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Relax	–	Solve	-	Round	

Powerful	paradigm	in	approxima1on	algorithms	
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Rounding	

•  What	do	we	want	from	a	rounding?	
–  	z	=	R(x)	is	feasible	
–  cTz	≥	α	cTx	à	approxima1on	factor	α	

•  Two	step	approach:	
1.  approximately	preserve	constraints:	(Az)i	≤	bi	+	D	
2.  “fix”	violated	constraints	without	changing	

objec1ve	value	too	much	
•  Step	1:	discrepancy	theory	
•  Step	2:	problem	dependent.	
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Linear	Discrepancy	

•  Round	x	so	that	constraints	stay	
approximately	sa1sfied:	

– we	can	include	c	as	one	of	the	rows	of	A	to	
preserve	objec1ve	value	

•  Worst	case	over	x:	

min

z2{0,1}n

m
max

i=1
|(Az �Ax)i| = min

z2{0,1}n
kA(z � x)k1

lindisc(A) = max

x2[0,1]n min

z2{0,1}n kA(z � x)k1
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Upper	bound	on	
how	much	the	i-th	
constraint	can	be	
violated.	



Matrix	Discrepancy	

•  Discrepancy:	
•  Hereditary	Discrepancy:		

– AJ	is	the	submatrix	of	columns	indexed	by	J	
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disc(A) = min
x2{�1,1}n kAxk1

herdisc(A) = maxJ✓[n] disc(AJ)

Theorem.	[LSV86]		 lindisc(A)  herdisc(A)

Theorem.	[G62]		A	with	entries	-1,	0,	1	has	
herdisc(A)	=	1	iff	A	is	totally	unimodular.	
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Proof	

•  Observa1on:	

–  i.e.	we	can	round	1/2-integral	vectors	with	cost	at	
most	0.5	*	herdisc(A)	(ignore	integral	coordinates)	

•  In	general:	write	in	binary	and	round	bit	by	bit	

7	

disc(A) = min
x2{�1,1}n

kAxk1

=
1

2
min

z2{0,1}n
kA(z � 1

2
e)k1

x1	=	0.	1	0	1	0	
	
x2	=	0.	1	1	0	0	
	
x3	=	0.	0	0	1	1	
	

x1	=	0.	1	0	1	0	
	
x2	=	0.	1	1	0	0	
	
x3	=	0.	0	1	0	0	
	

x1	=	0.	1	0	0	0	
	
x2	=	0.	1	1	0	0	
	
x3	=	0.	0	1	0	0	
	

x1	=	0.	1	0	0	0	
	
x2	=	1.	0	0	0	0	
	
x3	=	0.	1	0	0	0	
	

Cost	of	rounding:	
≤	(1/2	+	1/4	+	1/8	+	…	)	*	herdisc(A)	
≤	herdisc(A)	
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Algorithmically,	we	need	to	
compute	low-discrepancy	x	
for	any	AJ	



Bin	Packing	
Problem:	Pack	items	of	sizes	1	≥	s1	≥	s2	≥	…	≥	sn	into	the	
fewest	bins	of	size	1	
	
	
	
	
	
[KK82]	OPT	+	O(log2	OPT).	If	sn	=	Ω(1),	OPT	+	O(log	OPT)	
[HR17]	OPT	+	O(log	OPT)	for	all	sizes.	
Conjecture.	OPT	+	O(1).	
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LP	Relaxa1on	

Configura@on	LP:	p	in	{0,1}n	is	feasible	if	Σi	pi	si	≤	1	
(how	to	pack	a	single	bin)	
	
	
	
	
The	rows	of	P		are	all	feasible	paqerns.	
	
“Smallest	number	of	feasible	paqerns	that	cover	all	items”	
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Solve	using	mul1plica1ve	
weights	and	PST	framework.	
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min e|x
Px � e

x � 0



Karmakar-Karp	via	Discrepancy		
[EPR	11]	
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D	=	herdisc(B)	
	
B:	modified	
matrix	

Exercise:	auer	adding	D	more	bins	we	can	pack	all	items.	

	s1	

	s2	

	s3	

	s4	

	s5	

	s6	

	s7	

	s8	
	s9	
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Karmakar-Karp,	contd.	

•  Assume	at	most	k	items	fit	per	bin:		
–  the	matrices	are	monotone	down	each	column	and	have	
entries	bounded	by	k		

•  The	discrepancy	of	such	matrices	is	O(k	log	n)		
•  Implies	+	O(log	OPT)	approxima1on	if	all	item	sizes	are	
constant.	
–  [HR17]	reduce	the	general	case	to	this	case	without	
further	loss.	

•  [NNN12]	No	rounding	which	only	uses	the	support	of	
an	op1mal	LP	solu1on	can	do	beqer	for	this	case.	
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(Efficient)	Par1al	Coloring	
Theorem.	[LM12]	Let	x	in	[-1,1]n,	and	λ1,	λ2,	…,	λm	s.t.	
	
