Algorithms and Systems for
Scalable Graph-Parallel Inference

-~ Joseph Gonzalez

Postdoc, UC Berkeley AMPLab
Co-Founder GraphLab Inc.
jegonzal@eecs.berkeley.edu

Yucheng Haijie Aapo Danny ~ Carlos Alex Guy Joe
Low Gu Kyrola Bickson Guestrin Smola Blelloch Hellerstein

flickr You(TD)

Massive Structured Problems

Parallel and Distributed Algorithms
for Probabilistic Inference

GraphlLab: Graph-Parallel Systems

Advances Parallel Hardware

‘|
Sl=pn ¢ amazon
| = webservices™

2

Graphical models provide a
common representation

Protein Structure Computer Machine
Prediction Vision Translation

How are you?

i

Parallel and Distributed Algorithms
for Probabilistic Inference

Loopy Belief Propagation (Loopy BP)

* |teratively estimate the variable beliefs
— Read in messages
— Updates marginal ‘ ‘
estimate (belief)
— Send updated
out mesSssages ‘
* Repeat for all variables
until convergence

Synchronous Loopy BP

e Often considered embarrassingly parallel

— Associate processor
with each vertex

— Receive all messages
— Update all beliefs
— Send all messages

* Proposed by:

— Brunton et al. CRV’'06
— Mendiburu et al. GECC'07

Is Synchronous Loopy BP

an efficient parallel
algorithm?

Sequential Computational Structure

Hidden Sequential Structure

Hidden Sequential Structure

Evidence Evidence

’— ~ ’— ~\ ’— ~ ’— ~\ ’— - ’— - ’— - ’— - ’— -
. ' -—’ -—’ -—’ -—’ -—’ -—’ -—’

—' -—'

10

Optimal Sequential Algorithm

Running
Time

Naturally Parallel

NN TN TN TN

N AR AN I IS

2n¢/p

\\pSZn

Sequential (Fwd-Bkwd)

Q.
(q0)
-G
4
2N
p=1

S

©
Il
N

Role of model Parameters on
Sequential Sub-Problems

Epsilon
Change
True Messages

M3—4 mg9—10
1 2 3 4 5 6 7 8 9 10

mé_>4 mil_>5 m/5_,6 m%_q m/7—>8 mé_>9 mé—no

NIPIRNNN S DR

T. -Approximation | T T T T

> > - > > > >

< z

Represents the minimal sequential sub-problem

12

Optimal Parallel Scheduling

Processor 1 Processor 2 Processor 3

Theorem: [AISTATS09]
Using p processors this algorithm achieves a t,
approximation in time:

Parallel — _|_ T '™ Sequential
Component = _ay Component

and is optimal for chain graphical models.

The Splash Operation

* Generalize the optimal chain algorithm:

lllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllll

to arbitrary cyclic graphs:

1) Grow a BFS Spanning tree
with fixed size

2) Forward Pass computing all
messages at each vertex

3) Backward Pass computing all
messages at each vertex

Distributed Splashes [uarog

-
CP

'

ocal Scate

o

« Partition the grap

bl |
]
Bwe

Lgcal Stat

« Schedule Splashes locally
* Transmit the messages along the partition

o]
L
=
bl

L ocar State

15

Priorities Determine the Roots
e Use aresidual priority queue to select roots:

CPU 1

Local State

Adaptive Belief Propagatlon

Challenge = Boundarles

Many
Updates

Few
Updates

® P ~ Cumulative Vertex Updates

O Algorithm identifies and focuses

£
A4
£\
-

on hidden sequential structure

Graphical Model

Representative Results

Protein Interaction Models: 14K Vertices, 21K Factors

Runtime Speedup Total Work

x 10

BS rcnoncus

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Processors Number of Processors Number of Processors

Synchronous

JUSIOIYT
SIO|N

Msg. Calculations

Dynamic Asynchronous (SplashBP)

« Faster and More Efficient

« Converges more often

» Achieves better prediction accuracy

18

Parallel and Distributed Algorithms
for Probabilistic Inference

Belief Propagation

19

Gibbs Sampling [Geman & Geman, 1984]

e Sequentially for each variable in the model

— Select variable °
— Construct condition using

— Sample from conditional ‘

00(
00(

Initial Assighment
(
!

000(
000(

20

Synchronous Gibbs Sampling

Embarrassingly
Parallel!

