Cost Models for
Locality and Parallelism

Harsha Vardhan Simhadri
Carnegie Mellon > Lawrence Berkeley Lab

For scalability...

Disk/Interconnect

. ~ 10 GB/s ??
Algorithms need 160
. ~100 GB/s RAM
e Locality & e
x M » u L3 60
minimize distance and cycles
amount of data moved L2 " dos
L1 4
QIGO0
e Parallelism ~ 10 GB/s X 32

maximize number of (Intel Xeon 7560 four socket)

simultaneous operations

Formal definition in several contexts.

C
r B
R S B) _
s PR Magnetic Disks
S e
ay an ' . . ' :f,x‘ by by
InSERVd
*a ‘ ‘~= = ‘/";" ' ba ba ’i ? 1 1 1 1 1 ?
a b 2

RAM

VLS CIrCUItS Systolic Arrays Memory Hierarchies

[KL'78, Thompson’80, Leighton’84,...] [AV'88, AACS’87, FLPR’99,...]

n] ‘
i
'
i
'
cs i
i
'

RAM
. Level (h—1) Level (h—1)
Distributed Memory Shared Memory Machines
Machines [ACF'93,BFJLR’96,ABB’02,BGM'98,
[BSPLogP LogGPMRC,... AGS'08,BFGS11,...]
VI | L1

This Talk

e Cost Models for

— Distributed Memory, Shared Memory,
Hierarchies

* Lower Bounds, Upper Bounds (Algorithms)
 Machine-Centric vs Program-Centric Models

Parallel Program = Directed Acyclic Graph

Interconnect

M M M

® ® @

Execution =

Set of vertex partitions
s.t. partitions “fit” in M memory,
contiguous in DAG
(a<b<c, a,c2X (part.)) b2X)
+

mapping from partitions to
processors

I Instruction . Data
Dependency

Communication cost

Interconnect

M M M
® ® @
Data moved

Amount = #edges across partition
(#words, #messages)

Distance = length the edge travel
in the interconnect

Cost Model for Locality

I Instruction — Data (assume uniform internode cost)
Dependency

~ #words + °#msgs

Cost Model for Time

Assume interconnect has same cost between all nodes

Cost of a DAG for on a schedule on p machines
partitioning {X},
and mapping f: partitions—> procs

T =max, {Ef(x)=p®#instrs + #words +°#msgs}

Parallelizability

Interconnect

M M M

® ® @

Parallelizability

Max #procs where T stops improving
(for best partitioning and schedule)

Depends on length of critical path in
Partitioned DAG (effective depth)

I Supernode = —— Data
Dependency

Extensions...
Different

Interconnect
M M M topologies

® ® @

Relatable to some form of graph partitioning

uulls

Interconnect Interconnect

M M

v o YY)

Upper Bounds (Algorithms)

* Upper Bound = Algorithm DAG
+ Schedule (partitioning, mapping)
* Dense Matrix Multiplication (n = M*p)

e O(n1®) Instr

e O(n1>/MO°-5) Words

¢ O(n13/M15) Messages

e T=nlo* (® + 7 /MO5 + °/|\/|1.5) / D
* Sorting (n = M*p)

* O(nlog n) Instr

* O(nlog n/log M) Words
* O(nlog n/M log M) Messages

« T=nlognL(® + /logM +°/MlogM) / P

I Instruction

Lower Bounds

In-edges < M/2

Out-edges < M/2

———

Data
Dependency

Minimum #Words

Partition such that
in-edges and out-edges < M/2
for each partition

What is the partitioning
with fewest transfers?

Matrix Mul.:
Q(n1-5/M°-5)
Why? O(M1°) instr. with M data

Sorting
Q(n log n/log M)
Why? O(M log M) info. with M data

So far

* Program = DAG

* Executions = partitions and mapping of DAG
* A cost model for distributed memory

* Lower bounds / Upper bounds

BUT..

Problem: Unwieldy Model

Cost model is machine-centric
— Cost depends on DAG, Machine & Schedule

What is the best schedule (partition + mapping)
for a DAG?

If cost is tied to machine and schedule,
how to study problem complexity?
Need a cleaner and more portable cost model

Separate Cost Model & Schedule

Scheduler

cheduler 2
Algorithm designer restruct

DAG and optimizes for a genera
cost model.

Runtime designer translates metrics
to performance: Time, Space,

alability, Communication Costs.

Program-Centric Cost Models

» Choose portable program description -
dynamic Directed Acyclic Graph (DAG)

» Analyze DAG with out reference to
pProcessors, caches, connections...

» Examples of program-centric metrics
» Number of operations (Work, W)
» Length of Critical Path (Depth, D)
» Data reuse patterns (Locality)

Realistic Machine Model: Tree of caches

Level h
Level (h—1) Level (h—1)
 Models hierarchical locality
* Models resource sharing
L2 L2 * Good approximation for other

L1 L1 L1 L1 tOpO'OgieS
® ® 6
<€ >

processors = P

17

Program-Centric Cost Model for Sequential Algorithms

Cache Oblivious Framework [FLPR’99]

Sequential program —)

Memory (infinite size)

B B B B B .. B
Cache (M,B)

M: total size @

B: Block size

Locality: Cache complexity
Q, (M,B) = #Cache Misses
(don’t use M,B in program)

" Scan: Q, (M,B) = O(n/B)
Recursive MatMul:Q, (M,B) = O(n1/BM°-)
Distribution Sort: Q, (M,B) = O(n/B log,,n)

RAM
L3
L2 C;:
> Level-i
Cache miss

@ cost

Running time =
2iQ1(M;,B) X C;

Program-Centric Metrics for Parallel Programs

For nested parallel programs on shared memories.

