Using Data-Oblivious Algorithms for Private Cloud Storage Access

Michael T. Goodrich
Dept. of Computer Science
Privacy in the Cloud

- Alice owns a large data set, which she outsources to an honest-but-curious server, Bob.
 - Alice trusts Bob to reliably maintain her data, to update it as requested, and to accurately answer queries on this data.
 - But she does not trust Bob to keep her information confidential.
Encryption is not Sufficient

- Alice certainly should use a semantically-secure encryption scheme, for each cell of her data.
- But this is not enough.

e.g., Bob can see the hot spots
Oblivious Data Storage

- Alice has a private memory, of size K, which she can use as local scratch space so that she can access her data on a untrusted server in a private fashion.
 - She wants to do this with low overhead
 - She wants to use this to hide her access patterns
Data-oblivious Algorithms

- Alice can encrypt her data and then hide her access patterns by using data-oblivious algorithms.
 - A data-oblivious computation consists of a sequence of data accesses that do not depend on the input values.
 - All functions that combine data values are encapsulated into black box operations, with a constant number of inputs and outputs.
 - The control flow depends only on the input size, and, in the case of randomized algorithms, the values of random variables.
Two Approaches

• Design general methods to efficiently simulate an arbitrary RAM algorithm, A, in a data-oblivious fashion.
 – These methods typically have an overhead per access of $O(\log n)$, $O(\log^2 n)$, or even $O(\log^3 n)$.

• Design efficient data-oblivious algorithms for specific problems of interest.
 – These methods tend to be more efficient, but are more specialized

• We are taking a unified view, which allows for both approaches.
Our General Simulation Results

• We give methods for oblivious RAM simulation:
 – $O(1)$ local memory and has $O(\log^2 n)$ overhead
 – $O(n^\epsilon)$ local memory and has $O(\log n)$ overhead.
 – $O(n^\epsilon)$ local memory and message size, and has $O(1)$ overhead

• Our methods use the following techniques:
 – MapReduce cuckoo hashing
 – Data-oblivious external-memory sorting
 – cuckoo hashing with a shared stash
Our Results for Specific Problems

• We give data-oblivious algorithms for
 – Planar convex hull construction,
 – Minimum spanning trees,
 – Graph drawing problems,
 – All nearest neighbor finding
Cuckoo Hashing

- Uses two lookup tables T_0 and T_1 and two pseudo-random hash functions, f_0 and f_1.
- Each item x is stored either in $T_0[h_0(x)]$ or $T_1[h_1(x)]$.
 - When an item x is added, we put it in $T_0[h_0(x)]$.
 - If there was already an item y there, we put it in $T_1[h_1(y)]$.
 - If there was already an item z there, we put it in $T_0[h_0(z)]$.
 » ...
- Will add a new item in $O(\log n)$ time with probability $1-1/n$.
Cuckoo Hashing Technique
Cuckoo Insertion

- Put 7

- 7 evicts 2

- 6 evicts 4

- 2 evicts 6

- 4 lands in an empty cell
Using a Stash

• [Kirsch et al., 09] introduce the idea of using a stash with a cuckoo table.
 – A small cache where we store items that cannot be added to the cuckoo table without causing an infinite loop.

• A stash of size c improves the failure probability to be $1/n^c$.
 – Unfortunately, this is too large a failure bound for us…
Using a Big Stash

• We show that a stash of size $O(\log n)$ reduces the failure probability to be negligible.
 – But now lookups will no longer be $O(1)$ time.

• Still, in some cases, like in ORAM simulation, we may have several cuckoo tables that share the same big stash.

• Ok, but there is still the issue of constructing a cuckoo table obliviously…
MapReduce

- A framework for designing computations for large clusters of computers.
- Decouples location from data and computation

Map-Shuffle-Reduce

- **Map:**
 - \((k,v) \rightarrow [(k_1,v_1),(k_2,v_2),\ldots]\)
 - must depend only on this one pair, \((k,v)\)

- **Shuffle:**
 - For each key \(k\) used in the first coordinate of a pair, collect all pairs with \(k\) as first coordinate
 - \([(k,v_1),(k,v_2),\ldots] \)

- **Reduce:**
 - For each list, \([(k,v_1),(k,v_2),\ldots] \):
 - Perform a sequential computation to produce a set of pairs, \([(k'_1,v'_1),(k'_2,v'_2),\ldots] \)
 - Pairs from this reduce step can be output or used in another map-shuffle-reduce cycle.
MapReduce Cuckoo Hashing

• We give a MapReduce Algorithm for constructing a cuckoo table.
• It performs $O(n)$ parallel steps of item insertions
• With very high probability, this reduces the number of remaining uninserted items to be n/c, for some constant c.
 – Recursively add these items
• Total work is $O(n)$.
• But now we need an oblivious way to simulate a MapReduce algorithm…
Oblivious Deterministic Sorting

• For internal-memory: AKS is the only deterministic oblivious method running in $O(n \log n)$ time.

• Randomized Shellsort [Goodrich ‘10] runs in $O(n \log n)$ time and sorts with high probability, but this isn’t good enough here.

