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Nonlinear heat transfer model in 
random media

Each run takes 5 hours on 8 processors, 
outputs 4M (node) by 9 (time-step) simulation


We did 8192 runs (128 samples of 
bubble locations, 64 bubble radii)

4.5 TB of data in Exodus II (NetCDF)
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https://www.opensciencedatacloud.org/
publicdata/heat-transfer/
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A 

Each simulation is a column

5B-by-64 matrix


2.2TB


U 

S VT 

SVD


Extract 128 x 128

face to laptop


UF S VT 
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Insulator regime


Non-insulator regime
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Fig. 4.5: Error in the reduce order model compared to the prediction standard de-
viation for one realization of the bubble locations at the final time for two values of
the bubble radius, s = 0.39 and s = 1.95 cm. (Colors are visible in the electronic
version.)

the varying conductivity fields took approximately twenty minutes to construct using
Cubit after substantial optimizations.

Working with the simulation data involved a few pre- and post-processing steps:
interpret 4TB of Exodus II files from Aria, globally transpose the data, compute the
TSSVD, and compute predictions and errors. The preprocessing steps took approx-
imately 8-15 hours. We collected precise timing information, but we do not report
it as these times are from a multi-tenant, unoptimized Hadoop cluster where other
jobs with sizes ranging between 100GB and 2TB of data sometimes ran concurrently.
Also, during our computations, we observed failures in hard disk drives and issues
causing entire nodes to fail. Given that the cluster has 40 cores, there was at most
2400 cpu-hours consumed via these calculations—compared to the 131,072 hours it
took to compute 4096 heat transfer simulations on Red Sky. Thus, evaluating the
ROM was about 50-times faster than computing a full simulation.

We used 20,000 reducers to convert the Exodus II simulation data. This choice
determined how many map tasks each subsequent step utilized—around 33,000. We
also found it advantageous to store matrices in blocks of about 16MB per record. The
reduction in the data enabled us to use a laptop to compute the coe�cients of the
ROM and apply to the far face for the UQ study in Section 4.4.

Here are a few pertinent challenges we encountered while performing this study.
Generating 8192 meshes with di↵erent material properties and running independent
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Constantine, Gleich,!
Hou & Templeton arXiv 2013.
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Fig. 4.4: The log of the relative error in
the mean prediction of the ROM as a func-
tion of s and the threshold ⌧̄ . (Colors are
visible in the electronic version.)

s R(s, ⌧̄) E(s, ⌧̄)
0.08 16 1.00e-04
0.23 15 2.00e-04
0.39 14 4.00e-04
0.55 13 6.00e-04
0.70 13 8.00e-04
0.86 12 1.10e-03
1.01 11 1.50e-03
1.17 10 2.10e-03
1.33 9 3.10e-03
1.48 8 4.50e-03
1.64 8 6.50e-03
1.79 7 8.20e-03
1.95 7 1.07e-02
2.11 6 1.23e-02
2.26 6 1.39e-02

Table 4.1: The split and the correspond-
ing ROM error for ⌧̄ = 0.55 and di↵erent
values of s.

at the final time tf for one realization of the bubble locations and two values of the
bubble radius, s = 0.39 cm and s = 1.95 cm. Both measures are larger near the
bubble boundaries and larger near the face containing the heat source. Visualizing
these measures enables such qualitative observations and comparisons.

4.5. Comparison with a response surface. One question that arises fre-
quently in the context of reduced-order modeling is, if one is only interested in a
scalar quantity of interest from the full PDE solution, then what is the advantage
of approximating the full solution with a reduced-order model? Why not just use a
scalar response surface to approximate the quantity of interest as a function of the
parameters? To address this question, we compare two approaches for the parameter
study in Section 4.2:

1. Use a response surface to interpolate the means of each of the two quantities
of interest over a range of bubble radii. We use the quantities of interest at
bubble radii sj = 0.039 j for j = 3, 7, 11, . . . , 59 to decide the form of the
response surface: piecewise linear, nearest neighbor, cubic spline, or piece-
wise cubic Hermite interpolation (PCHIP). The response surface form with
the lowest testing error is constructed from the mean quantities of interest
for bubble radii sj = 0.039 j for j = 1, 5, 9, . . . , 61—which are the same val-
ues whose simulations are used to construct the ROM. The response surface
prediction is then computed for j = 1, 2, 3, . . . , 61.

2. Use the ROM to approximate the temperature field on the far face at the
final time for each realization of the bubble location. Then compute the two
quantities of interest for each approximated far face temperature distribu-
tion, and compute a Monte Carlo approximation of the mean (i.e., a simple
average).

The results of this study are shown in Figure 4.6. For the first quantity of interest
(the average temperature over the far face), the cubic spline response surface approach



Dynamic Mode 
Decomposition

One simulation, ~10TB of data, compute the 
SVD of a space-by-time matrix.
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DMD video




Is this BIG Data?


