

MATHEMATICS For Vast Digital Resources

Peter Richtárik

Parallel coordinate descent methods

Simons Institute for the Theory of Computing, Berkeley Parallel and Distributed Algorithms for Inference and Optimization, October 23, 2013

ALAN COCHRANE TAXIS 38 HARRYSMUIR GARDENS THANK YOU

TERMINAL ID: MERCHANT ID:

********3577 *********21661

ICC

 SALE

 AMOUNT
 £100009.96

 *** CUSTOMER COPY ***

 TRANSACTION VOID

 DATE: 05/03/13 TIME: 16:00

answermanningenermanningenermanningener

2D Optimization

Contours of a function

 $F: \mathbf{R}^2 \to \mathbf{R}$

Convergence of Randomized Coordinate Descent

In \mathbb{R}^n , randomized coordinate descent with uniform probabilities needs

Parallelization Dream

Depends on to what extent we can **add up** individual updates, which depends on the **properties of** *F* and **the way coordinates are chosen** at each iteration How (not) to Parallelize Coordinate Descent

"Naive" parallelization

Do the same thing as before, but

for MORE or ALL coordinates & ADD UP the updates

 $f(x^1, x^2) = (x^1 + x^2 - 1)^2$

 $f(x^1, x^2) = (x^1 + x^2 - 1)^2$

Idea: averaging updates may help

Averaging can be too conservative

Averaging may be too conservative 2

$$f(x) = (x^{1} - 1)^{2} + (x^{2} - 1)^{2} + \dots + (x^{n} - 1)^{2}$$

What to do?

Optimization Problems

Regularizer: examples $\Psi(x) = \sum \Psi_i(x^i), \quad x = (x^1, x^2, \dots, x^n)^T$ i=1e.g., LASSO Weighted L1 norm No regularizer $\Psi_i(x^i) \equiv 0$ $\Psi_i(x^i) = \lambda_i |x^i| \qquad (\lambda_i > 0)$ **Box constraints** Weighted L2 norm $\Psi_i(x^i) = \begin{cases} 0, & x^i \in X_i, \\ +\infty, & \text{otherwise.} \end{cases}$

$$\Psi_i(x^i) = \lambda_i(x^i)^2 \qquad (\lambda_i > 0)$$

e.g., SVM dual

Loss: examples

f(x)

Quadratic loss

Logistic loss

Square hinge loss

L-infinity

L1 regression

Exponential loss

 $\frac{1}{2} ||Ax - y||_2^2 = \frac{1}{2} \sum (A_{j:}x - y_j)^2$ BKBG'11 **RT'11b** $\sum \log \left(1 + \exp\left(-y_j A_{j:x}\right)\right)$ **TBRS'13** i=1RT '13a $\frac{1}{2} \left(\max \left\{ 0, 1 - y_j A_{j:x} \right\} \right)^2$ $||Ax - y||_{\infty} = \max_{1 \le j \le m} |A_{j:}x - y_j|$ $||Ax - b||_1 = \sum_{j=1} |A_{j:}x - y_j|$ FR'13 $\log\left(\frac{1}{m}\sum_{j=1}^{m}\exp\left(y_{j}A_{j},x\right)\right)$

3 models for *f* with small β

Smooth partially separable f [RT'11b

$$f(x + te_i) \le f(x) + (\nabla f(x))^T te_i + \frac{L_i}{2} t^2$$
$$f(x) = \sum_{J \in \mathcal{T}} f_J(x), \quad f_J \text{ depends on } x^i \text{ for } i \in J \text{ only}$$

$$\omega \stackrel{\mathrm{def}}{=} \max_{J \in \mathcal{J}} |J|$$

Nonsmooth max-type f [FR'13]

 $f(x) = \max_{z \in Q} \left\{ z^T A x - g(z) \right\}$

2

$$\omega \stackrel{\text{def}}{=} \max_{1 \le j \le m} |\{i : A_{ji} \ne 0\}|$$

f with 'bounded Hessian' [BKBG'11, RT'13a

 $f(x+h) \le f(x) + (\nabla f(x))^T h + \frac{1}{2}h^T A^T A h$

$$L = \text{Diag}(A^T A)$$
$$\sigma \stackrel{\text{def}}{=} \lambda_{\max}(L^{-1/2} A^T A L^{-1/2})$$

General Theory

Randomized Parallel Coordinate Descent Method

The update h^i depends on F, x and on the law describing \hat{S}

ESO: Expected Separable Overapproximation

Convergence rate: convex *f*

Theorem [RT'11b] If $(f, \hat{S}) \sim ESO(\beta, w)$, then

Convergence rate: strongly convex f

Theorem [RT'11b] If
$$(f, \hat{S}) \sim ESO(\beta, w)$$
, then

Partial Separability and **Doubly Uniform** Samplings

n = 12 (#coordinates)

n = 12 (#coordinates)

Doubly uniform sampling

Can model unreliable processors / machines

Probability law:

$$\mathbf{P}(\hat{S} = S) = \frac{q_{|S|}}{\binom{n}{|S|}}$$

Theoretical speedup

LINEAR OR GOOD SPEEDUP:

Nearly separable (sparse) problems

Much of Big Data is here!

