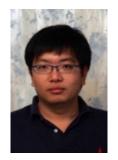
Algorithms and Systems for Scalable Graph-Parallel Inference

Joseph Gonzalez
Postdoc, UC Berkeley AMPLab
Co-Founder GraphLab Inc.
jegonzal@eecs.berkeley.edu

Joint work with:



Yucheng Low

Haijie Gu

Aapo Kyrola

Danny Bickson

Carlos Guestrin

Alex Smola

Guy Blelloch

Joe Hellerstein

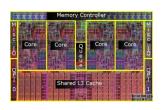
Massive **Structured** Problems

Graphical Model Representations

Parallel and Distributed Algorithms for Probabilistic Inference

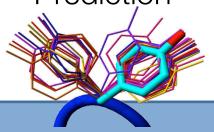
GraphLab: Graph-Parallel Systems

Advances Parallel Hardware

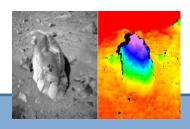


Graphical models provide a common representation

Protein Structure Prediction

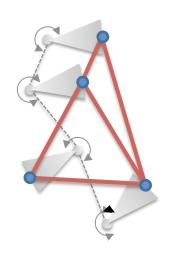


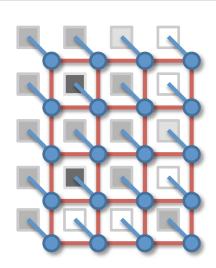
Computer Vision



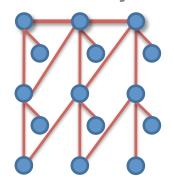
Machine Translation

Graphical Models





How are you?

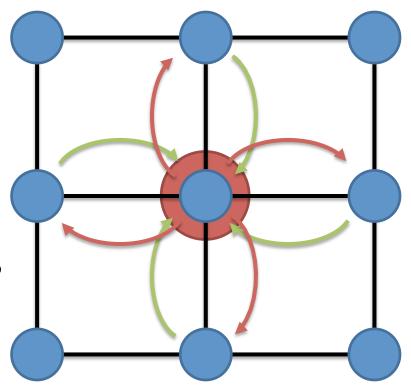


Parallel and **Distributed** Algorithms for Probabilistic **Inference**

Gibbs Sampling

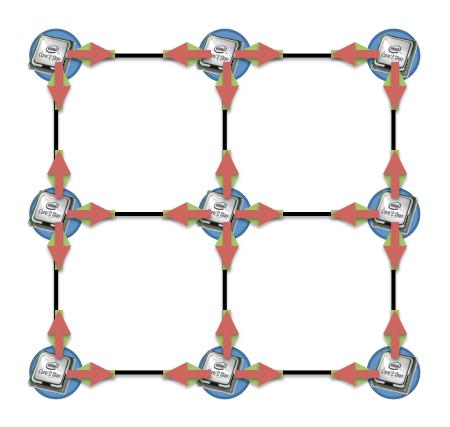
Loopy Belief Propagation (Loopy BP)

- Iteratively estimate the variable beliefs
 - Read in messages
 - Updates marginal estimate (belief)
 - Send updated out messages
- Repeat for all variables until convergence