	
Then	we	can	efficiently	compute	z	in	[-1,1]n	s.t.	
		
	
and	at	least	n/10	coordinates	of	z	are	-1	or	1.	
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X

i

exp(��2
i /16) 

n

2

•  compare	with	a	random	rounding:	
•  if	m	≤	n/2,	can	set	λ1=	λ2	=	…	=	λm	=	0:	basic	feasible	solu1on	

•  interpolates	between	randomized	and	itera1ve	rounding	
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8i : |(Az �Ax)i|  �ikai,⇤k2

P
i exp(��2

i /4)  1
2

Earlier	non-algorithmic	versions	by	
Beck	and	Spencer.	First	algorithmic	

work	by	Bansal.	



Loveq-Meka	Algorithm	
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Q = [�1, 1]n, K = {y : |(Ay �Ax)i|  �ikai,⇤k2}

x	

z	

Run	Brownian	
mo1on	in														.	
Once	you	hit	a	
face,	s1ck	to	it.		

K \Q

IntuiEon:	the	facets	of	K	are	on	
average	further	than	the	facets	of	Q.	

Success:	n/10	1ght	
constraints	at	z	from	Q.	
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Banaszczyk’s	Theorem	
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Theorem.	[B98]		If	A	is	a	matrix	whose	columns	have	
Euclidean	norm	at	most	1,	and	K	is	a	symmetric	convex	
body	(K	=	-K),	then	there	exists	an	x	in	{-1,	1}n	
s.t.																																									,	where	G	is	a	standard	Gaussian	
random	vector.		

kxkK = min{t : x 2 tK}

constant	if	K	has	Gaussian	
measure	≥	1/2.	

Theorem.	[DGLN16]		If	A	is	a	matrix	whose	columns	have	
Euclidean	norm	at	most	1,	then	there	exists	a	distribu1on	
μ	over	{-1,	1}n	s.t.	AX	is	O(1)-Subgaussian,	for	X	~	μ.													

Constant	variance	and	sub-
Gaussian	tail	bounds	in	every	
direc1on:		P(h✓, AXi � t)  e�t2/C

kAxkK  10 · EkGkK
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x	

K	



Algorithmic	Banaszcyk	Thm	

•  If	A	is	orthonormal:	uniformly	random	X	from	{-1,	1}n		
•  If	all	columns	of	A	the	same:		X	=	±(+1,-1,	+1,	…)	

•  [BDGL17]	Can	efficiently	sample	μ.		
–  Random	walk	in	Q.		
–  Intui1vely:	combine	the	two	cases	above.	
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Komlos	Problem	

•  Komlos	conjecture:	for	any	A	with	columns	of	
Euclidean	norm	at	most	1,	there	exists	an	x	in	
{-1,	1}n	s.t.																									.	

•  [B98]		
– Proof:																																										,	and	apply	theorem.				
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kAxk1 = O(1)

kAxk1 = O(

p
logm)

EkGk1 = O(

p
logm)
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Complexity	of	Discrepancy	

•  [CNN11]	NP-hard	to	dis1nguish	between	
disc(A)	=	0	and	disc(A)	=	Θ(n1/2)	for	binary	
O(n)×n	matrix	A.	

•  [NT14]	Can	approximate	herdisc(A)	up	to	
O((log	m)3/2).	
–  [DNTT17]	…	up	to	polylog(rank	A)	
–  [AHG14]	NP-hard	to	apx	beqer	than	factor	2.		
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Largest	it	can	be	[S85].	
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Approxima1ng	HerDisc	

•  First	upper	bound:	by	Banaszczyk	

–  we	use	that	col(AJ)	≤	col(A)	

•  Observe:																																																											,	for	any	
inver1ble	T.		

•  Beqer	upper	bound:	
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herdisc(A)  10(EkGk1) · (col(A))

maximum	Euclidean	
norm	of	a	column	of	A	

kAxk1 = kAxkQ = kTAxkTQ

herdisc(A)  10 · inf
T
(EkGkTQ) · (col(TA))

=: �(A)
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Approxima1ng	HerDisc	

•  Proof	sketch:	
–  formulate	λ(A)	as	the	value	of	a	convex	program	P	
–  the	dual	D	of	P	is	a	maximiza1on	problem	
–  feasible	solu1on	to	D	à	lower	bound	on	herdisc(A)	

•  The	program	P	can	be	solved	efficiently	
•  λ(A)	can	be	relaxed	to	an	SDP.	
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herdisc(A)  �(A)  O((logm)

3/2
) · herdisc(A)

Volumetric	argument	
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Open	Problems	

•  Approximate	lindisc(A)	

•  Use	discrepancy	rounding	for	other	approxima1on	
problems	

•  Get	+	o(log	OPT)	approxima1on	for	Bin	Packing	

•  Solve	Komlos	problem	
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