Para-active learning

Alekh Agarwal
Microsoft Research

Joint work with Léon Bottou, Miroslav Dudík and John Langford
Motivation

Many existing distributed learning approaches
- Parallelize existing algorithms (e.g. distributed optimization)
- Variants of existing algorithms (e.g. distributed mini-batches)
- Bagging, model averaging, ...
Motivation

- Many existing distributed learning approaches
 - Parallelize existing algorithms (e.g. distributed optimization)
 - Variants of existing algorithms (e.g. distributed mini-batches)
 - Bagging, model averaging, . . .
- Model/gradients cheaply communicated, meaningfully averaged
Motivation

- Many existing distributed learning approaches
 - Parallelize existing algorithms (e.g. distributed optimization)
 - Variants of existing algorithms (e.g. distributed mini-batches)
 - Bagging, model averaging, . . .
- Model/gradients cheaply communicated, meaningfully averaged
- Limited use of the statistical problem structure (beyond i.i.d.)
Peculiarities of models

- Models not always parsimoniously described
 - Kernel methods: model/gradient not described without training data
 - High-dimensional/non-parametric models

Matrix factorization: $M = UV = (-U)(-V)$

More generic for non-convex models: neural networks, mixture models
Peculiarities of models

- Models not always parsimoniously described
 - Kernel methods: model/gradient not described without training data
 - High-dimensional/non-parametric models

- Models not always meaningfully averaged
 - Matrix factorization: $M = UV = (-U)(-V)$
 - More generic for non-convex models: neural networks, mixture models
Not all data points are equally informative
Data data everywhere, but . . .

- Not all data points are equally informative
- Small number of support vectors specify SVM solution
Active learning

- Active learning identifies \textit{informative examples}
- Similar idea as support vectors, works more generally
- Efficient algorithms (and heuristics) for typical hypothesis classes
Active learning identifies *informative examples*

Similar idea as support vectors, works more generally

Efficient algorithms (and heuristics) for typical hypothesis classes

Examples

- Query x with probability $g(|h(x)|)$
- Query x based on similarity with previously queried samples
Para-active learning

- Sift for informative examples in parallel
- Update model on selected examples
Synchronous para-active learning

- Initial hypothesis h_1, batch size B, active sifter A, passive updater P
- For rounds $t = 1, 2, \ldots, T$
 - For all nodes $i = 1, 2, \ldots, k$ in parallel
 - Local dataset of size B/k
 - A creates subsampled dataset
Synchronous para-active learning

- Initial hypothesis h_1, batch size B, active sifter A, passive updater P
- For rounds $t = 1, 2, \ldots, T$
 - For all nodes $i = 1, 2, \ldots, k$ in parallel
 - Local dataset of size B/k
 - A creates subsampled dataset
 - Collect subsampled datasets from each node
 - Update h_{t+1} by running passive updater P on the collected data

![Diagram of synchronous para-active learning](image_url)
Synchronous para-active learning

- Initial hypothesis h_1, batch size B, active sifter A, passive updater P
- For rounds $t = 1, 2, \ldots, T$
 - For all nodes $i = 1, 2, \ldots, k$ in parallel
 - Local dataset of size B/k
 - A creates subsampled dataset
 - Collect subsampled datasets from each node
 - Update h_{t+1} by running passive updater P on the collected data

Example
- h_t is kernel SVM on examples selected so far
- A samples based on $g(|h_t(x)|)$ at round t
- P computes h_{t+1} from h_t using online kernel SVM
Asynchronous para-active learning

- Initial hypothesis h_1, batch size B, active sifter A, passive updater P
- Initialize $Q_i^S = \emptyset$ for each node i
- For all nodes $i = 1, 2, \ldots, k$ in parallel
 - While Q_i^S is not empty
 - Fetch a selected example from Q_i^S
 - Update the hypothesis using P on this example
 - If Q_i^F is non-empty
 - Fetch a candidate example from Q_i^F
 - Use A to decide whether the example is selected or not
 - If selected, broadcast example for addition to Q_j^S for all j
Asynchronous para-active learning

- Initial hypothesis h_1, batch size B, active sifter A, passive updater P
- Initialize $Q^i_S = \emptyset$ for each node i
- For all nodes $i = 1, 2, \ldots, k$ in parallel
 - While Q^i_S is not empty
 - Fetch a selected example from Q^i_S
 - Update the hypothesis using P on this example
 - If Q^i_F is non-empty
 - Fetch a candidate example from Q^i_F
 - Use A to decide whether the example is selected or not
 - If selected, broadcast example for addition to Q^j_S for all j

Para-active learning

[Diagram of a network of computing nodes with sifter and updater modules and data flow between them]
Computational complexity

- Training time for n examples: $T(n)$
- Evaluation time *per example* after n examples: $S(n)$
- Number of subsampled examples out of n: $\phi(n)$
- Number of nodes: k

<table>
<thead>
<tr>
<th>Seq. Passive</th>
<th>Seq. Active</th>
<th>Para-active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td>$T(n)$</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>$T(n)$</td>
<td></td>
</tr>
<tr>
<td>Broadcasts</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

$\xrightarrow{n} T(n) \xrightarrow{P} \text{Model}$

Agarwal, Bottou, Dudík, Langford

Para-active learning
Computational complexity

- Training time for n examples: $T(n)$
- Evaluation time *per example* after n examples: $S(n)$
- Number of subsampled examples out of n: $\phi(n)$
- Number of nodes: k

<table>
<thead>
<tr>
<th></th>
<th>Seq. Passive</th>
<th>Seq. Active</th>
<th>Para-active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td>$T(n)$</td>
<td>$nS(\phi(n)) + T(\phi(n))$</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>$T(n)$</td>
<td>$nS(\phi(n)) + T(\phi(n))$</td>
<td></td>
</tr>
<tr>
<td>Broadcasts</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)
Computational complexity

