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Graphical models provide a
common representation

Protein Structure Computer Machine
Prediction Vision Translation

How are you?
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Parallel and Distributed Algorithms
for Probabilistic Inference




Loopy Belief Propagation (Loopy BP)

* |teratively estimate the variable beliefs
— Read in messages
— Updates marginal ‘ ‘
estimate (belief)
— Send updated
out mesSssages ‘
* Repeat for all variables
until convergence




Synchronous Loopy BP

e Often considered embarrassingly parallel

— Associate processor
with each vertex

— Receive all messages
— Update all beliefs
— Send all messages

* Proposed by:

— Brunton et al. CRV’'06
— Mendiburu et al. GECC'07




Is Synchronous Loopy BP

an efficient parallel
algorithm?



Sequential Computational Structure




Hidden Sequential Structure




Hidden Sequential Structure

Evidence Evidence
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Optimal Sequential Algorithm

Running
Time

Naturally Parallel
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Role of model Parameters on
Sequential Sub-Problems
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True Messages
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Represents the minimal sequential sub-problem
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Optimal Parallel Scheduling

Processor 1 Processor 2 Processor 3

Theorem: [AISTATS09]
Using p processors this algorithm achieves a t,
approximation in time:

Parallel — _|_ T '™ Sequential
Component = _ay Component

and is optimal for chain graphical models.




The Splash Operation

* Generalize the optimal chain algorithm:
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to arbitrary cyclic graphs:

1) Grow a BFS Spanning tree
with fixed size

2) Forward Pass computing all
messages at each vertex

3) Backward Pass computing all
messages at each vertex




Distributed Splashes [uarog
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Priorities Determine the Roots
e Use aresidual priority queue to select roots:

CPU 1

Local State




Adaptive Belief Propagatlon

Challenge = Boundarles

Many
Updates

Few
Updates

® P ~ Cumulative Vertex Updates

O Algorithm identifies and focuses

£
A4
£\
-

on hidden sequential structure

Graphical Model



Representative Results

Protein Interaction Models: 14K Vertices, 21K Factors

Runtime Speedup Total Work
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Synchronous
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# Msg. Calculations

Dynamic Asynchronous (SplashBP)

« Faster and More Efficient

« Converges more often

» Achieves better prediction accuracy
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Parallel and Distributed Algorithms
for Probabilistic Inference

Belief Propagation
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Gibbs Sampling [Geman & Geman, 1984]

e Sequentially for each variable in the model

— Select variable °
— Construct condition using

— Sample from conditional ‘
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Synchronous Gibbs Sampling

Embarrassingly
Parallel!

Converges to the
Lwrong distribution!




The Problem with
Synchronous Gibbs Sampling

t=1
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o Strong Positive
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g __)3 __)g l Strong Negative ‘

Adjacent variables cannot be sampled
simultaneously.

=0
Strong Positive
Correlation

s
aQr.
Ylioy,




Three Convergent Parallel Samplers
[AISTATS’11]

Chromatic: Use graph coloring to
synchronously sample independent sets

: Asynchronous: Enable prioritized
%{i scheduling using Markov Blanket Locks

to ensure serializable execution

Y adaptively constructing thin junction tree

Eg Splash: Address strong dependencies by
blocks

23



Chromatic Sampler

Compute a k-coloring of
the graphical model

Sample all variables with
same color in parallel

Serial Equivalence:
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Theorem: Chromatic Sampler

« Converges to the correct distribution

— Based on graph coloring of the Markov
Random Field

« Quantifiable acceleration in mixing

# Variables

Time for a noN
single scan 0 (E ™ k) # Colors

# Processors



Asynchronous Gibbs Sampler:
Serial Equiv. through Markov Blanket Locks

 Read/Write Locks:
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* Enables asynchronous, prioritized sweeps




Splash Gibbs Sampler

* Asynchronously grow bounded size Splashes:

Focus on a Single Splash



Splash Gibbs Sampler

* Pass BP messages up the tree in parallel
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Splash Gibbs Sampler

* Asynchronously sample outwards in parallel:

O—C0O—C0O—0

J J
N N
J J

29



Dynamically Prioritized Sampling

* Prioritize Gibbs updates

e Adapt the shape of the junction tree to span
strongly coupled variables:

BFS Splashes
\7 .

Adaptive
el B, S
&
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Theorem
Asynchronous and Splash Gibbs Sampler

* Ergodic: converges to the correct distribution
— Requires vanishing adaptation

* Expected Parallelism:

E(#active processors) Max Degree

10 (160 (422))

# Processors # \/ariables




Loglikelihood

Representative Results

Markov logic network with strong dependencies
10K Variables 28K Factors

Likelihood xme e Speedup in Sample
Final Sample Mixing Generation
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The Splash sampler outperforms the Chromatic
sampler on models with strong dependencies
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How do we design and implement
graph-parallel
inference algorithms??



