
1

Sparse Matrices and Graphs:
There and Back Again

John R. Gilbert
University of California, Santa Barbara

Simons Institute Workshop on Parallel and Distributed
Algorithms for Inference and Optimization

October 22, 2013

Support: Intel, Microsoft, DOE Office of Science, NSF	

2

Combinatorial Scientific Computing

 “I observed that most of the
coefficients in our matrices were
zero; i.e., the nonzeros were
‘sparse’ in the matrix, and that
typically the triangular matrices
associated with the forward and back
solution provided by Gaussian
elimination would remain sparse if
pivot elements were chosen with
care”

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics

3

Graphs and sparse matrices: Cholesky factorization

 A = LLT

10

1 3

2

4

5

6

7

8

9

10

1 3

2

4

5

6

7

8

9

G(A) G(L)
[chordal]

Symmetric Gaussian elimination:

for j = 1 to n
 add edges between j’s
 higher-numbered neighbors

Fill: new nonzeros in factor

4

(PAPT) (Px) = (Pb)	

Ax = b	

PAPT = L2L2
T	

A = L1L1
T	

1 3

2
4

5

1 3

2
4

5

2 5

3
4

1

2 5

3
4

1

Sparse Gaussian elimination and chordal completion
[Parter, Rose]

5

Sparse Gaussian elimination and chordal completion
[Parter, Rose]

Repeat:
 Choose a vertex v and mark it;
 Add edges between unmarked neighbors of v;

Until: Every vertex is marked

Goal: End up with as few edges as possible.

Or, add fewest possible edges to make the graph chordal.

Space = edges + vertices = Σvertices (1 + # higher neighbors)

Time = flops = Σvertices (1+ # higher neighbors)2

6

Elimination tree with nested dissection

Nested dissection and graph partitioning
[George 1973, many extensions]

•  Find a small vertex separator, number it last, recurse on subgraphs

•  Theory: approx optimal separators => approx optimal fill & flop count

0 50 100

0

20

40

60

80

100

120

nz = 844

Matrix reordered by nested dissection

Vertex separator in graph of matrix

7

•  Planar graphs have O(n1/2) - separators.

•  Well-shaped finite element meshes in 3 dimensions
have O(n2/3) - separators.

•  Also some others – trees, bounded genus, chordal
graphs, bounded-excluded-minor graphs, …

•  Most of these theorems come with efficient algorithms,
but they aren’t used much – heuristics do okay.

•  Random graphs don’t have good separators.
–  e.g. Erdos-Renyi graphs have only O(n) - separators.

Separators in theory

8

Separators in practice

•  Graph partitioning heuristics have been an active
research area for many years, often motivated by
partitioning for parallel computation.

•  Some techniques:
–  Spectral partitioning (using Laplacian eigenvectors)

–  Geometric partitioning (meshes with vertex coordinates)
–  Iterative swapping (Kernighan-Lin, Fiduccia-Matheysses)

–  Breadth-first search (fast but low quality)

•  Many popular modern codes (e.g. Zoltan, Metis) use
multilevel iterative swapping

9

Graph algorithms in sparse matrix computation

Many, many graph algorithms have been used, invented,
implemented at large scale for sparse matrix computation:

•  Symmetric problems: elimination tree, nonzero
structure prediction, sparse triangular solve, sparse
matrix-matrix multiplication, min-height etree, …

•  Nonsymmetric problems: sparse triangular solve,
bipartite matching (weighted and unweighted),
Dulmage-Mendelsohn decomposition / strong
components, …

•  Iterative methods: graph partitioning again,
independent set, low-stretch spanning trees, …

10

Sparse-sparse triangular solve

1 5 2 3 4

=	

G(LT)	

1

2 3

4

5

L	

 x	

 b	

Symbolic:

Predict structure of x by search from nonzeros of b

Numeric:
Compute values of x in topological order

 Time = O(flops)	

1.  Preorder: replace A by PAPT and b by Pb
•  Independent of numerics

2.  Symbolic Factorization: build static data structure
•  Elimination tree
•  Nonzero counts
•  Supernodes
•  Nonzero structure of L

3.  Numeric Factorization: A = LLT
•  Static data structure
•  Supernodes use BLAS3 to reduce memory traffic

4.  Triangular Solves: solve Ly = b, then LTx = y

Sparse Cholesky factorization to solve Ax = b

12

Chordal graphs, dense matrices, and communication

•  A chordal graph can be compactly represented as a
tree of overlapping cliques (complete subgraphs).