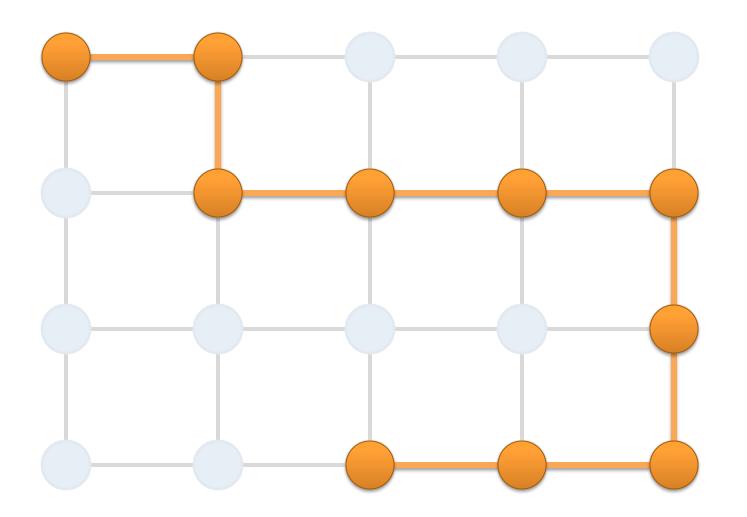
Synchronous Loopy BP

- Often considered embarrassingly parallel
 - Associate processor with each vertex
 - Receive all messages
 - Update all beliefs
 - Send all messages
- Proposed by:
 - Brunton et al. CRV'06
 - Mendiburu et al. GECC'07

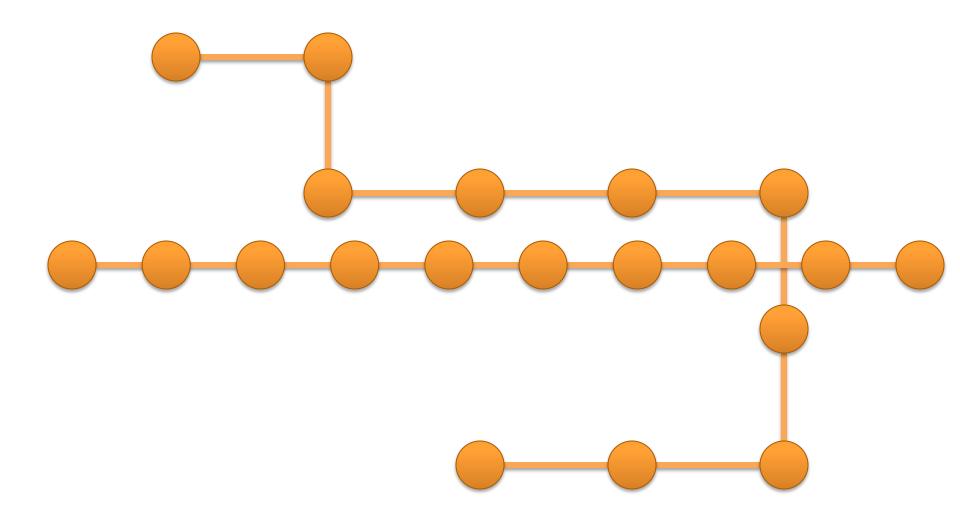


Is Synchronous Loopy BP an **efficient** parallel algorithm?

