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Randomized

Coordinate Descent
in 2D



2D Optimization

Contours of a function
F:R?2—=R

Goal:
Find the [ minimizer] of F'
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Randomized Coordinate Descent in 2D




Convergence of
Randomized Coordinate Descent

In R", randomized coordinate descent with uniform probabilities needs

O(n x¢&

) iterations




Parallelization Dream

Serial Parallel

(1 coordinate per iteration) (7 coordinates per iteration)

0 (n x £(€)) 0 (2 x £(e))

?
What do we actually get:

0 (i—ﬁgae)) 5 =01

Depends on to what extent we can add up individual
updates, which depends on the properties of F and the
way coordinates are chosen at each iteration



How (not) to Parallelize
Coordinate Descent



“Naive” parallelization

Do the same thing as before, but

for MORE or ALL coordinates
&
ADD UP the updates



Failure of naive parallelization

flat,2%) = (@' +2% = 1)’

1b

f(1,1)=1

f<0,0>=1|\ \

1
0 a



Failure of naive parallelization
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Failure of naive parallelization

flat,2%) = (@' +2% = 1)’

f(1,1)=1

2a



Failure of naive parallelization

flat,a®) = (z' +2° - 1)7
2b
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Failure of naive parallelization

flat,a?) = (o' + a2 — 1)°
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ldea: averaging updates may help
1b \ *

AN




Averaging can be too conservative
flata?) = @ =17 + @ - 1)




Averaging may be too conservative 2

f@) = (2" =12+ (@2 — 1) 4o (2" = 1)

But we wanted:




What to do?

Update to coordinate i

i-th unit coordinate vector

Averaging: 6 —Nn

Summation: ﬁ =

2
ol

Figure out when one can safely use: B



Optimization
Problems



min | @

Convex
(smooth or nonsmooth)

Problem

Convex
(smooth or nonsmooth)
- separable
- allow +00



Regularizer: examples

U(x) = Z\I!z(a:"), r=(zt 22, ... ™)
i=1

No regularizer Weighted L1 norm

U;(z') =0 U, () = Nzt (N > 0)

Box constraints Weighted L2 norm

: 0 ' € X;
q:li I'Z — ) (2 ) )
(') {—I—oo, otherwise. / / (Ai > 0)

e.g., SVM dual




Loss: examples

f(z)
Quadratic loss Az —y||5 = 3 Ajx —y;)?
Al 15 2;( j i) BKBG'11
L - RT’11b
Logistic loss log (1 + exp (—y;A;j.x))

° ; T TBRS'13
Square hinge loss L (max {0,1 — y;Aj.x}) RT 13a
L-infinity [Az — ylloo = 1I<I;a%Xm [Aj.x — yj
L1 regression Ax —bl|; = Ajx — vy

g | =) |4z -y cRI13

g=1

m -
g=1

1 m
Exponential loss log ( ZGXP (yjAj:x)>



3 models for f with small 3

o Smooth partially separable f [RT’11b% ]

Flo+te;) < F(z)+ (Vf(z)Ttes + %ﬂ
| w ¥ max | J|
f(x) = Z fr(x), f; depends on z* for i € J only Jeg

w e max {i: Aj; # 0}

1<j<m




General Theory



Randomized
Parallel Coordinate Descent Method

New iterate Current i-th unit coordinate vector
iterate

Ty < T [13 D e hle;

Random set of Update to

i-th coordinate

coordinates (sampling)

The update h* depends on F', z and on the law describing S



ESO: Expected Separable Overapproximation

$_|_%$—|— ZZESw f()

def i
1hllw? = 320, wi(h')?

E|f(z+hg)| < f@) + BEL((VF(@)Th+ %ﬁhlli)

i 1. Separableinh
h N — Z Q h €; 2. Can minimize in parallel
[S] 1€S5

3. Can compute updates for 1 € S only



Convergence rate: convex f

Theorem [RT'11b] 1If (f,S) ~ ESO(B, w), then

stepsize parameter .- # coordinates
o
, (“Bn ) (2R§U(a:0,:c*)) log (F(azo)—F(x*))
b E[]S]] v €p

%
.
.
.
5
L 4
5
°
.
°
.
5
.
I
°
°
.
*
.

# iterations average # updated

coordinates per iteration

implies P(F(xk) — F(a’;*) < €§-> 1 —p



Convergence rate: strongly convex f

Theorem [RT’11b] 1If (f,5) ~ ESO(B, w), then

If py(w) is large, then the slowdown
effect of 5 is elliminated

T~
k> (g (o fclelots ) os (Feire)

Strong convexity constant
of the loss f

- P(F(zp) — F(z:) <€) =>1—p




Partial Separability
and
Doubly Uniform
Samplings



Serial uniform sampling

Probability law:

OO0OO0OO0OOO0OOOOOOO0O

n =12 (#coordinates)



T -nice sampling

Good for shared memory systems

S Probability law:

OO0OO0OO0OOO0OOOOOOO0O

n =12 (#coordinates)



Doubly uniform sampling

Can model unreliable processors / machines

42 qs
/\
“||q4| S
- B

Probability law: O O O O O

q|s| n=>5 (#coordinates)

(51)

P(S=05)=




ESO for partially separable functions
and doubly uniform samplings

G Smooth partially separable f [RT’llb% ]

flz+te;) < f(x) + (Vf(x)) te; + %ﬂ

{7 depends on z* for i € J only

E[S|°]
E[|S]] !




