Highly-scalable branch and bound for maximum monomial agreement

Jonathan Eckstein (Rutgers)
William Hart
Cynthia A. Phillips
Sandia National Laboratories
Classification: Distinguish 2 Classes

- M vectors v_k, each with N binary features/attributes: x_i for $i = 1 \ldots N$
- Each vector can have a weight w_i
- Each vector is a positive or negative example:

$$\Omega^+ \cup \Omega^- = \{1, \ldots, M\} \text{ and } \Omega^+ \cap \Omega^- = \emptyset$$

<table>
<thead>
<tr>
<th>Feature v_k</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>class</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>1.0</td>
</tr>
<tr>
<td>v_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>v_3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>v_4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>+</td>
<td>4.0</td>
</tr>
<tr>
<td>v_5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Binary Monomial

• A binary monomial is a conjunction of binary features: \(x_1 \land \neg x_2 \land x_5 \).
• It is equivalent to a binary function:
 – Let \(J \) be the set of literals that appear (uncomplemented).
 – Let \(C \) be the set of literals that appear complemented.

\[
m_{J,C}(x) = \prod_{j \in J} x_j \prod_{c \in C} (1 - x_c)
\]

• A binary monomial covers a vector if \(m_{J,C}(x) = 1 \).
 – The vector agrees with the monomial on each selected feature.

\[
\text{Cover}(J,C) = \left\{ i \in \{1,\ldots,M\} \mid m_{J,C}(A_i) = 1 \right\}
\]
Example: Coverage

- Uncomplemented variables $J = \{1\}$
- Complemented variables $C = \{2\}$
- $\text{Cover}(J,C) = \{2,3,5\}$

$x_1 = 1$ and $x_2 = 0$

<table>
<thead>
<tr>
<th>Feature</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>class</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>1.0</td>
</tr>
<tr>
<td>v_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>v_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>v_4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>+</td>
<td>4.0</td>
</tr>
<tr>
<td>v_5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Maximum Monomial Agreement

- Maximize\(_{JC}\): \(f(J, C) = \left| w(Cover(J, C) \cap \Omega^+) - w(Cover(J, C) \cap \Omega^-) \right| \)

 - Weighted difference between covered + and - examples

 \[
 x_1 = 1 \text{ and } x_2 = 0
 \]

 \[
 f(\{1\}, \{2\}) = 5 - 3 - 2 = 0
 \]

<table>
<thead>
<tr>
<th>Feature</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>class</th>
<th>(w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>1.0</td>
</tr>
<tr>
<td>(v_2)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>(v_3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>(v_4)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>+</td>
<td>4.0</td>
</tr>
<tr>
<td>(v_5)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>5.0</td>
</tr>
</tbody>
</table>
LPBoost

- Use MMA as a weak learner
- Use a linear program to find optimal linear combination of the weak learners (column generation)
 - Optimize for gap/separation
- Dual of the LP gives weights for next MMA round
 - More weight to the harder parts
- We want to solve MMA exactly (Goldberg, Shan, 2007)

\[
\begin{align*}
\max & \quad \rho - D \sum_{i=1}^{M} \xi_i \\
\text{s.t.} & \quad y_i H_i \lambda + \xi_i \geq \rho \quad \text{for } i = 1, \ldots, M \\
& \quad \sum_{u=1}^{U} \lambda_u = 1 \\
& \quad \xi_i, \lambda_u \geq 0
\end{align*}
\]
Branch and Bound is an intelligent (enumerative) search procedure for discrete optimization problems.

\[\max_{x \in X} f(x) \]

Requires subproblem representation and 3 (problem-specific) procedures:

- **Compute an upper bound** \(b(X) \)
 \[\forall x \in X, \ b(x) \geq f(x) \quad \forall x \in X \]

- **Find a candidate solution**
 - Can fail
 - Require that it recognizes feasibility if \(X \) has only one point

- **Split** a feasible region (e.g. over parameter/decision space)
 - e.g. Add a constraint
Branch and Bound

- Recursively divide feasible region, prune search when no optimal solution can be in the region.
- Important: need good bounds

Root Problem = original

Fathomed $U_k < L$
New best solution $L = U_k$

infeasible
Solution Quality

- Global upper bound (maximum over all active problems): \(U = \max_k U_k \)
- Approximation ratio for current incumbent \(L \) is \(L/U \).
- Can stop when \(L/U \) is “good enough” (e.g. 95%)
- Running to completion proves optimality

