Sparse Matrices and Graphs:
There and Back Again

John R. Gilbert

University of California, Santa Barbara

Simons Institute Workshop on Parallel and Distributed
Algorithms for Inference and Optimization

Support: Intel, Microsoft, DOE Office of Science, NSF

-

Combinatorial Scientific Computing

“T observed that most of the

g coefficients in our matrices wetre

\ zero; 1.e., the nonzeros were
& ‘sparse in the matrix, and that
typically the triangular matrices
assoclated with the forward and back
solution provided by Gaussian
elimination would remain sparse if
pivot elements were chosen with

as

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics

””
care

Graphs and sparse matrices: Cholesky factorization

o o o o
([J o [J ([J o
° o0 °))
A ¢ Fill: new nonzeros in factor
o [N o [N
([J o 00 ([J o [3)
(N (N (N [N
o o (o o ® 0 o000
1 3 7 1 3 7
Symmetric Gaussian elimination:
8 6 8 6

forj=1ton
4 10 4 10 add edges between j's
higher-numbered neighbors

G(A) G(L)
[chordal]

UCSB

Sparse Gaussian elimination and chordal completion
[Parter, Rose]

(PAP") (Px) = (Pb) PAPT =L LT

Sparse Gaussian elimination and chordal completion

[Parter, Rose]

Repeat:

Choose a vertex v and mark it;

Add edges between unmarked neighbors of v;
Until: Every vertex is marked

Goal: End up with as few edges as possible.

Or, add fewest possible edges to make the graph chordal.

Space = edges + vertices = Zvemces (1 + # higher neighbors)

Time = flops = 2 (1+ # higher neighbors)?

vertices

Nested dissection and graph partitioning

[George 1973, many extensions]

Matrix reordered by nested dissection

X

Vertex separator in graph of matrix

Elimination tree with nested dissection
nz = 844

. Find a small vertex separator, number it last, recurse on subgraphs

. Theory: approx optimal separators => approx optimal fill & flop count

UCSB

Separators in theory

« Planar graphs have O(n"?) - separators.

Well-shaped finite element meshes in 3 dimensions
have O(n??) - separators.

« Also some others — trees, bounded genus, chordal
graphs, bounded-excluded-minor graphs, ...

. Most of these theorems come with efficient algorithms,
but they aren’ t used much — heuristics do okay.

« Random graphs don’t have good separators.

— e.g. Erdos-Renyi graphs have only O(n) - separators.

UCSB

Separators in practice

Graph partitioning heuristics have been an active
research area for many years, often motivated by
partitioning for parallel computation.

Some techniques:

Spectral partitioning (using Laplacian eigenvectors)
Geometric partitioning (meshes with vertex coordinates)
lterative swapping (Kernighan-Lin, Fiduccia-Matheysses)

Breadth-first search (fast but low quality)

Many popular modern codes (e.g. Zoltan, Metis) use
multilevel iterative swapping

UCSB

Graph algorithms in sparse matrix computation

Many, many graph algorithms have been used, invented,
implemented at large scale for sparse matrix computation:

Symmetric problems: elimination tree, nonzero
structure prediction, sparse triangular solve, sparse
matrix-matrix multiplication, min-height etree, ...

Nonsymmetric problems: sparse triangular solve,
bipartite matching (weighted and unweighted),
Dulmage-Mendelsohn decomposition / strong
components, ...

lterative methods: graph partitioning again,
independent set, low-stretch spanning trees, ... UC S B

Sparse-sparse triangular solve

Symbolic:

Predict structure of x by search from nonzeros of b
Numeric:

Compute values of x in topological order

Time = O(flops)

10

Sparse Cholesky factorization to solve Ax=Db

1. Preorder: replace A by PAP" and b by Pb

Independent of numerics

2. Symbolic Factorization: build static data structure

Elimination tree
Nonzero counts
Supernodes

Nonzero structure of L

3. Numeric Factorization: A = LLT

Static data structure
Supernodes use BLAS3 to reduce memory traffic

4. Triangular Solves: solve Ly = b, then L'x =y

Chordal graphs, dense matrices, and communication

A chordal graph can be compactly represented as a
tree of overlapping cliques (complete subgraphs).

« A complete subgraph is a dense submatrix.
« Dense matrix ops do n® work for n? communication.

Most of the ops in Gaussian elimination can be done
within dense BLAS primitives, esp. DGEMM.