Theoretical speedup

16

g S e anan |
14+ -
T T) # coordinates

12}
_ (1) degree of partial separability
> 10
3 . 1=16
?!’n.) s(r) = 16/(1+15r) 7- # coordinate updates / iter
1]
5

0 011 Oi2 0i3 Oi4 015 Oi6 0.7 0.8 0.9 1I
r=(o-1)/(n-1)
LINEAR OR GOOD SPEEDUP: WEAK OR NO SPEEDUP:
Nearly separable (sparse) problems Non-separable (dense) problems

Much of Big Data is here!



Theory is when you know
everything but nothing
works.

Practice is when everything
works but no one knows
why.

In our lab, theory and
practice are combined:
nothing works and no one

knows why.




Tteration Speed-up

Theory

T = # Processors

10° 10* 10° 10

n =1000
(# coordinates)



Experimental Iteration Speed-up

=
<

> =5

=—=w=10

L[ =€=®=50
H{=®»=®=100

=
o

[
T

10

»=
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\

10

10* 10°

T = # processors

10

n =1000
(# coordinates)



Experiment with a
1 billion-by-2 billion
LASSO problem



Optimization with Big Data

= Extreme* Mountain Climbing

A ‘ -

ensional space on a foggy day




Coordinate Updates

b i i ~B- 2 Cores |
ey iiiiiiiiiiiiiiiiil-e-4 Cores

-&-8 Cores

ERERE -%¥-16 Cores
e -'?-24 Cores*

0 10 20 30 40
# coordinate updates normalized [(kt)/n]

LASSO problem with A € R™*", where|n = 10? and m = 2 x 10°




Ilterations

e B i i -B-2 Cores |
el W i l-esaCores
RSN Ry il 1-9-8 Cores
by 16 Gores
UL = P A A A S _?_2400res-

# iterations normalized [k/n]

LASSO problem with A € R™*", where n = 10? and m = 2 x 10°



Wall Time

---------

-|-8-2 Cores |
:|-©-4 Cores
. :|-9-8 Cores
-%-16 Cores
- -7-24 Coresy

wall time [hours]

LASSO problem with A € R™*", where n = 10? and m = 2 x 10°



Distributed-Memory
Coordinate Descent




Distributed 7-nice sampling

Good for a distributed version of coordinate descent

A

S Probability law:
S = union of 7-nice samplings

T =2

OQOO0O0O0O0O0O0O0OOOO0O
\ J \ J | J

Machine 1 Machine 2 Machine 3




ESO: Distributed setting

f with ‘bounded Hessian” [BKBG’11, RT'13a ]

F
fx+h) < flx)+ (Vi) Th+ IhTAT An GDiag(ATA)
Adﬁf )\maX(L_l/2ATAL_1/2)
a

Theo rem [RT’ 13b] spectral norm of the data

If S is distributed 7-nice sampling~{with c/nodes, each owning s def n/c




Bad partitioning at most
doubles # of iterations

spectral norm of the partitioning

(0—1)(7—1)+<T T—1> o1

P=1+ n—1 s s—1 o’ °
51 Ba
Theorem [RT’13b] If 7 > 2, then B2 < 34
implies # iterations = O ( 2ﬁ1n>
N TC 7

# updates/node # nodes



HECToOR

. PROBLEM FORMULATION

min[F(x) = f(x) + ¥(z)]

1. f convex, partially separable of degree w and
YzeR*¢teRandic {1,2,...,n} satisfying
[V f(x) = Vif(=z +te)| < LiJ¢|,
where L, are coordinate Lipschitz constants

2. T convex and separable (V(x) = T,

. (z'))

8. Description of f so large that it does not fit |
onto a single computer! = a cluster of C' nodes

Pre-processing: Partition coordinates
{1,2,...,n} to C sets 51,53,...,5¢

In one iteration computers ¢ = 1,2,...,C in paral-
lel do

1. Choose random 8. C S.
9. For each i € 8. in parallel compute

] + argmingy V:I(It)fﬁ-ﬁ%“,‘f Wik +t) ¢

3. zhpy +Z|€§_ tleq

2. DISTRIBUTED SAMPLING

We can analyze the above algorithm under the fol-
lowing assumptions:

o |S|=Ffrallc=12,...,C
o S_ s chosen uniformly as one of the subsets of

S. of cardimality 7
Distributed ssmpling: § = U, S,
4
g=14=2C= 1;;;,[:?2:}%) k. T
Special casest

e C=1= f=1+EE00 (e [2)
e C=r=1= =1 (=e[3])
However, we need new analysis for the € > 1 case.