BIG Data has two properties


 
- too big for one hard drive


 
- ‘skewed’ distribution





BIG Data = “Big Internet Giant” Data


BIG Data = “Big In’Gineering” Data
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A 

“Engineering”




A matrix A : m × n, m ≥ n!
is tall and skinny when O(n2) !
work and storage is “cheap” 
compared to m.
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-- Austin Benson




Quick review of QR
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QR Factorization

David Gleich (Sandia)

Using QR for regression

   is given by 
the solution of   

QR is block normalization
“normalize” a vector 
usually generalizes to 
computing    in the QR

A Q

Let    , real

  

   is    orthogonal (   )

   is    upper triangular.

0

R

=

4/22MapReduce 2011
David Gleich · Purdue 


Let A : m × n, m ≥ n, real

  A = QR

Q is m × n orthogonal (QT Q = I )

R is n × n upper triangular




     

Tall-and-skinny SVD and RSVD


Let A : m × n, m ≥ n, real

  A = U𝞢VT

U is m × n orthogonal 

𝞢 is m × n nonneg, diag.

V is n × n orthogonal
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A Q 

TS
Q

R


R V 
SVD




There are good MPI 
implementations.



What’s left to do? 


Simons PDAIO
 13



David Gleich · Purdue 




Moving data to an MPI cluster 
may be infeasible or costly
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How to store tall-and-skinny 
matrices in Hadoop
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A1


A4 

A2


A3


A4


A : m x n, m ≫ n



Key is an arbitrary row-id

Value is the 1 x n array "
for a row (or b x n block)



Each submatrix Ai is an "
the input to a map task.
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Still, isn’t this easy to do? 
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Current MapReduce algs use the normal equations






A = QR AT A Cholesky�����! RT R Q = AR�1

A1


A4 

A2


A3


A4


Map!
  Aii to Ai

TAi 



Reduce!
  RTR = Sum(Ai

TAi)

  

Map 2!
   Aii to Ai R-1




Two problems!


R inaccurate if A ill-
conditioned



Q not numerically 
orthogonal (House-"
holder assures this)
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Condition number


no
rm

 ( 
Q

T Q
 –

 I 
)
 AR-1


Prior work


Previous methods 
couldn’t ensure 
that the matrix Q 
was orthogonal 
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Four things that are better


1.  A simple algorithm to compute R accurately. 
(but doesn’t help get Q orthogonal).


2.  “Fast algorithm” to get Q numerically 
orthogonal in most cases.


3.  Multi-pass algorithm to get Q numerically 
orthogonal in virtually all cases.


4.  A direct algorithm for a numerically 
orthogonal Q in all cases.
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Constantine & Gleich MapReduce 2011


Benson, Gleich & Demmel IEEE BigData 2013
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Condition number


no
rm

 ( 
Q

T Q
 –

 I 
)


AR-1


AR-1 + "

iterative refinement
 4. Direct TSQR

Benson, Gleich, "
Demmel, BigData’13


Prior work


1. Constantine & Gleich, 
MapReduce 2011


2. Benson, Gleich, 
Demmel, BigData’13


Previous methods 
couldn’t ensure 
that the matrix Q 
was orthogonal 
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3. Benson, Gleich, 
Demmel, BigData’13




MapReduce is great for TSQR!!
You don’t need  ATA

Data A tall and skinny (TS) matrix by rows



Input 500,000,000-by-50 matrix"
Each record 1-by-50 row"
HDFS Size 183.6 GB



Time to compute read A   253 sec. write A   848 sec.!
Time to compute  R in qr(A) 526 sec. w/ Q=AR-1 1618 sec. "
Time to compute Q in qr(A) 3090 sec. (numerically stable)!
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Communication avoiding QR 
(Demmel et al. 2008)
Communication avoiding TSQR

Demmel et al. 2008.  Communicating avoiding parallel and sequential QR.

First, do QR 
factorizations
of each local 
matrix   

Second, compute 
a QR factorization 
of the new “R”

David Gleich (Sandia) 6/22MapReduce 2011

21



Simons PDAIO
David Gleich · Purdue 




Serial QR factorizations!
(Demmel et al. 2008)
Fully serial TSQR

Demmel et al. 2008.  Communicating avoiding parallel and sequential QR.

Compute QR of    , 
read    , update QR, …

David Gleich (Sandia) 8/22MapReduce 2011
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A1

A2

A3

A1

A2
qr

Q2 R2

A3
qr

Q3 R3

A4
qr Q4A4

R4

emit

A5

A6

A7

A5

A6
qr

Q6 R6

A7
qr

Q7 R7

A8
qr Q8A8

R8

emit

Mapper 1
Serial TSQR

R4

R8

Mapper 2
Serial TSQR

R4

R8

qr Q emitR
Reducer 1
Serial TSQR

Algorithm
Data Rows of a matrix

Map QR factorization of rows
Reduce QR factorization of rows

Communication avoiding QR (Demmel et al. 2008) !
on MapReduce (Constantine and Gleich, 2011)
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Too many maps cause too 
much data to one reducer!


