Discrepancy and Approximation Algorithms

Sasho Nikolov
University of Toronto

Outline

1. Basics
2. Discrepancy and Bin Packing
3. Bounds and Algorithms
4. Approximating Discrepancy

Relax－Solve－Round

Powerful paradigm in approximation algorithms

Rounding

- What do we want from a rounding?
$-z=R(x)$ is feasible
$-c^{\top} z \geq \alpha c^{\top} x \rightarrow$ approximation factor α
- Two step approach:

1. approximately preserve constraints: $(A z)_{i} \leq b_{i}+D$
2. "fix" violated constraints without changing objective value too much

- Step 1: discrepancy theory
- Step 2: problem dependent.

Linear Discrepancy

- Round x so that approximately sa violated.
$\min _{z \in\{0,1\}^{n}} \max _{i=1}^{\max }\left|(A z-A x)_{i}\right|=\min _{z \in\{0,1\}^{n}}\|A(z-x)\|_{\infty}$
- we can include c as one of the rows of A to preserve objective value
- Worst case over x :
$\operatorname{lindisc}(A)=\max _{x \in[0,1]^{n}} \min _{z \in\{0,1\}^{n}}\|A(z-x)\|_{\infty}$

Matrix Discrepancy

- Discrepancy: $\operatorname{disc}(A)=\min _{x \in\{-1,1\}^{n}}\|A x\|_{\infty}$
- Hereditary Discrepancy:

$$
\operatorname{herdisc}(A)=\max _{J \subseteq[n]} \operatorname{disc}\left(A_{J}\right)
$$

$-A_{J}$ is the submatrix of columns indexed by J

Theorem. [G62] A with entries $-1,0,1$ has herdisc $(A)=1$ iff A is totally unimodular.

Theorem. [LSV86] $\quad \operatorname{lindisc}(A) \leq \operatorname{herdisc}(A)$

Proof

- Observation: $\operatorname{disc}(A)=\min _{x \in\{-1,1\}^{n}}\|A x\|_{\infty}$ $\begin{aligned} & \text { Algorithmically, we need to } \\ & \text { compute low-discrepancy } x \\ & \text { for any } A_{j}\end{aligned}$ $\min _{z \in\{0 \text { 17n }}\left\|A\left(z-\frac{1}{9} e\right)\right\|_{\infty}$
- i.e. we callround 1/ Cost of rounding:
most 0.5 * herdisc $\quad \leq(1 / 2+1 / 4+1 / 2$
- In general: write in binar,
- yolt
$\left.\left.\begin{array}{l}x_{1}=0.1010 \\ x_{2}=0.1100 \\ x_{3}=0.0011\end{array} . \begin{array}{l}x_{1}=0.1010 \\ x_{2}=0.1100 \\ x_{3}=0.0100\end{array} \quad \longrightarrow \begin{array}{l}x_{1}=0.1000 \\ x_{2}=0.1100 \\ x_{3}=0.0100\end{array}\right] \begin{array}{l}x_{1}=0.1000 \\ x_{2}=1.0000 \\ x_{3}=0.1000\end{array}\right]$

Bin Packing

Problem: Pack items of sizes $1 \geq s_{1} \geq s_{2} \geq \ldots \geq s_{n}$ into the fewest bins of size 1

[KK82] OPT $+\mathrm{O}\left(\log ^{2}\right.$ OPT). If $s_{n}=\Omega(1)$, OPT $+\mathrm{O}(\log \mathrm{OPT})$
[HR17] OPT + O(log OPT) for all sizes.
Conjecture. OPT + O(1).

LP Relaxation

Configuration LP: p in $\{0,1\}^{n}$ is feasible if $\sum \cdot e^{\circ} s_{:} \leq 1$
(how to pack a single bin)
Solve using multiplicative weights and PST framework.

$$
P x \geq e
$$

$$
x \geq 0
$$

The rows of P are all feasible patterns.
"Smallest number of feasible patterns that cover all items"

Karmakar-Karp via Discrepancy [EPR 11]

Exercise: after adding D more bins we can pack all items.

Karmakar-Karp, contd.

- Assume at most k items fit per bin:
- the matrices are monotone down each column and have entries bounded by k
- The discrepancy of such matrices is $\mathrm{O}(k \log n)$
- Implies + O(log OPT) approximation if all item sizes are constant.
- [HR17] reduce the general case to this case without further loss.
- [NNN12] No rounding which only uses the support of an optimal LP solution can do better for this case.