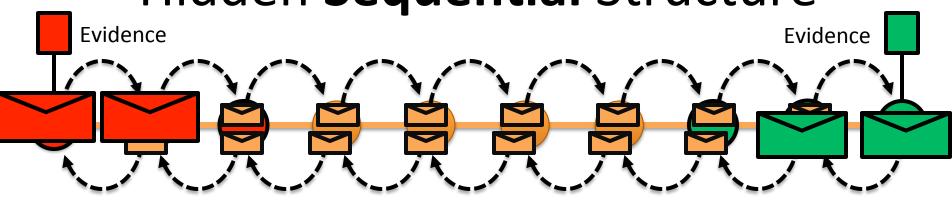
Sequential Computational Structure



Hidden Sequential Structure



Hidden Sequential Structure



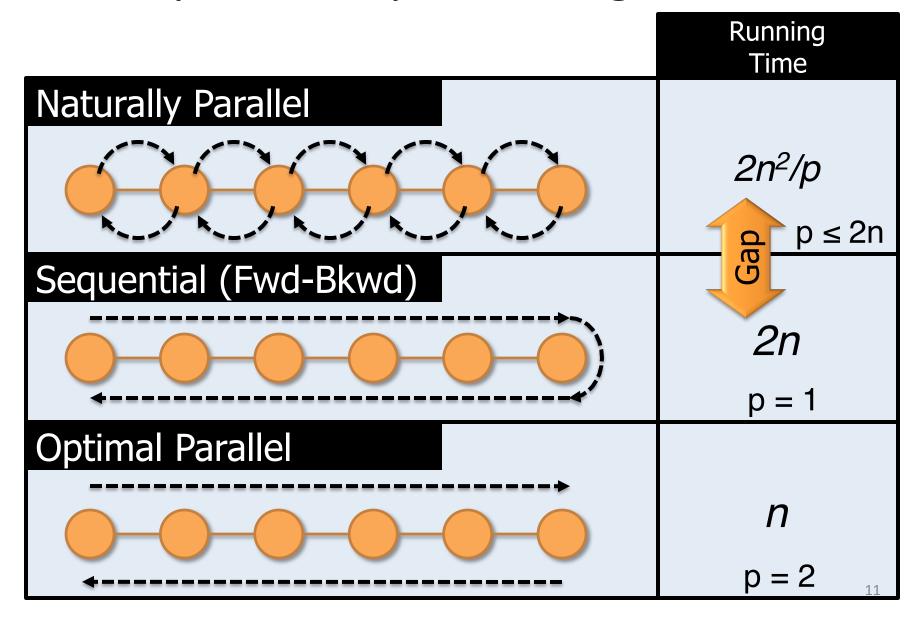
Running Time:

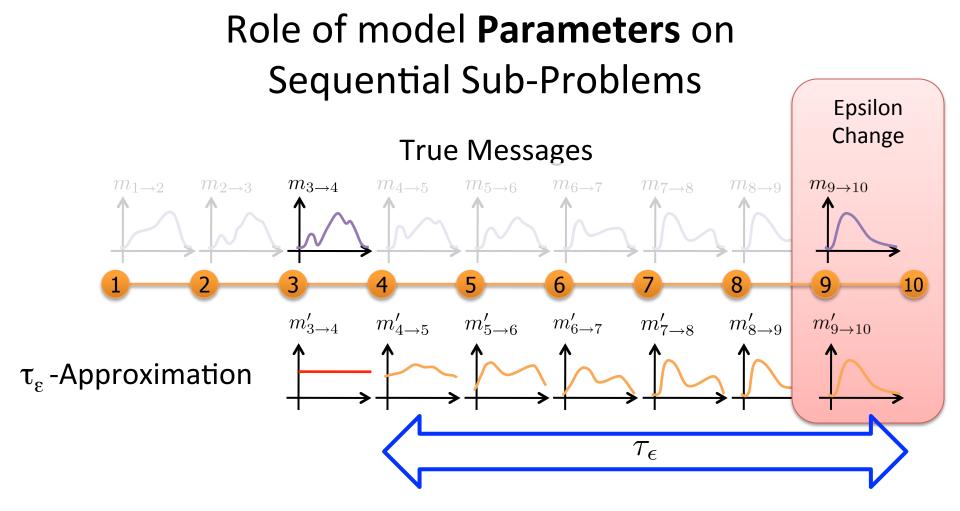
$$\frac{2n \text{ Messages Calculations}}{p \text{ Processors}} \times (n \text{ Iterations to Converge}) = \frac{2n^2}{p}$$

Time for a single parallel iteration

Number of Iterations

Optimal Sequential Algorithm

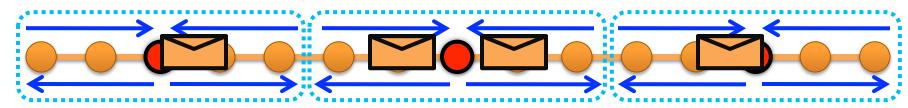




Represents the minimal sequential sub-problem

Optimal Parallel Scheduling

Processor 1 Processor 2 Processor 3



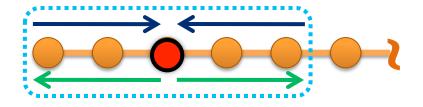
Theorem: [AISTATS'09]

Using p processors this algorithm achieves a τ_{ϵ} approximation in time:

and is **optimal** for chain graphical models.

