-oblivious method for building a

representation of the Voronoi diagram (or Delaunay
triangulation) of a set of n points in O(n log n) time?

http://vbgraphic.altervista.org/terrain4.htm

Relevant Publications
1.  M.T. Goodrich, “Randomized Shellsort: A Simple Data-Oblivious Sorting Algorithm," Journal

of the ACM, 58(6), Article No. 27, 2011.
2.  D. Eppstein, M.T. Goodrich, R. Tamassia, “Privacy-Preserving Data-Oblivious Geometric

Algorithms for Geographic Data," Proc. 18th ACM GIS, 2010, 13-22.
3.  M.T. Goodrich, “Spin-the-bottle Sort and Annealing Sort: Oblivious Sorting via Round-robin

Random Comparisons," 8th ANALCO, 2011.
4.  M.T. Goodrich, Data-Oblivious “External-Memory Algorithms for the Compaction, Selection,

and Sorting of Outsourced Data," 23rd ACM SPAA, 2011, 379-388.
5.  M.T. Goodrich and M. Mitzenmacher, “Privacy-Preserving Access of Outsourced Data via

Oblivious RAM Simulation," 38th ICALP, vol. 6756, 2011, 576-587.
6.  M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia, “Oblivious RAM

Simulation with Efficient Worst-Case Access Overhead," ACM Cloud Computing Security
Workshop (CCSW), 95-100, 2011.

7.  M.T. Goodrich, O. Ohrimenko, M. Mitzenmacher, and R. Tamassia, “Privacy-Preserving
Group Data Access via Stateless Oblivious RAM Simulation," 23rd SODA, 157-167, 2012.

8.  M.T. Goodrich, O. Ohrimenko, M. Mitzenmacher, and R. Tamassia, “Practical Oblivious
Storage," 2nd ACM CODASPY, 13-24, 2012.

9.  M.T. Goodrich and M. Mitzenmacher, “Anonymous Card Shuffling and its Applications to
Parallel Mixnets," 39th ICALP, Springer, LNCS, vol. 6756, 576-587, 2012.

10. M.T. Goodrich, O. Ohrimenko, and R. Tamassia, “Graph Drawing in the Cloud: Privately
Visualizing Relational Data using Small Working Storage," 20th Graph Drawing 2012.