WEAK OR NO SPEEDUP: Non-separable (dense) problems Theory is when you know everything but nothing works. Practice is when everything works but no one knows why.

In our lab, theory and practice are combined: nothing works and no one knows why.

n = 1000 (# coordinates)

n = 1000 (# coordinates)

Experiment with a 1 billion-by-2 billion LASSO problem

Optimization with Big Data = Extreme* Mountain Climbing

* in a billion dimensional space on a foggy day

Coordinate Updates

Iterations

Wall Time

LASSO problem with $A \in \mathbb{R}^{m \times n}$, where $n = 10^9$ and $m = 2 \times 10^9$

Distributed-Memory Coordinate Descent

Distributed τ -nice sampling

Good for a distributed version of coordinate descent

Bad partitioning at most doubles # of iterations

nodes

updates/node

DISTRIBUTED COORDINATE DESCENT FOR BIG DATA OPTIMIZATION Martin Takáč Jakub Mareček

University of Edinburgh

Numerical Algorithms and Intelligent Software

Problem Formulation

 $\min_{x \in \mathbf{P}_{n}} [F(x) \equiv f(x) + \Psi(x)]$

- 1. f convex, partially separable of degree ω and $\forall x \in \mathbb{R}^n, t \in \mathbb{R} \text{ and } i \in \{1, 2, \dots, n\} \text{ satisfying }$ $|\nabla_i f(x) - \nabla_i f(x + te_i)| \le L_i |t|,$ where L_i are coordinate Lipschitz constants
- 2. Ψ convex and separable $(\Psi(x) = \sum_i \Psi_i(x^i))$
- 3. Description of f so large that it does not fit onto a single computer! \Rightarrow a cluster of C nodes

2. The Algorithm

Pre-processing: Partition coordinates
$$\{1, 2, ..., n\}$$
 to C sets $S_1, S_2, ..., S_C$

- In one iteration computers c = 1, 2, ..., C in parallel do
- 1. Choose random $\hat{S}_c \subset S_c$
- For each i ∈ Ŝ_c in parallel compute $t_i^* \leftarrow \arg\min_{i \in \mathbb{R}} \nabla_i f(x_k) t + \frac{\beta \frac{L_i}{2} t^2}{2} + \Psi_i(x_1^i + t)$ 3. $x_{k+1} \leftarrow x_k + \sum_{i \in S_i} t_i^* e_i$

2. DISTRIBUTED SAMPLING

We can analyze the above algorithm under the following assumptions:

- |S_c| = n/n for all c = 1, 2, ..., C
- S_c is chosen uniformly as one of the subsets of S_{τ} of cardinality τ

Special cases:

•
$$C = 1 \Rightarrow \beta = 1 + \frac{(\tau - 1)(\omega - 1)}{\max\{n - 1, 1\}}$$
 (see [2])
• $C = \tau = 1 \Rightarrow \beta = 1$ (see [3])

However, we need new analysis for the C > 1 case.

4. Complexity Theorem

$$k \ge \frac{\beta n}{\tau C} \frac{2R^2}{\epsilon} \log \left(\frac{F(x_0) - F^*}{\epsilon \rho} \right)$$

$$\Downarrow$$

$$Prob(F(x_k) - F(x_*) \le \epsilon) \ge 1 - \rho$$

$$(R^2 \approx \sum_i L_i(x_0^i - x_*^i)^2)$$

5. AC/DC Solver

We developed a solver (http://code.google.com/ p/ac-dc/) for $f(x) = \sum Loss(x; A_1, b_1),$ $\Psi(x) = \lambda \|x\|_1$

<u>i=1</u>	
3 supported losses	$Loss(x, A_j, b_j)$
square loss	$\frac{1}{2}(b_j - A_j x)^2$
logistic loss	$log(1 + e^{-b_j A_j x})$
hinge square loss	$\frac{1}{2} \max\{0, 1 - b_j A_j x\}^2$
Note that $A_j \in \mathbb{R}^n$ is a row vector and later will	
represent the j -th row of matrix A .	

Implementation Details (square loss example)

If we can maintain $q_k = Ax_k - b$ on all computers, then since $\nabla_{\epsilon} f(x_k) = \langle a_{\epsilon}, q_k \rangle$ (a_{ϵ} is the *i*-th column of matrix A), computer c can compute $\nabla_t f(x_k)$ for $i \in S_r$, and hence the algorithm can be run.