Converges to the
Lwrong distribution!

The Problem with
Synchronous Gibbs Sampling

t=1

(=2 =3
o Strong Positive
el o —> —> :

g __)3 __)g l Strong Negative ‘

Adjacent variables cannot be sampled
simultaneously.

=0
Strong Positive
Correlation

s
aQr.
Ylioy,

Three Convergent Parallel Samplers
[AISTATS’11]

Chromatic: Use graph coloring to
synchronously sample independent sets

: Asynchronous: Enable prioritized
%{i scheduling using Markov Blanket Locks

to ensure serializable execution

Y adaptively constructing thin junction tree

Eg Splash: Address strong dependencies by
blocks

23

Chromatic Sampler

Compute a k-coloring of
the graphical model

Sample all variables with
same color in parallel

Serial Equivalence:

24

Theorem: Chromatic Sampler

« Converges to the correct distribution

— Based on graph coloring of the Markov
Random Field

« Quantifiable acceleration in mixing

Variables

Time for a noN
single scan 0 (E ™ k) # Colors

Processors

Asynchronous Gibbs Sampler:
Serial Equiv. through Markov Blanket Locks

 Read/Write Locks:

(O —— —a—)

. R
R RR—W—R
O—R—O—R—

* Enables asynchronous, prioritized sweeps

Splash Gibbs Sampler

* Asynchronously grow bounded size Splashes:

Focus on a Single Splash

Splash Gibbs Sampler

* Pass BP messages up the tree in parallel

()
\

)
§
J

28

Splash Gibbs Sampler

* Asynchronously sample outwards in parallel:

O—C0O—C0O—0

J J
N N
J J

29

Dynamically Prioritized Sampling

* Prioritize Gibbs updates

e Adapt the shape of the junction tree to span
strongly coupled variables:

BFS Splashes
\7 .

Adaptive
el B, S
&

177/ ANNNNNNNNNNNNNNNNNN N

30

Theorem
Asynchronous and Splash Gibbs Sampler

* Ergodic: converges to the correct distribution
— Requires vanishing adaptation

* Expected Parallelism:

E(#active processors) Max Degree

10 (160 (422))

Processors # \/ariables

Loglikelihood

Representative Results

Markov logic network with strong dependencies
10K Variables 28K Factors

Likelihood xme e Speedup in Sample
Final Sample Mixing Generation

x104

o
w
a
w

|

~

(o))
o
) o
6] wW
N w
[6))] o

o h
[\S]

2 s “"HENl Chromatic 2
T 0.15 Q 15
8 Q >) ? Q
o p o
0.1 o) 10
-8.2 -
a_— 0.05 5
_ o
8‘40 20 40 60 80 100 0 100 Co 10 20 30 40

Runtime (seconds) Runtlme seconds Number of Cores

The Splash sampler outperforms the Chromatic
sampler on models with strong dependencies

32

flickr You{TD)

Massive Structured Problems

Parallel and Distributed Algorithms
for Probabilistic Inference

Graph-Parallel Systems: GraphLab
Advances Parallel Hardware

amazon
web services™

33

How do we design and implement
graph-parallel
inference algorithms??

Structure of Computation

Data-Parallel Graph-Parallel

Dependency Graph

Talsle \

.

=

V\/\/
Pregel -

‘@h =4 DE'Z,D] GraphlLab s

|
|
|
|
|
|
|
|
|
] _ B Result
|
|
|
|
|
|
|
|

The Graph-Parallel Abstraction

A user-defined Vertex-Program runs on each vertex

Graph constrains interaction along edges
Using messages (e.g. Pregel [PODC'09, SIGMOD'10])
Through shared state (e.g, GraphlLab [UAI'l0,VLDB'2, OSDI'I 2])

Parallelism: run multiple vertex programs simultaneously 3%

GraphLab Asynchronous Execution

The scheduler determines the order that vertices are executed

CPUI

| -
O
=
O
D
R
O
¥

CPG~Z

Scheduler can prioritize vertices.

GraphLab is Serializable

* Automatically ensures serializable executions

38

The Challenge of
Power-Law Graphs

Power-Law Degree Distribution
“Star Like” Motif

President

Obama \ A > Followers

GraphLab ...