Structure of Computation

Data-Parallel Graph-Parallel

Dependency Graph
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The Graph-Parallel Abstraction

A user-defined Vertex-Program runs on each vertex

Graph constrains interaction along edges
Using messages (e.g. Pregel [PODC'09, SIGMOD'10])
Through shared state (e.g, GraphlLab [UAI'l0,VLDB'2, OSDI'I 2])

Parallelism: run multiple vertex programs simultaneously 3%



GraphLab Asynchronous Execution

The scheduler determines the order that vertices are executed
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Scheduler can prioritize vertices.



GraphLab is Serializable

* Automatically ensures serializable executions
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The Challenge of
Power-Law Graphs




Power-Law Degree Distribution
“Star Like” Motif

President

Obama \ A > Followers



GraphLab ...

_ Run on This
Program for This

Machine 1 Machine 2

K=

Split High-Degree vertices
New Abstraction 2> Equivalence on Split Vertices
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A Common Pattern for
Vertex-Programs

GraphLab_Belief_Propagation( Vertex i )

Compute product of Commutative
Inbound messages Associative Agg.
Update belief Vertex-Parallel
Compute new Edge-Parallel

outbound message Map Operation



Machine Learning and Data-Mining
Toolkits

Graph Graphical Computer . Topic Collaborative
Clustering ) .
Modeling Filtering £

Analytics Models Vision

MPI/TCP-IP PThreads

EC2 HPC Nodes

http:/graphlab.org

Apache 2 License




PageRank on Twitter Follower Graph

Natural Graph with 40M Users, 1.4 Billion Links

Runtime Per Iteration
0 50 100 150 200

Hadoop

Twister

Piccolo

Hadoop results from [Kang et al. '11] 44
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]



Gibbs Sampling for LDA

English language Wikipedia
— 2.6M Documents, 8.3M Words, 500M Tokens

— Computationally intensive algorithm

Million Tokens Per Second
0 20 40 60 80 100 120 140 160

100 Yahoo! Machines

Smola et al.

Specifically engineered for this task

Graphlab2
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Triangle Counting on Twitter
40M Users, |.4 Billion Links

Counted: 34.8 Billion Triangles

mElslolels) 1536 Machines
NAYYAYARNl 423 Minutes

8 64 Machines
Graphlab n |5 Seconds -

46
S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11




N
Graph Lab\z

By exploiting common patterns in graph data and computation:

~

~

New ways to represent
real-world graphs

New ways execute
graph algorithms

Machine 1| Machine 2

-5 %

/

2%

vd

Orders of magnitude improvements

over existing systems




Thank You

Joseph Gonzalez

Postdoc, UC Berkeley AMPLab
legonzal@eecs.berkeley.edu

Co-Founder GraphLab Inc,
joseph@qgraphlab.com

Checkout the NIPS http:/biglearn.org Workshop on December 9t in Tahoe

48



GAS Decomposition

Machine 1 Machine 2
/Master
Gather (@) v
+ + ’ Mirror
Apply
23
Scatter = | ¢ §
Mirror
Mirror

Machine 3 Machine 4
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Minimizing Communication in
PowerGraph

New Theorem:
For any edge-cut we can directly
construct a vertex-cut which requires
strictly less communication and storage.

Percolation theory suggests that power law graphs
have good vertex cuts. [Albert et al. 2000]



Constructing Vertex-Cuts

* Evenly assign edges to machines

— Minimize machines spanned by each vertex

* Assign each edge as it is loaded

— Touch each edge only once

* Propose two distributed approaches:
— Random Vertex Cut
— Greedy Vertex Cut



Random Vertex-Cut

 Randomly assign edges to machines

Machine 1 Machine 2

Balanced Vertex-Cut

Machine 3



Random Vertex-Cuts vs. Edge-Cuts

* Expected improvement from vertex-cuts:
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The GraphlLab Vertex Program

Vertex Programs directly access adjacent vertices and edges

GraphLab_PageRank (i)

" // Compute sum over neighbors A

total = ©

foreach( j in neighbors(i)):
total = total + R[J] * wy;

.

(// Update the PageRank
R[i] = ©.15 + total

/] Trigger neighbors to run again
if R[1i] not converged then
~ signal nbrsOf(i) to be recomputed

Signaled vertices are recomputed eventually.
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Convergence of Dynamic PageRank
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Predicting Political Bias

>/

Conditional Random Field
belief Propagation