- Note that $g_{k+1} = Ax_{k+1} b = A(x_k + \sum_{i=1}^C \sum_{i \in \hat{S}_i} t_i^* e_i) b = g_k + \sum_{i=1}^C \sum_{i \in \hat{S}_i} a_i t_i^*$
- That is, computer c additively contributes $g_k[c] := \sum_{i \in \hat{S}} a_i t_i^*$ to the update of g_k
- So, we need to add up the distributed updates q_k[c]

Reduce All (RA)

Peter Richtárik

6. DATA DISTRIBUTION

On computer 1, only the first 4 coordinates of vector x are stored and also the corresponding 4 columns of matrix A. Data distribution is crucial for problems whose size exceeds available memory of a single computer!

Asynchronous StreamLine (ASL)

- $G_k[c] = G_{k-1}[Prev(c)] + g_k[c] g_{k-C}[c]$
- $g_{k+1}^{a} = g_{k}^{a} + g_{k}[c] + G_{k}[Prev(c)] g_{k-C}[c]$ ASL: much LESS communication that RA!
- ASL: asynchronous (non-blocking) communication
- ASL: communication only between two closest computers

Left image shows Parallel and Serial (PS) approach. where each MPI process runs few OpenMP threads for computing t_i^s and $g_k[c]$ (black boxes) and afterwards, MPI communication takes places (blue boxes). Right image shows Fully Parallel (FP) approach in which one of the threads deals with communication and when waiting for a new communication, it helps the other threads to do some computation.

9. Numerical Experiments

All experiments were done on HECToR - Cray XE6 using 2,048 cores. Problem size $A \in \mathbb{R}^{10^6 \times 8 \cdot 10^8}$ had 1.2 TBytes and we used $\tau = 10^{\circ}$.

10. References

- [1] Takáč, M., Mareček, J. and Richtártk, P.: Distributed co-
- ordinate descent methods for big data optimization, 2018 [2] Richtárik, P., Takáč, M.: Parallel coordinate descent
- methods for big data optimization, 2012 Richtárik, P., Takáč, M.: Iteration complexity of random-[3] ized block-coordinate descent methods for minimizing a composite function, Mathematical Programming, 2012

Conclusions

- Coordinate descent methods scale very well to big data problems of special structure
 - Partial separability (sparsity)
 - Small spectral norm of the data
 - Nesterov separability, ...
- Care is needed when combining updates (add them up? average?)

References: serial coordinate descent

- Shai Shalev-Shwartz and Ambuj Tewari, Stochastic methods for L1-regularized loss minimization. JMLR 2011.
- Yurii Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal on Optimization, 22(2):341-362, 2012.
- AC
- [RT'11b] P.R. and Martin Takáč, Iteration complexity of randomized blockcoordinate descent methods for minimizing a composite function. *Mathematical Prog.*, 2012.

- Rachael Tappenden, P.R. and Jacek Gondzio, Inexact coordinate descent: complexity and preconditioning, *arXiv: 1304.5530, 2013*.
- Ion Necoara, Yurii Nesterov, and Francois Glineur. Efficiency of randomized coordinate descent methods on optimization problems with linearly coupled constraints. Technical report, Politehnica University of Bucharest, 2012.
- Zhaosong Lu and Lin Xiao. On the complexity analysis of randomized blockcoordinate descent methods. *Technical report, Microsoft Research, 2013.*

References: parallel coordinate descent

[BKBG'11] Joseph Bradley, Aapo Kyrola, Danny Bickson and Carlos Guestrin,
 Parallel Coordinate Descent for L1-Regularized Loss Minimization. ICML 2011

[RT'12] P.R. and Martin Takáč, Parallel coordinate descen methods for big data optimization. arXiv:1212.0873, 2012

- Martin Takáč, Avleen Bijral, P.R., and Nathan Srebro. Mini-batch primal and dual methods for SVMs. ICML 2013
- [FR'12] Olivier Fercoq and P.R., **Smooth minimization of nonsmooth functions** with parallel coordinate descent methods. *arXiv:1309.5885*, 2013

 [RT'13a] P.R. and Martin Takáč, Distributed coordinate descent method for big data learning. arXiv:1310.2059, 2013

Good entry point to the topic (4p paper)

[RT'13b] P.R. and Martin Takáč, **On optimal probabilities in stochastic** coordinate descent methods. *arXiv:1310.3438*, 2013

References: parallel coordinate descent

- P.R. and Martin Takáč, Efficient serial and parallel coordinate descent methods for huge-scale truss topology design. Operations Research Proceedings 2012.
- Rachael Tappenden, P.R. and Burak Buke, Separable approximations and decomposition methods for the augmented Lagrangian. *arXiv:1308.6774, 2013.*
- Indranil Palit and Chandan K. Reddy. Scalable and parallel boosting with MapReduce. IEEE Transactions on Knowledge and Data Engineering, 24(10): 1904-1916, 2012.
- Shai Shalev-Shwartz and Tong Zhang, Accelerated mini-batch stochastic dual coordinate ascent. *NIPS 2013*.

TALK TOMORROW