•  A complete subgraph is a dense submatrix.

•  Dense matrix ops do n3 work for n2 communication.

•  Most of the ops in Gaussian elimination can be done
within dense BLAS primitives, esp. DGEMM.

Supernodes for Gaussian elimination

•  Supernode-column update: k sparse vector ops become
 1 dense triangular solve
 + 1 dense matrix * vector
 + 1 sparse vector add

•  Sparse BLAS 1 => Dense BLAS 2
•  Supernode-panel or multifrontal updates => Dense BLAS 3

{	

•  Supernode = group of
adjacent columns of L with
same nonzero structure

•  Related to clique structure
of filled graph G+(A)

Aside: Nonsymmetric matrices and partial pivoting

•  PAQT = LU: Q preorders columns for sparsity, P is row pivoting

•  Column permutation of A ó Symmetric permutation of ATA

•  Symmetric ordering: Nested dissection or approximate minimum degree

•  But, forming ATA is expensive (sometimes bigger than L+U).

=	

 x P

Q

Given the nonzero structure of (nonsymmetric) A,
one can find . . .

•  column nested dissection or min degree permutation
•  column elimination tree T(ATA)
•  row and column counts for G+(ATA)
•  supernodes of G+(ATA)
•  nonzero structure of G+(ATA)

. . . without forming ATA or G∩(A).

Aside: Nonsymmetric matrices and partial pivoting

16

The middleware of scientific computing

Computers

Continuous
physical modeling

Linear algebra Ax = b

17

Computers

Continuous
physical modeling

Linear algebra

Discrete
structure analysis

Graph theory

Computers

The middleware challenge for graph analysis

18

Top 500 List (June 2013)

=	

 x P	

A L	

 U

Top500 Benchmark:
Solve a large system
of linear equations

by Gaussian elimination

19

Graph 500 List (June 2013)

Graph500
Benchmark:

Breadth-first search
in a large

power-law graph

1 2

3

4 7

6

5

20

Floating-point vs. graphs, June 2013

=	

 x P	

 A L	

 U	

1 2

3

4 7

6

5

33.8 Peta / 15.3 Tera is about 2200.

33.8 Petaflops 15.3 Terateps

21

Floating-point vs. graphs, June 2013

=	

 x P	

 A L	

 U	

1 2

3

4 7

6

5

Jun 2013: 33.8 Peta / 15.3 Tera ~ 2,200
 Nov 2010: 2.5 Peta / 6.6 Giga ~ 380,000

15.3 Terateps 33.8 Petaflops

22

•  By analogy to
numerical
scientific
computing. . .

•  What should the
combinatorial
BLAS look like?

The middleware challenge for graph analysis

C = A*B

y = A*x

µ = xT y

Basic Linear Algebra Subroutines (BLAS):
Ops/Sec vs. Matrix Size

23

Identification of Primitives

Sparse matrix-matrix
multiplication (SpGEMM)

Element-wise operations

×

Matrices over various semirings: (+ . x), (min . +), (or . and), …

Sparse matrix-dense
vector multiplication

Sparse matrix indexing

×

.*

 Sparse array primitives for graph manipulation

24

Multiple-source breadth-first search

X	

1 2

3

4 7

6

5

AT	

25

Multiple-source breadth-first search

•  Sparse array representation => space efficient
•  Sparse matrix-matrix multiplication => work efficient

•  Three possible levels of parallelism: searches, vertices, edges

X	

AT	

 ATX	

à

1 2

3

4 7

6

5

Graph	
 contrac+on	
 via	
 	

sparse	
 triple	
 product	

5

6

3

1 2

4

A1	

A3	

A2	

A1	

A2	
 A3	

Contract

1 5 2 3 4 6
1

5

2
3
4

6

1 1 0 00 0
0 0 1 10 0
0 0 0 01 1

1 1 0
1 0 1
0 1 0
1 1
1 1

0 0 1

x	
 x	
 =	

1 5 2 3 4 6
1
2
3

Subgraph	
 extrac+on	
 via	

sparse	
 triple	
 product	

5

6

3

1 2

4

Extract 3

1
2

1 5 2 3 4 6
1

5

2
3
4

6

1 1 1	
 00 0
0 0 1 11 0
0 0 0 01 1

1 1 0
1 0 1
1 1 0
1 1
1 1

0 0 1

x	
 x	
 =	

1 5 2 3 4 6
1
2
3

28

Betweenness centrality [Robinson 2008]

•  Slide on BC in CombBLAS, or at least array based.