(Efficient) Partial Coloring

Theorem. [LM12] Let x in $[-1,1]^{n}$, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ s.t.

Then we can efficiel
Earlier non-algorithmic versions by Beck and Spencer. First algorithmic work by Bansal.

$$
\forall i: \quad\left|(A z-A x)_{i}\right|-M \text {, }
$$

and at least $n / 10$ coordinates of z are -1 or 1 .

- compare with a random rounding: $\sum_{i} \exp \left(-\lambda_{i}^{2} / 4\right) \leq \frac{1}{2}$
- if $m \leq n / 2$, can set $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{m}=0$: basic feasible solution
- interpolates between randomized and iterative rounding

Lovett-Meka Algorithm

Banaszczyk's Theorem

$$
\|x\|_{K}=\min \{t: x \in t K\}
$$

Euclidearmis a symmetric convex body $(K=-K)$, then ere exists an x in $\{-1,1\}^{n}$
s.t. $\|A x\|_{K} \leq 10 \cdot \mathbb{E}\|G\|_{K}$, where G is a standard Gaussian random vector.

Theorem. [DGLN16] If A is
Constant variance and subGaussian tail bounds in every direction: $\mathbb{P}(\langle\theta, A X\rangle$
Euclidean norm at most 1, then tro
μ over $\{-1,1\}^{n}$ s.t. $A X$ is $O(1)$-Subgaussian, for $X^{\sim} \mu$.

Algorithmic Banaszcyk Thm

- If A is orthonormal: uniformly random X from $\{-1,1\}^{n}$
- If all columns of A the same: $X= \pm(+1,-1,+1, \ldots)$
- [BDGL17] Can efficiently sample μ.
- Random walk in Q.
- Intuitively: combine the two cases above.

Komlos Problem

- Komlos conjecture: for any A with columns of Euclidean norm at most 1, there exists an x in $\{-1,1\}^{n}$ s.t. $\|A x\|_{\infty}=O(1)$.
- [B98] $\|A x\|_{\infty}=O(\sqrt{\log m})$
- Proof: $\mathbb{E}\|G\|_{\infty}=O(\sqrt{\log m})$, and apply theorem.

Complexity of Discrepancy

- [CNN11] NP-hard to Gro- Largestit can be [885]. $\operatorname{disc}(A)=0$ and $\operatorname{disc}(A)=\Theta\left(n^{1 / 2}\right)$ for binary $O(n) \times n$ matrix A.
- [NT14] Can approximate herdisc(A) up to $\mathrm{O}\left((\log m)^{3 / 2}\right)$.
- [DNTT17] ... up to polylog(rank A)
- [AHG14] NP-hard to apx better than factor 2.

Approximating HerDisc

maximum Euclidean

- First upper bound: by Banaszczyk norm of a column of A

$$
\operatorname{herdisc}(A) \leq 10\left(\mathbb{E}\|G\|_{\infty}\right) \cdot(\operatorname{col}(A))
$$

- we use that $\operatorname{col}\left(A_{j}\right) \leq \operatorname{col}(A)$
- Observe: $\|A x\|_{\infty}=\|A x\|_{Q}=\|T A x\|_{T Q}$, for any invertible T.
- Better upper bound:

$$
\begin{aligned}
\operatorname{herdisc}(A) & \leq 10 \cdot \inf _{T}\left(\mathbb{E}\|G\|_{T Q}\right) \cdot(\operatorname{col}(T A)) \\
& =: \lambda(A)
\end{aligned}
$$

Approximating HerDisc

$\operatorname{herdisc}(A) \leq \lambda(A) \leq O\left((\log m)^{3 / 2}\right) \cdot \operatorname{herdisc}(A)$

- Proof sketch:
- formulate $\lambda(A)$ as the value of a convex program P
- the dual D of P is a maximiza Volumetric argument
- feasible solution to $D \rightarrow$ lower bound on herdisc(A)
- The program P can be solved efficiently
- $\lambda(A)$ can be relaxed to an SDP.

Open Problems

- Approximate lindisc(A)
- Use discrepancy rounding for other approximation problems
- Get + o(log OPT) approximation for Bin Packing
- Solve Komlos problem