Rach campast

Martin Takaéc

Di1sTRIBUTED COORDINATE DESCENT FOR B1G DATA OPTIMIZATION
Jakub Marecek

Peter Richtarik

University of Edinburgh

4. CoMPLEXITY THEOREM
2

. Jn 2R B(F(xo)-
<

ep
4
Prob(F(zx) - F(z.) S€) 2 1-p

(R me Yy Lifxh — =3)%)

We developed a solver (http: //code.google. coa/
p/ac-dc/) 5_?“’

6. DaTta DISTRIBUTION

Assume that we have C = 4 compute nodes and n =
16 coordinates. The coordinates can be partitioned
into 4 balanced groups {51, 52, 83, S4}.

S: 1 Sy 5 Ss 1 S

102 3 ¢. 6 67 379 101182713 141516

X

A

A

fix) =ZLO::(J:;A,,5,], W(x) = All=ly
=1
3 supported losses Loss(z,A,,b ]
square loas I(bj zx
logistic loss log(1 +e™%%)
hinge square loss I M{U 1- bIAl'r}

" Note that A; € K™ 1s a row vector and later will

represent the j-th row of matrix A.

Alll Al | ARl A4

| On computer 1, only the first 4 coordinates of vector |

x are stored and also the corresponding 4 columns
of matrix A. Data distribution is crucial for
problems whoee size exceeds nvailable memory
of a single computer!

7. IMPLEMENTATION DETAILS (SQUARE LOSS EXAMPLE)

(ag,9%) (a, is the i-th column of
matrix A), computer ¢ can compute ¥V, f(x;) for i € S, and hence the algorithm can be run.

If we can maintain g = Axy — b on all computers, then since ¥V, f(x;) =

» Note that ges1 = ATest

* That s, computer ¢ additively contributes gi[c] :=

b= A+ T Tes tie) —b=ge + T T g ait]

.3, ad] to the update of g

* So, we need to add up the distributed updates ge|d

Reduce All (RA)
@ 4 [N 1@ g(@ gm'
YEOR mw@__@gu@ @

w-n

@@@@
|| waeaaana

Campew |
beawicas
Fit-4] o ater
compawn

Asynchronous StreamLine (ASL)

%‘? 9[1@ g% gq:@ g«.@
@@ %GWQG«@

Gy

Cale] = Cp—1[Prev(c)] + gu[e] - ge-cld

Ok 41 = Ok + gulc] + Ca[Prev(e)] — ge—cle]

ASL: much LESS communication that RAI
ASL: asynchronous (nco-blocking) communication

ASL communication only botween wwo closost
computars

Centre for
Numerical Algorithms

and Intelligent Software

HyBRID IMPLEMENTATIONS
Parallel /Sequential Just Parallel

1 teration
yerhl P Rar

Laft image shows Pnrnllol and Serial (PS) appeoach,
whera aach MPI process runs fow OpenMP throads for
computing # and gulc] (black boxes) and after-
wurds, MPI communicaticn takes places (blue boxaes).

¢ Right image shows Fully Parallel (FP) approach in

which one of the threads deals with communication and
when waiting for a new communication, it helps the
other threads to do some computation.

NUMERICAL EXPERIMENTS

All experiments were done on HECToR - Cxoy XE6
using 2,048 cores. Problem size A € RV >3 1o*
had 1.2 TBytes and we used 7 = 10%,

avg. time /[ iter.
RA-FP 2052
AST TP nAaGl
4 I |
o* \-g‘“:_i_ T —— “_I-o-ug
S Wy R —
ot A
z
- N
0 %

Dascributed co-

[1] Takéas M., Marotek, J. and Rickedrik P.:
ardinata dascsnt methods for big data optimiaticn, 2018
M.: Pumllel coordinate d

(2] den(rlk. P. Takdz, escont

tlend macl 02
3 deumk.P %.m " Iearatton ‘seenplaxtty of random-
coap
! 1zad block for minimzlng & |

mmpmua funetlon, Mublmalul Programming, 2012



LASSO with a 3TB data matrix
A = 10°-by-0.5 x 10

Tl =# coordinates

i  |+ASL-FP

| | =RA-FP
§ NN
=

00 1500 2000

0 500 1000
Elapsed Time [s]

128 Cray XE6 nodes with 4 MpI processes (c = 512)
Each node: 2 x 16-cores with 32GB RAM



Conclusions

* Coordinate descent methods scale very well
to big data problems of special structure

— Partial separability (sparsity)
— Small spectral norm of the data
— Nesterov separability, ...

e Careis needed when combining updates
(add them up? average?)
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