S(1) 

A 

A1 

A2 

A3 

A3 

R1 
map 

Mapper 1-1 
Serial TSQR 

A2 

emit R2 
map 

Mapper 1-2 
Serial TSQR 

A3 

emit R3 
map 

Mapper 1-3 
Serial TSQR 

A4 

emit R4 
map 

Mapper 1-4 
Serial TSQR 

shuffle 

S1 

A2 

reduce 

Reducer 1-1 
Serial TSQR 

S2 
R2,2 

reduce 

Reducer 1-2 
Serial TSQR 

R2,1 
emit 

emit 

emit 

shuffle 

A2 S3 
R2,3 

reduce 

Reducer 1-3 
Serial TSQR 

emit 

Iteration 1 Iteration 2 

identity m
ap 

A2 S(2) 
R reduce 

Reducer 2-1 
Serial TSQR 

emit 
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Getting Q
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Condition number
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 4. Direct TSQR
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Demmel, BigData’13


Prior work


1. Constantine & Gleich, 
MapReduce 2011!

2. Benson, Gleich, 
Demmel, BigData’13


Previous methods 
couldn’t ensure 
that the matrix Q 
was orthogonal 
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3. Benson, Gleich, 
Demmel, BigData’13


AR-1




Iterative refinement helps
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A1


A4 

Q1

R-1


Mapper 1


A2
 Q2


A3
 Q3


A4
 Q4


R

TSQR


Distribute R


R-1


R-1


R-1


Iterative refinement is like using Newton’s method to solve Ax = b. It’s folklore that 
“two iterations of iterative refinement are enough”


TSQR


Q1


A4 

Q1

T-1


Mapper 2


Q2
 Q2


Q3
 Q3


Q4
 Q4


T

Distribute T


T-1


T-1


T-1




What if iterative refinement is 
too slow?
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A1


A4 

Q1

R-1


Mapper 1


A2
 Q2


A3
 Q3


A4
 Q4


S
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Com
pute QR, "

distribute R


R-1


R-1


R-1


TSQR


A1


A4 

Q1

T-1


Mapper 2


A2
 Q2


A3
 Q3


A4
 Q4


T

Distribute TR


T-1


T-1


T-1


Based on recent work by “random matrix” community on approximating QR 
with a random subset of rows. Also assumes that you can get a subset of 
rows “cheaply” – possible, but nontrivial in Hadoop.


R-1


R-1


R-1


R-1


Estimate the “norm” by S
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Prior work


1. Constantine & Gleich, 
MapReduce 2011


2. Benson, Gleich, 
Demmel, BigData’13!

Previous methods 
couldn’t ensure 
that the matrix Q 
was orthogonal 


David Gleich · Purdue 


3. Benson, Gleich, 
Demmel, BigData’13!

AR-1




Recreate Q by storing the 
history of the factorization
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Q11


Q21


Q31


Q41


R

Task 2


Q11


Q21


Q31


Q41


Q1


Q2


Q3


Q4


Mapper 3


1. Output local Q and 
R in separate files


2. Collect R on one 
node, compute Qs 
for each piece


3. Distribute the 
pieces of Q*1 and 
form the true Q




Theoretical lower bound on runtime 
for a few cases on our small cluster

Rows
 Cols
 Old
 R-only 

+ no IR

R-only 
+ PIR


R-only 
+ IR


Direct 
TSQR


4.0B
 4
 1803
 1821
 1821
 2343
 2525

2.5B
 10
 1645
 1655
 1655
 2062
 2464

0.6B
 25
 804
 812
 812
 1000
 1237

0.5B
 50
 1240
 1250
 1250
 1517
 2103
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All values in 
seconds



Only two params 
needed – read and 
write bandwidth for 
the cluster – in 
order to derive a 
performance model 
of the algorithm. 
This simple model 
is almost within a 
factor of two of the 
true runtime. "
(10-node cluster, 
60 disks)


Rows
 Cols
 Old
 R-only 
+ no IR


R-only 
+ PIR


R-only 
+ IR


Direct 
TSQR


4.0B
 4
 2931
 3460
 3620
 4741
 6128

2.5B
 10
 2508
 2509
 3354
 4034
 4035

0.6B
 25
 1098
 1104
 1476
 2006
 1910

0.5B
 50
 921
 1618
 1960
 2655
 3090


M
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Papers




Constantine & Gleich, MapReduce 2011

Benson, Gleich  & Demmel, BigData’13



Constantine & Gleich, ICASSP 2012

Constantine, Gleich, Hou & Templeton, "
arXiv 2013
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Code




https://github.com/arbenson/mrtsqr

https://github.com/dgleich/simform

"



Questions?




BIG




Bloody Imposing Graphs

Building Impressions of Groundtruth


Blockwise Independent Guesses






Best Implemented at Google