UCSB

12

Supernodes for Gaussian elimination

« Supernode = group of ’
adjacent columns of L with ‘:\‘ o
same nonzero structure oo o

o000 t|@

« Related to clique structure oo *.

of filled graph G*(A) oee .
(N N J o

C

« Supernode-column update: k sparse vector ops become

1 dense triangular solve
+ 1 dense matrix * vector
+ 1 sparse vector add

« Sparse BLAS 1 => Dense BLAS 2
« Supernode-panel or multifrontal updates => Dense BLAS 3

Aside: Nonsymmetric matrices and partial pivoting

« PAQT = LU: Q preorders columns for sparsity, P is row pivoting
« Column permutation of A < Symmetric permutation of ATA

« Symmetric ordering: Nested dissection or approximate minimum degree

« But, forming ATA is expensive (sometimes bigger than L+U).

Aside: Nonsymmetric matrices and partial pivoting

Given the nonzero structure of (nonsymmetric) A,
one can find ...

* column nested dissection or min degree permutation
« column elimination tree T(ATA)

 row and column counts for G*(ATA)

 supernodes of G*(ATA)

 nonzero structure of G*(ATA)

... without forming ATA or G(A).

The middleware of scientific computing

Continuous
physical modeling

|

Linear algebra AX p— b

16

The middleware challenge for graph analysis

Continuous
physical modeling

Discrete
structure analysis

l l

Linear algebra Graph theory

| |

17

Top 500 List (June 2013)

18

Top500 Benchmark:

Solve a large system
of linear equations
by Gaussian elimination

Rank

]

Site

National University of Defense
Technology
China

DOE/SC/Oak Ridge National Laboratory

United States

DOE/NNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science (AICS)
Japan

DOE/SC/Argonne National Laboratory

United States

Texas Advanced Computing Center/Univ.

of Texas
United States

Forschungszentrum Juelich (FZJ)
Germany

DOE/NNSA/LLNL
United States

Leibniz Rechenzentrum
Germany

National Supercomputing Center in
Tianjin

China

Total Exploration Production
France

System

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel
Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel
Xeon Phi 31S1P

NUDT

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz,
Cray Gemini interconnect, NVIDIA K20x
Cray Inc.

Sequoia - BlueGene/Q, Power BQC 16C 1.60
GHz, Custom
1BM

K computer, SPARC64 Vllifx 2.0GHz, Tofu
interconnect
Fujitsu

Mira - BlueGene/Q, Power BQC 16C 1.60GHz,
Custom
1BM

Stampede - PowerEdge C8220, Xeon ES-2680 8C
2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P
Dell

JUQUEEN - BlueGene/Q, Power BQC 16C
1.600GHz, Custom Interconnect
1BM

Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz,
Custom Interconnect
IBM

SuperMUC - iDataPlex DX360M4, Xeon E5-2680
8C 2.70GHz, Infiniband FDR
1BM

Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93
GHz, NVIDIA 2050
NUDT

Pangea - SGI ICE X, Xeon E5-2670 8C 2.600GHz,
Infiniband FDR
SGI

Cores

3,120,000 33,862.7

560,640

1,572,864 17,173.2

705,024

786,432

462,462

458,752

393,216

147,456

186,368

110,400

SUPERCOMPUTER SITES

Rmax Rpeak Power
(TFlop/s) (TFlopls) (kW)
54,9024 17,808
17,580.0 27,1125 8,208
20,132.7 7,890
10,5100 11,2804 12,659.9
8,586.6 10,066.3 3,945
5,168.1 8,520.1 4,510
5,008.9 5,872.0 2,301
4,293.3 5,033.2 1,972
2,897.0 3,185.1 3,422.7
2,566.0 4,701.0 4,040
2,098.1 2,296.3 2,118

UCSB

B &5 _aB

Graph 500 List (June 2013)

Graph500
Benchmark:

Breadth-first search
In a large
power-law graph

19

k
Machine

DOE/NNSA/LLNL
Sequoia (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

DOE/SC/Argonne
National Laboratory
Mira (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

JUQUEEN (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

K computer (Fujitsu
Custom
supercomputer)

Fermi (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

Tianhe-2
(MilkyWay-2)
(National University
of Defense
Technology - MPP)

Turing (IBM -
BlueGene/Q, Power
BQC 16C 1.60GHz)