October 23, 2013
B&B Representation for MMA

- Subproblem (partial solution) = (J,C,E,F)
 - J are features forced into monomial
 - C are features forced in as complemented
 - E are eliminated features: cannot appear
 - F are free features
- Any partition of \{1, ..., N\} is possible
- A feasible solution that respects (J,C,E,F) is just (J,C)
- When F is empty, only one element (leaf)

Upper Bound

- Valid: $\max \{ w(\text{Cover}(J, C) \cap \Omega^+), w(\text{Cover}(J, C) \cap \Omega^-) \}$

- Strengthen by considering excluded features E
- Two vectors inseparable if they agree on all features $i \notin E$
 - Creates $q(E)$ equivalence classes
Upper Bound

- V_{η}^E are vectors in the η^{th} equivalence class
 - All covered or all not covered

 $w_{\eta}^+(J,C,E) = w\left(V_{\eta}^E \cap \text{Cover}(J,C) \cap \Omega^+\right)$

 $w_{\eta}^-(J,C,E) = w\left(V_{\eta}^E \cap \text{Cover}(J,C) \cap \Omega^-\right)$

- Stronger upper bound:

 $b(J,C,E) = \max\left\{ \sum_{\eta=1}^{q(E)} \left(w_{\eta}^+(J,C,E) - w_{\eta}^-(J,C,E) \right) \right\} +$

 $\sum_{\eta=1}^{q(E)} \left(w_{\eta}^-(J,C,E) - w_{\eta}^+(J,C,E) \right)\}$
Upper Bound

• More convenient form:

\[b(J, C) = \max \left\{ w(Cover(J, C) \cap \Omega^+), w(Cover(J, C) \cap \Omega^-) \right\} \]

\[b(J, C, E) = b(J, C) - \sum_{\eta=1}^{q(E)} \min \left\{ w^+_\eta(J, C, E), w^-_\eta(J, C, E) \right\} \]

• Compute \(b(J, C) \) first
 – \(|J \cup C| \) set intersections
• If can’t fathom, compute second part
 – Compute equivalence classes with radix sort on non-E features
Eckstein, Goldberg considered higher branching factor
– Branching on 1 feature faster, more nodes
Choose branch variable

- **Strong branching:** for all \(f \)
 - Compute all 3 upper bounds, \((b_1, b_2, b_3)\) sorted descending
 - Sort lexicographically, pick smallest. Gives **lookahead bound**

\[
b(J, C, E, F) = \min_{f \in F} \max \left\{ b(J \cup \{f\}, C, E, F - \{f\}), b(J, C \cup \{f\}, E, F - \{f\}), b(J, C, E \cup \{f\}, F - \{f\}) \right\}
\]
PEBBL

Parallel Enumeration and Branch-and-Bound Library

• Distributed memory (MPI), C++

Goals:
• Massively parallel (scalable)
• General parallel Branch & Bound environment
• Parallel search engine cleanly separated from application and platform
• Portable
• Flexible
• Integrate approximation techniques

There are other parallel B&B frameworks: PUBB, Bob, PPBB-Lib, Symphony, BCP, CHiPPS/ALPS, FTH-B&B, and codes for MIP
Pebbl’s Parallelism (Almost) Free

User must
- Define serial application (debug in serial)
- Describe how to pack/unpack data (using a generic packing tool)

C++ inheritance gives parallel management

User may add threads to
- Share global data
- Exploit problem-specific parallelism
- Add parallel heuristics
PEBBL Features for Efficient Parallel B&B

- Efficient processor use during ramp-up (beginning)
- Integration of heuristics to generate good solutions early
- Worker/hub hierarchy
- Efficient work storage/distribution
- Control of task granularity
- Load balancing
- Non-preemptive proportional-share “thread” scheduler
- Correct termination
- Early output
- Checkpointing
PEBBL Ramp-up

- Tree starts with one node. What to do with 10,000 processors?
 - Serialize tree growth
 - All processors work in parallel on a single node
 - Parallelize
 - Preprocessing
 - Tough root bounds
 - Incumbent Heuristics
 - Splitting decisions (MMA)
 - Strong-branching for variable selection
PEBBL Ramp-up

- Strong branching for variable selection
 - Divide free variables evenly
 - Processors compute bound triples for their free variables
 - All-reduce on best triples to determine branch var
 - All-reduce to compute lookahead bound

\[b(J,C,E,F) = \min_{f \in F} \left\{ \max \begin{cases} b(J \cup \{f\}, C, E, F - \{f\}) \\ b(J, C \cup \{f\}, E, F - \{f\}) \\ b(J, C, E \cup \{f\}, F - \{f\}) \end{cases} \right\} \]