» Parallel Cache Complexity Framework [BFGS’11]

Parallel Cache Complexity: Q*
For locality Efficiently mapped

Effective Cache Complexity: Q*g

For locality + load balance cost RAM: Level h
Leads to definition of parallelizability | Lh=1) L(h-1)
L2 L2

L1 L1 L1 L1

@0 00

Nested Parallel DAGs

| sirang 8-K.a. Fork-Join Parallel DAGs
a.k.a Series-Parallel DAGs
Recursive definition :

» A task consists of alternating
parallel Strands and parallel blocks.

l block A strand is a sequential
computation (chain of
instructions).

| » A parallel block is a parallel
composition of tasks.

No data dependencies between
20 Parallel subtasks

Task

Locality: Parallel Cache Complexity

» Decompose task into maximal
subtasks that fit in space M and glue
operations.

Decomposition unique and easy to find
for nested-parallel DAGs

» Parallel Cache Complexity:
Q*(M,B) =
2 Space for Mfitting subtasks

+ 2 Cache miss for every access
in glue

21

Scheduling on Tree of Caches

» Annotate tasks with size, schedule
based on size

XEXXX

Size(T) ~ M; : Unroll until subtasks have size ~M, ,

T pinned to Level-i I

Schedule subtasks |
on subclusters

(parallel depth-first)

4

Scheduling: Cost Model to Machines

Nested wavefronts based on hierarchy

Level h

Level (h—1) Level (h—1)

L2 L2

@6 066

Scheduler specifies Size, number and location of
wavefronts based on working set size of tasks

Schedule preserves locality

» Time?
» # Processors assigned to a task tied to its space
» Schedulers are good if computation is balanced:
Work, Parallelism related to space

24

Effective Cache Complexity [BFGS'11]

Extend Q* to include cost of “imbalance”’

»Long strands (Amdahl’s law) =

Definition based solely on Q* and the
composition rules of nested-paralel DAGs

Work
Parallelism

v
Width = ﬁstimated Paralleﬁsm = f (Space)

Given n® processors (input size: n),
Q*¢(n; M,B) = Q*(n; M,B) + the extra cost of imbalance

25

Parallelizability of algorithm

If algorithm has O(n%) work, O(n9) depth, imbalanced “only in parts”
Q*e= O(Q%) if and only if ®<w-d

A

K .
Lt Q a(na MaB) ‘>

n—>oo Q*(na MaB) 1
/ .«

Parallelizability of an algorith/m,

Samplesort: 1; Recursive MatMul: 1.5

Effective cache complexity and parallelizability
subsume all previous metrics: W,D,Q,....

Mapping Cost model to
Communication Cost, Time & Space [S.-Thesis'13]

The scheduler preserves locality (matches Q*y) and
IS good at load balancing

» Communication Cost: Q*(M,,B)
» For most “reasonable” algorithms, the asymptotic running time is

h
EQ*(Mi B)xC,
=1

P

» Also space Bounds

27

Low-Depth Cache-Oblivious Algorithms [BGS’10]

Low depth + good Parallel Cache Complexity Q*

good Effective Cache Complexity Q*¢

Prefix Sums 1 O(n/B)

Merge 1 O(n/B)

Sort (deterministic) 1 O(n/B log,, n)
Sort (randomized; bounds are w.h.p.) 1 O(n/B logy, n)
Sparse Matrix X Vector (m entries, nkseparators) <1 O(m/B + n/M¥k)
Matrix transpose (n X m size) 1 O(nm/B)

Parallel overdesign (polylog depth, ®>1) improves performance

Algorithms scale really well in practice, even on tree of caches!

28

Low-Depth Cache-Oblivious Algorithms [BGS’10]

Graph Algorithms

List Ranking 1 O(Qqgort (N))
Euler Tour on Trees 1 O(Qqgort (N))
Tree Contraction 1 O(Qqgort (N))
Least Common Ancestors (k queries) 1 O((k/N)Qgyrt (N))

Connected Components 1 0(Qq,(IE]) log(|V]/M1/2))
Minimum Spanning Forest 1 O(Qqor(1EI) log(IV]/M¥2))
Combinatorial

Set Cover (1+¢€)-log n approx [BST'12] 1 O(Qqort (N))

29

Summary
» Important to quantify locality and parallelism.

» Program-centric models are more portable
Scheduler design a separate problem

» Parallel Cache Complexity Framework [S.-thesis’13]
Translatable to performance on realistic machine models
Optimal algorithms can be designed
Theory works well in practice

» Locality and parallelism design translates across models

Questions?

31