Blue Joule (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

DIRAC (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

Installation Site

Lawrence Livermore
Nationzal Laboratory

Argonne National
Laboratory

Forschungszentrum
Juelich (FZJ)

RIKEN Advanced
Institute for

Computational Science

(AICS)

CINECA

Changsha, China

CNRS/IDRIS-GENCI

Science and
Technology Facilities
Council - Daresbury
Laboratory

University of
Edinburgh

65536

49152

16384

65536

8192

8192

4096

4096

4096

1048576

786432

262144

524288

131072

196608

65536

65536

65536

40

40

38

40

37

36

36

36

36

15363

14328

5848

5524.12

2567

2061.48

1427

1427

1427

Floating-point vs. graphs, June 2013

33.8 Petaflops 15.3 Terateps

P[A 3¢

20

Floating-point vs. graphs, June 2013

33.8 Petaflops 15.3 Terateps

P[A 3¢

Jun 2013: 33.8 Peta / 15.3 Tera ~ 2,200
Nov 2010: 2.5 Peta / 6.6 Giga ~ 380,000

21

The middleware challenge for graph analysis

* By anglogy to Basic Linear Algebra Subroutines (BLAS):
numerical Ops/Sec vs. Matrix Size
scientific T T
computing. . . Ic = A*B
gm- |y = A*x
= xT
« What should the so/ I y
combinatorial %/ R T TR
BLAS IOOk Iike? Order of vectorsmatrices

2 B o5 _aB

Sparse array primitives for graph manipulation

Sparse matrix-dense

Sparse matrix-matrix
vector multiplication

multiplication (SpGEMM)

® O ® ® ® ®

® ® ®

XQ o ® o .xQ
e o ® o
o o

Element-wise operations

Sparse matrix indexing

® ® ®
K ® ® ® & o
" e 0 o ® ® e ®
{ ® o
Matrices over various semirings: (+.x), (min.+), (or.and), ...

Multiple-source breadth-first search

24

Multiple-source breadth-first search

® o o
o o
o ® O o o
o o o 9 o
[] o
o o o
[]
Al X ATX

. Sparse array representation => space efficient

. Sparse matrix-matrix multiplication => work efficient

. Three possible levels of parallelism: searches, vertices, edges

25

Graph contraction via

sparse triple product

Contract @
i > H
“ A3
& (r)—»)
1 2 3 4 5 6 1 2 3 4 5 6
111 1 1 ° ° 1 ®
2 1 1 X 2@ ° X |1 = | @ ®
3 1 1 3] @ o0 1 ot
4 ° ° 1
5@ @ 1
6 ° 1

Subgraph extraction via

sparse triple product

Extract
| >
5
12 3 4 5 6 1 2 3 4 5 6
1 1 1 ® ° ®
2 1 X 2@ ° X = |® ®
3 1 3] @ e e 1 o
4 ° ° 1
5@ °
6 ° 1

Betweenness centrality [Robinson 2008]

b = BETWEENNESSCENTRALITY(G = A : BNv*Nv)

1 b=0
9 . , N -
2 for 1 ior S Variables: Storage:
4 d=0 A: sparse adjacency matrix B™N O(M+N)
5 S =0 f: sparse fringe vector Z5™ O(N)
6 p=0.p, = p : shortest path vector ZN O(N)
4 f=a,, S : sparse depth matrix BS™NN O(N)
g Wh"gi 70 u: centrality update vector RN O(N)
10 d=d+1
11 p=p+f
12 sg. =1
13 f =fA < —p
14 while d > 2
15 do
16 w=s4.%x(1l4u)+p
17 w=Aw
18 W=W X84 1:XP Storage: O(M+N)
19 u=u+w Time: O(MN + N?)
20 d = (l —1
21 b=b+u

Graph algorithms in the language of linear algebra

Kepner et al. study [2006]:
fundamental graph algorithms
inCIUding min Spanning tree’ Jeremy Ke ii]rt:?mohn Gilbert
shortest paths, independent ' \
set, max flow, clustering, ...