- Note: last element most computation: recompute equivalence classes
Crossing over

- Switch from parallel operations on one node to processing independent subproblems (serially)

- Work division by processor ID/rank
- Generally Crossover to parallel with perfect load balance
 - When there are enough subproblems to keep the processors busy
 - When single subproblems cannot effectively use parallelism
- For MMA: crossover when #open problems = N, the # of features
Hubs and Workers

- Control communication
 - Processor utilization
 - Approximation of serial order
- Subproblem pools at both the hubs and workers
- Hubs keep only tokens
 - Subproblem identifier
 - Bound
 - Location (processor, address)
Load Balancing

• Hub pullback
• Random scattering
• Rendezvous
 – Hubs determine load (function of quantity and quality)
 – Use binary tree of hubs
 – Determine what processors need more work or better work
 – Exchange work
Experiments

- UC Irvine machine learning repository
 - Hungarian heart disease dataset ($M = 294$, $N = 72$)
 - Spam dataset ($M = 4601$, $N = 75$)
 - Multiple MMA instances based on boost iteration
 - Later iterations are harder
- Dropped observations with missing features
- Binarization of real features (Boros, Hammer, Ibaraki, Kogan)
 - Feature (i,j) is 1 iff $x_i \geq t_j$
 - Cannot map an element of Ω^+ and Ω^- to the same vector
Red Sky

• Node: two quad-core Intel Xeon X5570 procs, 48GB shared RAM
• Full system: 22,528 cores, 132TB RAM
• General partition: 17,152 cores, 100.5TB RAM
 – Queue wait times OK for 1000s of processors
• Network: Infiniband, 3D torroidal (one dim small), 10GB/s
• Red Hat Linux 5, Intel 11.1 C++ compiler (O2), Open MPI 1.4.3

• Because subproblem bounding is slow, 128 workers/core
Value of ramp up (no enumeration)

![Graph](hung253)

- Observations, ramp-up factor 0.0
- Averages, ramp-up factor 0.0
- Observations, ramp-up factor 1.0
- Averages, ramp-up factor 1.0
- Linear Speedup
Number of tree nodes

hung253

Subproblems Bounded

Processor Cores

+ + Observations, ramp-up factor 0.0
- - Averages, ramp-up factor 0.0
× × Observations, ramp-up factor 1.0
— — Averages, ramp-up factor 1.0
Spam, value of ramp up
Spam, tree nodes

![Graph showing subproblems bounded against processor cores. The graph indicates observations and averages with different ramp-up factors.]
Comments: Ramp up

• Using initial synchronous ramp up improves scalability (e.g. 2x processors), reduces tree inflation.
• Speed up departure point from linear depends on problem difficulty and tree size.
 – Tree inflation is the main contributor to sub-linear speedup
• Solution times down to 1-3 minutes
 – Spam26: 3 min on 6144 cores, 27 hours on 8 cores
• For MMA no significant efficiency drop from 1 processor and going to multiple hubs
Parallel Enumeration

• Fundamental in PEBBL: best k, absolute tolerance, relative tolerance, objective threshold
• Requires: branch-through on “leaves” and duplicate detection
• Hash solution to find owning processor
• For all but best-k
 – independent solution repositories
 – parallel merge sort at end
• For k-best need to periodically compute cut off objective value
Enumeration Experiments

• Why Enumeration for MMA?
 – MMA is the weak learner for LP-Boost
 – Add multiple columns in column generation
 • In this case, add the best 25 MMA solutions

• Hungarian Heart
 – Tree size about same
 – More communication

• Spam
 – Larger tree with enumeration
 – Harder subproblems than Hungarian heart (more observations)
Results: Enumeration

hung253, enumCount=25

Time (Seconds)

Processor Cores

Observations
Averages
Linear Speedup
Results: Enumeration

spam26, enumCount=25

- Observations
- Averages
- Linear Speedup

Time (Seconds)
Processor Cores

10^6
10^5
10^4
10^3
10^2
8 16 32 64 128 256 512 1024 2048 4096 8192
Open-Source Code Available

- Software freely available (BSD license)
 - PEBBL plus knapsack and MMA examples
- http://software.sandia.gov/acro
- ACRO = A Common Repository for Optimizers
Thank you!