_ Run on This
Program for This

Machine 1 Machine 2

K=

Split High-Degree vertices
New Abstraction 2> Equivalence on Split Vertices

41

A Common Pattern for
Vertex-Programs

GraphLab_Belief_Propagation(Vertex i)

Compute product of Commutative
Inbound messages Associative Agg.
Update belief Vertex-Parallel
Compute new Edge-Parallel

outbound message Map Operation

Machine Learning and Data-Mining
Toolkits

Graph Graphical Computer . Topic Collaborative
Clustering) .
Modeling Filtering £

Analytics Models Vision

MPI/TCP-IP PThreads

EC2 HPC Nodes

http:/graphlab.org

Apache 2 License

PageRank on Twitter Follower Graph

Natural Graph with 40M Users, 1.4 Billion Links

Runtime Per Iteration
0 50 100 150 200

Hadoop

Twister

Piccolo

Hadoop results from [Kang et al. '11] 44
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]

Gibbs Sampling for LDA

English language Wikipedia
— 2.6M Documents, 8.3M Words, 500M Tokens

— Computationally intensive algorithm

Million Tokens Per Second
0 20 40 60 80 100 120 140 160

100 Yahoo! Machines

Smola et al.

Specifically engineered for this task

Graphlab2

45

Triangle Counting on Twitter
40M Users, |.4 Billion Links

Counted: 34.8 Billion Triangles

mElslolels) 1536 Machines
NAYYAYARNl 423 Minutes

8 64 Machines
Graphlab n |5 Seconds -

46
S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11

N
Graph Lab\z

By exploiting common patterns in graph data and computation:

~

~

New ways to represent
real-world graphs

New ways execute
graph algorithms

Machine 1| Machine 2

-5 %

/

2%

vd

Orders of magnitude improvements

over existing systems

Thank You

Joseph Gonzalez

Postdoc, UC Berkeley AMPLab
legonzal@eecs.berkeley.edu

Co-Founder GraphLab Inc,
joseph@qgraphlab.com

Checkout the NIPS http:/biglearn.org Workshop on December 9t in Tahoe

48

GAS Decomposition

Machine 1 Machine 2
/Master
Gather (@) v
+ + ’ Mirror
Apply
23
Scatter = | ¢ §
Mirror
Mirror

Machine 3 Machine 4

49

Minimizing Communication in
PowerGraph

New Theorem:
For any edge-cut we can directly
construct a vertex-cut which requires
strictly less communication and storage.

Percolation theory suggests that power law graphs
have good vertex cuts. [Albert et al. 2000]

Constructing Vertex-Cuts

* Evenly assign edges to machines

— Minimize machines spanned by each vertex

* Assign each edge as it is loaded

— Touch each edge only once

* Propose two distributed approaches:
— Random Vertex Cut
— Greedy Vertex Cut

Random Vertex-Cut

 Randomly assign edges to machines

Machine 1 Machine 2

Balanced Vertex-Cut

Machine 3

Random Vertex-Cuts vs. Edge-Cuts

* Expected improvement from vertex-cuts:

100
)
oT0]
o
£ 0
c &
o)
52 10
=5 @©
©T .
2 E Order of Magnitude
S Improvement
1
0) 50 100 150

Number of Machines

53

The GraphlLab Vertex Program

Vertex Programs directly access adjacent vertices and edges

GraphLab_PageRank (i)

" // Compute sum over neighbors A

total = ©

foreach(j in neighbors(i)):
total = total + R[J] * wy;

.

(// Update the PageRank
R[i] = ©.15 + total

/] Trigger neighbors to run again
if R[1i] not converged then
~ signal nbrsOf(i) to be recomputed

Signaled vertices are recomputed eventually.

54

Convergence of Dynamic PageRank

1.00E+08

1.00E+08
1.00E+06 \ 1.00E+06 X‘
S 1.00E+04 5
8 ¥ \ S 1.00E+04 \ pregel
— 1.00E+02 Pregel - 1.00E+02 (via GraphLab)
1 00E+00 \ (via GraphLab) = \
. +
"\ GraphLab 1.00E+00 \ GraphLab
1.00E-02 l l 1.00E-02 | |
0 5000 10000 15000 0.0E+00 1.0E+09 2.0E+09
Runtime (s) Updates
g 100000000 ¢ 51% updated only once!
-§ 1000000 -
> 10000
S 100
2 . .
0 10 20 30 40 50 60 70

Number of Updates

55

Predicting Political Bias

>/

Conditional Random Field
belief Propagation