29

Graph algorithms in the language of linear algebra

•  Kepner et al. study [2006]:
fundamental graph algorithms
including min spanning tree,
shortest paths, independent
set, max flow, clustering, …

•  SSCA#2 / centrality [2008]

•  Basic breadth-first search /
Graph500 [2010]

•  Beamer et al. [2013] direction-
optimizing breadth-first search,
implemented with CombBLAS

30

Matrices over semirings

•  E.g. matrix multiplication C = AB (or matrix/vector):

Ci,j = Ai,1×B1,j + Ai,2×B2,j + · · · + Ai,n×Bn,j

•  Replace scalar operations × and + by
 ⊗ : associative, distributes over ⊕

 ⊕ : associative, commutative

•  Then Ci,j = Ai,1⊗B1,j ⊕ Ai,2⊗B2,j ⊕ · · · ⊕ Ai,n⊗Bn,j

•  Examples: ×.+ ; and.or ; +.min ; . . .

•  Same data reference pattern and control flow

31

Examples of semirings in graph algorithms

(R, +, x)
Real Field

Standard numerical linear algebra

({0,1}, |, &)
Boolean Semiring

Graph traversal

(R U {∞}, min, +)
Tropical Semiring

Shortest paths

(R U {∞}, min, x) Select subgraph, or contract nodes
to form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

32

Question: Berry challenge problems

•  Clustering coefficient (triangle counting)

•  Connected components (bully algorithm)

•  Maximum independent set (NP-hard)

•  Maximal independent set (Luby algorithm)

•  Single-source shortest paths

•  Special betweenness (for subgraph isomorphism)

33

Recall: Given nonsymmetric A, one can find . . .
–  column nested dissection or min degree permutation
–  column elimination tree T(ATA)
–  row and column counts for G+(ATA)
–  supernodes of G+(ATA)

–  nonzero structure of G+(ATA)
. . . without forming ATA.

•  How generally can we do graph algorithms in linear
algebra without storing intermediate results?

•  Maybe related to Joey Gonzalez’s scheduling of
vertex and edge operations in GraphLab.

•  Maybe related to techniques for avoiding
“boil the ocean” database queries.

Question: Not materializing big matrix products

34

History of BLAS

•  Separation of concerns:
•  Experts in mapping algorithms onto hardware tuned BLAS to specific platforms.

•  Experts in linear algebra built software on top of the BLAS to obtain high
performance “for free”.

•  Today every computer, phone, etc. comes with /usr/lib/libblas!

The Basic Linear Algebra Subroutines
 had a revolutionary impact

on computational linear algebra.

BLAS 1 vector ops Lawson, Hanson, Kincaid,
Krogh, 1979

LINPACK

BLAS 2 matrix-vector ops Dongarra, Du Croz,
Hammarling, Hanson, 1988

LINPACK on
vector machines

BLAS 3 matrix-matrix ops Dongarra, Du Croz,
Hammarling, Hanson, 1990

LAPACK on
cache based machines

35

•  No, it is not reasonable to define a universal set of graph
algorithm building blocks:
–  Huge diversity in matching algorithms to hardware platforms.

–  No consensus on data structures and linguistic primitives.
–  Lots of graph algorithms remain to be discovered.

–  Early standardization can inhibit innovation.

•  Yes, it is reasonable to define a common set of graph
algorithm building blocks … for Graphs as Linear Algebra:
–  Representing graphs in the language of linear algebra is a mature

field.

–  Algorithms, high level interfaces, and implementations vary.
–  But the core primitives are well established.

Can we define and standardize
the “Graph BLAS”?

37

Conclusion

•  Matrix computation is beginning to repay a 50-year
debt to graph algorithms.

•  Graphs in the language of linear algebra are
sufficiently mature to support a standard set of BLAS.

•  It helps to look at things from two directions.

