

Discrepancy and Approximation Algorithms

Sasho Nikolov University of Toronto

Outline

- 1. Basics
- 2. Discrepancy and Bin Packing
- 3. Bounds and Algorithms
- 4. Approximating Discrepancy

Relax – Solve - Round

Powerful paradigm in approximation algorithms

Rounding

- What do we want from a rounding?
 - z = R(x) is feasible
 - $-c^{\mathsf{T}}z \ge \alpha \ c^{\mathsf{T}}x \rightarrow$ approximation factor α
- Two step approach:
 - 1. approximately preserve constraints: $(Az)_i \le b_i + D$
 - 2. "fix" violated constraints without changing objective value too much
- Step 1: discrepancy theory
- Step 2: problem dependent.

Linear Discrepancy Upper bound on how much the *i*-th • Round x so that constraint can be approximately sa violated. $\min_{z \in \{0,1\}^n} \max_{i=1}^m |(Az - Ax)_i| = \min_{z \in \{0,1\}^n} ||A(z - x)||_{\infty}$

- we can include *c* as one of the rows of *A* to preserve objective value
- Worst case over x:

 $\operatorname{lindisc}(A) = \max_{x \in [0,1]^n} \min_{z \in \{0,1\}^n} \|A(z-x)\|_{\infty}$

Matrix Discrepancy

- Discrepancy: $\operatorname{disc}(A) = \min_{x \in \{-1,1\}^n} \|Ax\|_{\infty}$
- Hereditary Discrepancy:

 $\operatorname{herdisc}(A) = \max_{J \subseteq [n]} \operatorname{disc}(A_J)$

 $-A_{J}$ is the submatrix of columns indexed by J

Theorem. [G62] A with entries -1, 0, 1 has herdisc(A) = 1 iff A is totally unimodular.

Theorem. [LSV86] $\operatorname{lindisc}(A) \leq \operatorname{herdisc}(A)$

Proof

Bin Packing

Problem: Pack items of sizes $1 \ge s_1 \ge s_2 \ge ... \ge s_n$ into the *fewest* bins of size 1

[KK82] OPT + O(log² OPT). If $s_n = \Omega(1)$, OPT + O(log OPT) [HR17] OPT + O(log OPT) for all sizes. Conjecture. OPT + O(1).

LP Relaxation

The rows of *P* are all feasible patterns.

"Smallest number of feasible patterns that cover all items"

Exercise: after adding D more bins we can pack all items.

Karmakar-Karp, contd.

- Assume at most *k* items fit per bin:
 - the matrices are monotone down each column and have entries bounded by k
- The discrepancy of such matrices is O(k log n)
- Implies + O(log OPT) approximation if all item sizes are constant.
 - [HR17] reduce the general case to this case without further loss.
- [NNN12] No rounding which only uses the support of an optimal LP solution can do better for this case.

- compare with a random rounding: $\sum_i \exp(-\lambda_i^2/4) \le \frac{1}{2}$
- if $m \le n/2$, can set $\lambda_1 = \lambda_2 = \dots = \lambda_m = 0$: basic feasible solution
- interpolates between randomized and iterative rounding

Lovett-Meka Algorithm

Algorithmic Banaszcyk Thm

- If *A* is orthonormal: uniformly random *X* from {-1, 1}^{*n*}
- If all columns of *A* the same: $X = \pm (+1, -1, +1, ...)$
- [BDGL17] Can efficiently sample μ .
 - Random walk in **Q**.
 - Intuitively: combine the two cases above.

Komlos Problem

• Komlos conjecture: for any A with columns of Euclidean norm at most 1, there exists an x in $\{-1, 1\}^n$ s.t. $||Ax||_{\infty} = O(1)$.

• **[B98]** $||Ax||_{\infty} = O(\sqrt{\log m})$ - Proof: $\mathbb{E}||G||_{\infty} = O(\sqrt{\log m})$, and apply theorem.

Complexity of Discrepancy

• [CNN11] NP-hard to Generate Largest it can be [585]. disc(A) = 0 and $disc(A) = \Theta(n^{1/2})$ for binary $O(n) \times n$ matrix A.

- [NT14] Can approximate herdisc(A) up to O((log m)^{3/2}).
 - [DNTT17] ... up to polylog(rank A)
 - [AHG14] NP-hard to apx better than factor 2.

Approximating HerDisc

• First upper bound: by Banaszczyk

maximum Euclidean norm of a column of *A*

herdisc(A) $\leq 10(\mathbb{E}||G||_{\infty}) \cdot (\operatorname{col}(A))$

- we use that $col(A_j) \leq col(A)$

- Observe: $||Ax||_{\infty} = ||Ax||_Q = ||TAx||_{TQ}$, for any invertible *T*.
- Better upper bound:

herdisc(A)
$$\leq 10 \cdot \inf_{T} (\mathbb{E} ||G||_{TQ}) \cdot (\operatorname{col}(TA))$$

=: $\lambda(A)$

Approximating HerDisc

 $\operatorname{herdisc}(A) \leq \lambda(A) \leq O((\log m)^{3/2}) \cdot \operatorname{herdisc}(A)$

- Proof sketch:
 - formulate $\lambda(A)$ as the value of a convex program P
 - the dual *D* of *P* is a maximizative Volumetric argument
 - feasible solution to $D \rightarrow$ lower bound on herdisc(A)
- The program *P* can be solved efficiently
- $\lambda(A)$ can be relaxed to an SDP.

Open Problems

- Approximate lindisc(A)
- Use discrepancy rounding for other approximation problems
- Get + o(log OPT) approximation for Bin Packing
- Solve Komlos problem