° =

° SSCA#2 / Centra“ty [2008] Graph Aléorithms in the

Language of Linear Algebra

. Basic breadth-first search /
Graph500 [2010] H H

. Beamer et al. [2013] direction-
optimizing breadth-first search,
implemented with CombBLAS

) UCSB

Matrices over semirings

E.g. matrix multiplication C = AB (or matrix/vector):
Ci,j - Ai,1XB1,j + Ai,ZXBZ,j + e + Ai,nXBn,j

 Replace scalar operations x and + by

® : associative, distributes over @

@ : associative, commutative
o Then Ci,j = Ai,1®B1,j @ Ai,2®Bz,j @ =" @ Ai,n®Bn,j
« Examples: x.+; and.or; +.min; ...

« Same data reference pattern and control flow

UCSB

30

Examples of semirings in graph algorithms

31

(R, +, X) Standard numerical linear algebra
Real Field
({0,1}, |, &) Graph traversal

Boolean Semiring

(R U {00}, min, +)
Tropical Semiring

Shortest paths

(R U {0}, min, x)

Select subgraph, or contract nodes
to form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

UCSB

Question: Berry challenge problems

« Clustering coefficient (triangle counting)

« Connected components (bully algorithm)

« Maximum independent set (NP-hard)

« Maximal independent set (Luby algorithm)
« Single-source shortest paths

« Special betweenness (for subgraph isomorphism)

UCSB

32

Question: Not materializing big matrix products

Recall: Given nonsymmetric A, one can find . ..

column nested dissection or min degree permutation
column elimination tree T(ATA)

row and column counts for G*(ATA)

supernodes of G*(ATA)

nonzero structure of G*(ATA)

... without forming ATA.

. How generally can we do graph algorithms in linear
algebra without storing intermediate results?

. Maybe related to Joey Gonzalez’'s scheduling of
vertex and edge operations in GraphLab.

. Maybe related to techniques for avoiding
“boil the ocean” database queries.

33

UCSB

History of BLAS

The Basic Linear Algebra Subroutines
had a revolutionary impact
on computational linear algebra.

BLAS 1 | vector ops Lawson, Hanson, Kincaid, LINPACK
Krogh, 1979

BLAS 2 | matrix-vector ops | Dongarra, Du Croz, LINPACK on
Hammarling, Hanson, 1988 vector machines

BLAS 3 | matrix-matrix ops | Dongarra, Du Croz, LAPACK on
Hammarling, Hanson, 1990 | cache based machines

« Separation of concerns:
« Experts in mapping algorithms onto hardware tuned BLAS to specific platforms.

» Experts in linear algebra built software on top of the BLAS to obtain high
performance “for free”.

« Today every computer, phone, etc. comes with /usr/1ib/1libblas

UCSB

34

35

Can we define and standardize

the “Graph BLAS™?

No, it is not reasonable to define a universal set of graph
algorithm building blocks:

Huge diversity in matching algorithms to hardware platforms.
No consensus on data structures and linguistic primitives.
Lots of graph algorithms remain to be discovered.

Early standardization can inhibit innovation.

Yes, it is reasonable to define a common set of graph
algorithm building blocks ... for Graphs as Linear Algebra:

Representing graphs in the language of linear algebra is a mature
field.

Algorithms, high level interfaces, and implementations vary.

But the core primitives are well established.

UCSB

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation). David Bader (Georgia Institute of Technology). Jon Berry (Sandia National
Laboratory). Aydin Buluc (Lawrence Berkeley National Laboratory). Jack Dongarra (University of Tennessee).
Christos Faloutsos (Carnegie Melon University). John Feo (Pacific Northwest National Laboratory). John Gilbert
(University of California at Santa Barbara). Joseph Gonzalez (University of California at Berkeley). Bruce
Hendrickson (Sandia National Laboratory). Jeremy Kepner (Massachusetts Institute of Technology). Charles
Leiserson (Massachusetts Institute of Technology). Andrew Lumsdaine (Indiana University). David Padua (University
of Illinois at Urbana-Champaign). Stephen Poole (Oak Ridge National Laboratory). Steve Reinhardt (Cray
Corporation). Mike Stonebraker (Massachusetts Institute of Technology). Steve Wallach (Convey Corporation).
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract— It is our view that the state of the art in
constructing a large collection of graph algorithms in
terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive
building blocks. This paper is a position paper defining
the problem and announcing our intention to launch an
open effort to define this standard.

37

Matrix computation is beginning to repay a 50-year
debt to graph algorithms.

Graphs in the language of linear algebra are
sufficiently mature to support a standard set of BLAS.

It helps to look at things from two directions.