• We show how to design an oblivious external-memory sorting method that uses $O((N/B)\log^2_{M/B} (N/B))$ I/Os.
Generalized Odd-Even Sort

- We divide A into \(k = (M/B)^{1/3} \) subarrays of size \(N/k \) and recursively sort each subarray.
- Let us therefore focus on merging \(k \) sorted arrays of size \(n = N/k \) each.
- If \(nk < M \), then we copy all the lists into internal memory, merge them, and copy them back.
- Otherwise, let \(A[i, j] \) denote the \(j \)th element in the \(i \)th array. We form a set of \(m \) new subproblems, where the \(p \)th subproblem involves merging the \(k \) sorted subarrays defined by \(A[i, j] \) elements such that \(j \) mod \(m \) = \(p \), for \(m = (M/B)^{1/3} \).
- Let \(D[i, j] \) denote the \(j \)th element in the output of the \(i \)th subproblem. That is, we can view
- \(D \) as a two-dimensional array, with each row corresponding to the solution to a recursive merge.

Lemma: Each row and column of \(D \) is in sorted order and all the elements in column \(j \) are less than or equal to every element in column \(j + k \).

Proof: The lemma follows from Theorem 1 of Lee and Batcher [32].
- To complete the \(k \)-way merge, then, we imagine that we slide an \(m \times k \) rectangle across \(D \), from left to right. When it finishes, \(A \) will be sorted (obliviously).
- Runs in \(O((N/B) \log 2M/B (N/B)) \) I/Os.
- Note that this is \(O(N) \)-time sorting if \(B=1 \) and \(M=O(N^\epsilon) \).
Our Simulation

- Construct $O(\log n)$ cuckoo tables in a hierarchy, H_0, H_1, H_2, \ldots
- Each table is twice the size of the previous
- They all share a single stash of size $O(\log n)$
- Store all the items (i,v) in these tables
- Initially, they are all empty except for the largest.
For each Access to i

- First look in H_0 (which is just a list)
- Then look in H_1, H_2, …, doing a cuckoo lookup for i
- As soon as you find it, say in H_6, store it
- But to be oblivious, continue doing cuckoo lookups in H_7, H_8, …, for a random (previously unused) dummy index
- When we are done, but the updated value of (i,v) in H_0
Cascading

• Each time a table H_i fills up, we dump its contents in H_{i+1}, using the oblivious MapReduce construction
 – (…a few more details – please see the paper)
• We can do ORAM simulation with $O(\log^2 n)$ overhead with $O(1)$ local memory or $O(\log n)$ overhead with $O(n^{\varepsilon})$ local memory
Convex Hull Representation

• We want the entire algorithm to be data-oblivious, except for low-level blackbox functions.
• Given a set of points, A, ordered by their x-coordinates, we define the upper hull, $UH(A)$, of A, to be as follows
 - For each point p in A, we label p with the edge, $e(p)$, of the upper convex hull that is intersected by a vertical line through the point p. If p is itself on the upper hull, then we label p with the upper hull edge incident to p on the right.
Our Approach

• Do an oblivious sort of A
• Divide A into left half and right half and recursively find UH of each side
Merge Step

- Find the common upper tangent
- Relabel points under the tangent
Tangent-Finding Cases

Case a:

Case b:

Case c:

Case d:

Case e:

Case f:

Case g:

Case h:

Case i1:

Case i2:

[from Overmars & van Leeuwen]
Difficulty

• The classic binary search algorithm is not data-oblivious

• We need a new way to do this “search”

• We aim to assign each edge e of $UH(A_1)$ and $UH(A_2)$ one of two labels:
 – L: the tangent line of $UH(A_1 \cup A_2)$ with the same slope as e is tangent to $UH(A_1)$.
 – R: the tangent line of $UH(A_1 \cup A_2)$ with the same slope as e is tangent to $UH(A_2)$.
 – In some intermediate steps, we may be unable to determine yet whether an edge should be labeled L or R; In such cases, we temporarily label it with an X.
New Approach

• Divide UH(A₁) and UH(A₂) at every $n^{1/2}$ edges
• Do brute-force comparisons
• See if we can reduce one of A₁ or A₂ to a region of size $n^{1/2}$
• Repeat until we have found the tangent
 – This sounds non-oblivious, but we can make it oblivious by trying all $O(1)$ possible reductions in turn (one of them will work).
New Case Analysis

- For edge e in H_1, let d be the edge in H_2 with smallest slope greater than e and let f be the edge in H_2 with largest slope less than e.

![Diagram showing cases for edge analysis]
Result

• This gives us an oblivious linear-time method for finding the common upper tangent.
• This, in turn, results in a data-oblivious convex hull algorithm running in $O(n \log n)$ time.
Data-Oblivious Nearest Neighbors

- Based primarily on two new oblivious algorithms
 - compressed quadtree construction
 - well-separated pair decomposition

The Geography Lesson (Portrait of Monsieur Gaudry and His Daughter), oil on canvas painting by Louis-Léopold Boilly, 1812, Kimbell Art Museum
Quadtree Construction

- Use sorting and bit-interleaving trick (e.g., see Samet) to construct a compressed quadtree in a data-oblivious manner.
Well-Separated Pairs

• Given a parameter s construct a set of pairs, $(A_1,B_1), (A_2,B_2), \ldots, (A_k,B_k)$, such that every pair of points p and q are represented by a pair (A_i,B_i) such that p is in A_i and q is in B_i, and such that there are balls of radius r containing A_i and B_i so that these balls are of distance at least sr apart.

Images from http://graphics.stanford.edu/~jgao/researchstatement/jie_research.html
Conclusion and Open Problems

• We have shown how to solve several geometric problems efficiently with data-oblivious algorithms.

• These methods lead to efficient SMC protocols for privacy-preserving location-based methods.

• Open: Is there a data-oblivious method for building a representation of the Voronoi diagram (or Delaunay triangulation) of a set of n points in $O(n \log n)$ time?

http://vbgraphic.altervista.org/terrain4.htm