- Training time for n examples: $T(n)$
- Evaluation time *per example* after n examples: $S(n)$
- Number of subsampled examples out of n: $\phi(n)$
- Number of nodes: k

<table>
<thead>
<tr>
<th></th>
<th>Seq. Passive</th>
<th>Seq. Active</th>
<th>Para-active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td>$T(n)$</td>
<td>$nS(\phi(n)) + T(\phi(n))$</td>
<td>$nS(\phi(n)) + kT(\phi(n))$</td>
</tr>
<tr>
<td>Time</td>
<td>$T(n)$</td>
<td>$nS(\phi(n)) + T(\phi(n))$</td>
<td>$nS(\phi(n))/k + T(\phi(n))$</td>
</tr>
<tr>
<td>Broadcasts</td>
<td>0</td>
<td>0</td>
<td>$\phi(n)$</td>
</tr>
</tbody>
</table>

Agarwal, Bottou, Dudík, Langford
Para-active learning
Computational complexity

- Training time for \(n \) examples: \(T(n) \)
- Evaluation time *per example* after \(n \) examples: \(S(n) \)
- Number of subsampled examples out of \(n \): \(\phi(n) \)
- Number of nodes: \(k \)

<table>
<thead>
<tr>
<th>Operations</th>
<th>Seq. Passive</th>
<th>Seq. Active</th>
<th>Para-active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>(T(n))</td>
<td>(nS(\phi(n)) + T(\phi(n)))</td>
<td>(nS(\phi(n)) + kT(\phi(n)))</td>
</tr>
<tr>
<td>Broadcasts</td>
<td>0</td>
<td>0</td>
<td>(\phi(n))</td>
</tr>
</tbody>
</table>

Example 1, kernel SVM:

- \(T(n) \sim \mathcal{O}(n^2) \), \(S(n) \sim \mathcal{O}(n) \)
- Often \(\phi(n) \ll n \)
- \(T(n) \gg nS(\phi(n)) \gg nS(\phi(n))/k \)
Computational complexity

- Training time for n examples: $T(n)$
- Evaluation time per example after n examples: $S(n)$
- Number of subsampled examples out of n: $\phi(n)$
- Number of nodes: k

<table>
<thead>
<tr>
<th></th>
<th>Seq. Passive</th>
<th>Seq. Active</th>
<th>Para-active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td>$T(n)$</td>
<td>$nS(\phi(n)) + T(\phi(n))$</td>
<td>$nS(\phi(n)) + kT(\phi(n))$</td>
</tr>
<tr>
<td>Time</td>
<td>$T(n)$</td>
<td>$nS(\phi(n)) + T(\phi(n))$</td>
<td>$nS(\phi(n))/k + T(\phi(n))$</td>
</tr>
<tr>
<td>Broadcasts</td>
<td>0</td>
<td>0</td>
<td>$\phi(n)$</td>
</tr>
</tbody>
</table>

Example 2, neural nets with backprop:

- $T(n) \sim O(nd)$, $S(n) \sim O(d)$
- Often $\phi(n) \ll n$
- $T(n) \approx nS(\phi(n)) \gg nS(\phi(n))/k$
Communication complexity

- Communication complexity is query complexity of active learning
- Typically assume examples are queried immediately in active learning
- We have a delay before the model is updated
- **Theorem:** Delay of \(\tau \) leads to query complexity at most \(\tau + \phi(n - \tau) \)
Experimental evaluation

- Large version of MNIST (8.1M examples) with elastic deformations of original images
- Two learning algorithms:
 - Simulation for kernel SVM: RBF kernel, LASVM algorithm
 - Parallel neural nets: 1-hidden layer with 100 nodes
- Active learning: select a point x with probability based on $|f(x)|$ for fixed subsampling rate

Agarwal, Bottou, Dudík, Langford

Para-active learning
Simulated synchronous para-active learning

- Fixed batch size B, split into portions of size B/k
- Sift each portion in turn, take largest sifting time
- Update model with new examples, take training time
- Used as an estimate of parallel computation time
SVM simulation runtimes

- Classifying \(\{3, 1\} \) vs \(\{5, 7\}\)
- Running time vs test error

Running time v/s test error for SVM

- Passive seq.
- Active seq.
- 1 node Para-active
- 4 nodes Para-active
- 16 nodes Para-active
- 64 nodes Para-active

Agarwal, Bottou, Dudík, Langford
Para-active learning
SVM simulated speedup over passive

- Classifying \{3, 1\} vs \{5, 7\}
- Speedup over sequential passive

![Graph showing speedup over passive for different error rates.](graph.png)
SVM simulated speedup over delayed active

- Classifying \{3, 1\} vs \{5, 7\}
- Speedup over delayed active

![Graph showing speedup over delayed active](image)
Parallel neural net results

- Classifying 3 vs 5
- Running time vs test error

![Graph showing test error versus log running time for passive and active learning with different numbers of cores. The graph demonstrates that active learning generally outperforms passive learning in terms of test error for a given running time.](attachment:graph.png)
Conclusions

- General strategy for distributed learning
- Applicable to diverse hypothesis classes and algorithms
- Particularly appealing for non-parametric and/or non-convex models
- Theoretically justified, empirically promising
Conclusions

- General strategy for distributed learning
- Applicable to diverse hypothesis classes and algorithms
- Particularly appealing for non-parametric and/or non-convex models
- Theoretically justified, empirically promising
- Real distributed implementation for kernel SVMs
- Other algorithms and datasets
- Better subsampling strategies