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Relax — Solve - Round

Powerful paradigm in approximation algorithms

Solve

maxclx maxclx
Ax < b R » Ax < b
re{0,1}" xr € |0,1]"

N

Round
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Rounding

 What do we want from a rounding?
— 7 =R(x) is feasible
— ¢'z > o c'x = approximation factor o

 Two step approach:
1. approximately preserve constraints: (Az). < b,+ D

2. “fix” violated constraints without changing
objective value too much

 Step 1: discrepancy theory
e Step 2: problem dependent.
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Upper bound on
how much the i-th
constraint can be

violated.

* Round x so that
approximately sa

= min [[A(z — 2)||s

. m
min max |(Az — Ax);
z€{0,1}n

2€{0,1}n i=1

— we can include ¢ as one of the rows of A to
preserve objective value

* \Worst case over x:
lindisc(A) = max,ejo,1)» Minecgo,13n ||A(2 — 7)o
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Matrix Discrepancy

* Discrepancy: disc(A) = mingcq 1 1yn ||A7]|
* Hereditary Discrepancy:
herdisc(A) = max ;¢ disc(A )

— A, is the submatrix of columns indexed by J

Theorem. [G62] A with entries-1, 0, 1 has
herdisc(A) = 1 iff A is totally unimodular.

Theorem. [LSV86] lindisc(A) < herdisc(A)




Algorithmically, we need to
compute low-discrepancy x
forany A,

— |.e. WE
most 0.5 * herdisc

Cost of rounding:
<(1/2+1/4+1/8 +...) * herdisc(A)
< herdisc(A)

* [n general: write in bin

x,=0.1010 x,=0.1010 x;=0.1000 x,=0.1000
x,=0.1100 |____,|x,=0.1100 | ,/x,=0.1100 |__,/x,=1.0000

x;=0.0011 x;=0.0100 x;=0.0100 x;=0.1000
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Bin Packing

Problem: Pack items of sizes 1 >s5,>5,> ... > s into the
fewest bins of size 1

e
—
— —  —
N I ) I N [ NS/

[KK82] OPT + O(log? OPT). If s, = Q(1), OPT + O(log OPT)
[HR17] OPT + O(log OPT) for all sizes.
Conjecture. OPT + O(1).
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LP Relaxation

Configuration LP: p in {0,1}"is feasible i

Solve using multiplicative

(how to pack a single bin)
weights and PST framework.

mine'x
Px > e
x>0

The rows of P are all feasible patterns.

“Smallest number of feasible patterns that cover all items”
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Karmakar-Karp via Discrepancy
[EPR 11]

A X
110000 0| |05 1 1-D
@ @ 10000 05 2 2-D
@ 0@ 1000 3 2-D
1 | D = herdisc(B)
Q000110 = 4-D
1 —< Number of avail 5: modified
0 Q0 @ @ . fﬁT'o 4 slots of size’at fe m.atrix
00 0 um of firs 6 6-D
rows 0 |
Q0 0 ] 3 1-D
2 0 0 3 3 ! a1 &-D
2 2 B 3 2 2® q-D
1111111 1

Exercise: after adding D more bins we can pack all items.
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Karmakar-Karp, contd.

Assume at most k items fit per bin:

— the matrices are monotone down each column and have
entries bounded by k

The discrepancy of such matrices is O(k log n)

Implies + O(log OPT) approximation if all item sizes are
constant.

— [HR17] reduce the general case to this case without
further loss.

[NNN12] No rounding which only uses the support of
an optimal LP solution can do better for this case.
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(Efficient) Partial Coloring

Theorem. [LM12] Let x in [-1,1]",and A, A,, ..., A s.t.

Y exp(~A?/16) < =

Earlier non-algorithmic versions by
Beck and Spencer. First algorithmic
work by Bansal.

Then we can efficie
Vi: |[(Az —

and at least n/10 coordinates of z are -1 or 1.

Y

* compare with a random rounding: ) _. exp(—\7/4) < %
* ifm<n/2,cansetA,=A,=..=A_=0: basic feasible solution

* interpolates between randomized and iterative rounding

Simons '17 Discrete and Continuous Opt 12



Lovett-Meka Algorithm

Q=[-1,1¢ K={y:|[(Ay — Az);| < Ail|a;«[[2}
Run Brownian
motion in K N () .

P Once you hit a
z face, stick to it.
XDM/ Success: n/10 tight

constraints at z from Q.

Intuition: the facets of K are on
average further than the facets of Q.
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Banaszczyk’s Theorem

|2l g = min{t : 2 € tK)

constant if K has Gaussian
measure > 1/2.

Th columns have

Eucli a symmetric convex
body (K = -K), the re exists an x in {-1, 1}"

s.t.||[Az||x < 10 - E||G| x, where G is a standard Gaussian
random vector.

Constant variance and sub-

Gaussian tail bounds in every

Theorem. [DGLN16] IfAi direction: P((6, AX) > f) < c~*/C

Euclidean norm at most 1, the
pover {-1, 1}"s.t. AX'is O(1)-Subgausstan, for X ~ L.
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Algorithmic Banaszcyk Thm

e If Ais orthonormal: uniformly random X from {-1, 1}"
e If all columns of A the same: X =+(+1,-1, +1, ...)

e [BDGL17] Can efficiently sample L.
— Random walk in Q.
— Intuitively: combine the two cases above.
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Komlos Problem

 Komlos conjecture: for any A with columns of

Euclidean norm at most 1, there exists an x in
{-1, 1} s.t.||Az| e = O(1).

* [B98] [[Azr| = O(vIogm)
— Proof: E||G||.. = O(+/logm), and apply theorem.
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Complexity of Discrepancy

* [CNN11] NP-hard to @can pe [s8s).

disc(A) = 0 and disc(A) = ©(n*/2) for binary
O(n)xn matrix A.

 [NT14] Can approximate herdisc(A) up to
O((log m)3/2).

— [DNTT17] ... up to polylog(rank A)

— [AHG14] NP-hard to apx better than factor 2.
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Approximating HerDisc

maximum Euclidean
norm of a column of A

* First upper bound: by Banaszczyk
herdisc(A) < 10(E||G||s0) - (col(A))
— we use that col(A)) < col(A)

* Observe: ||Azx||~ = ||[Ax||o = |[|T'Ax||1¢, for any
invertible T.

e Better upper bound:
herdisc(A) < 10 - i%f(EHGHTQ) - (col(T'A))
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Approximating HerDisc

herdisc(A) < A(4) < O((logm)?/?) - herdisc(A)

* Proof sketch:
— formulate A(A) as the value of a convex program P
— the dual D of P is a maximiza Volumetric argument

— feasible solution to D = lower bound on herdisc(A)

 The program P can be solved efficiently
* A(A) can be relaxed to an SDP.
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Open Problems

Approximate lindisc(A)

Use discrepancy rounding for other approximation
problems

Get + o(log OPT) approximation for Bin Packing

Solve Komlos problem
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