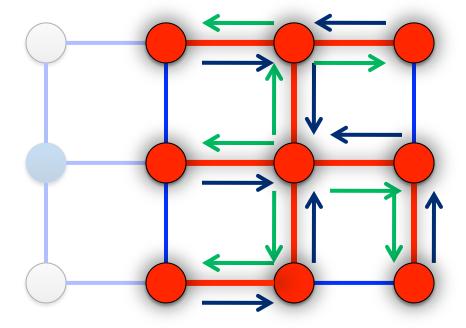
The Splash Operation

Generalize the optimal chain algorithm:

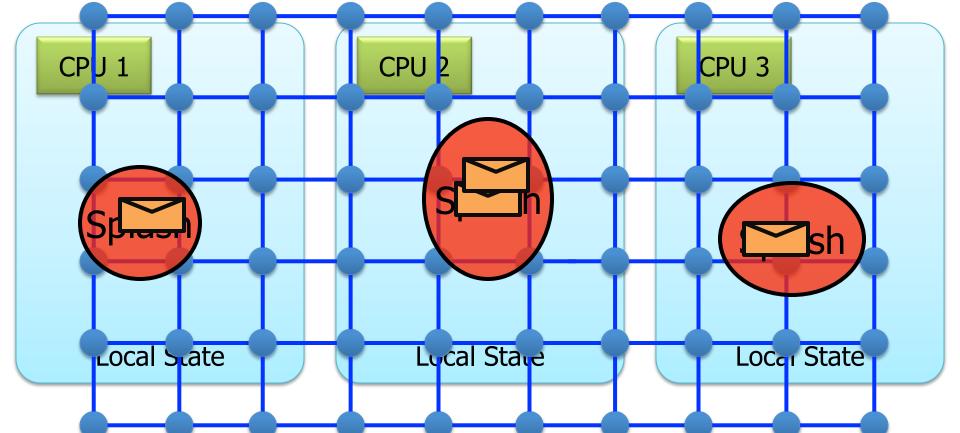


to arbitrary cyclic graphs:

- 1) Grow a BFS Spanning tree with fixed size
- 2) Forward Pass computing all messages at each vertex
- 3) Backward Pass computing all messages at each vertex



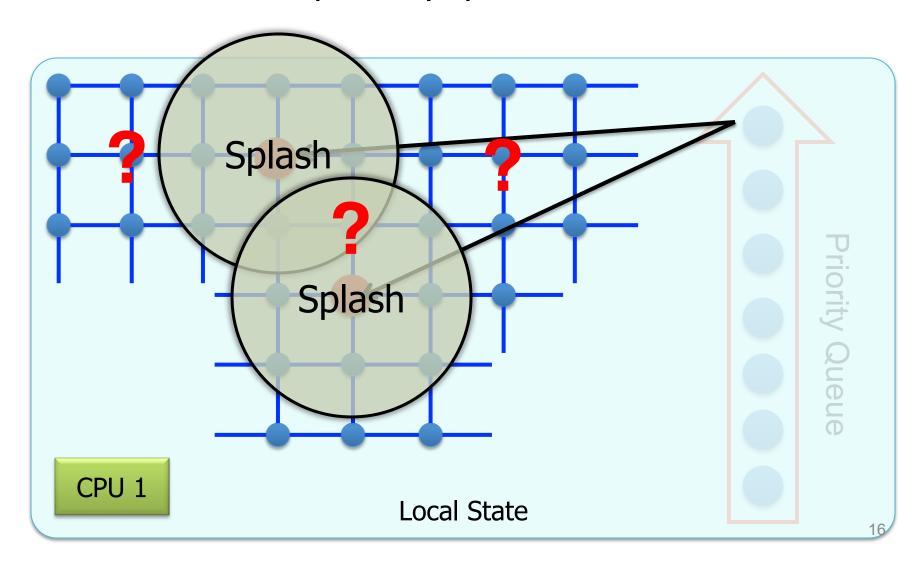
Distributed Splashes [UAI'09]



- Partition the graph
- Schedule Splashes locally
- Transmit the messages along the partition

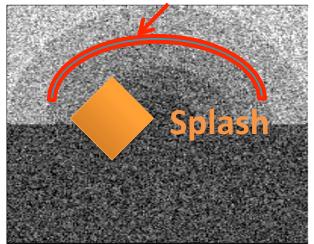
Priorities Determine the **Roots**

Use a residual priority queue to select roots:

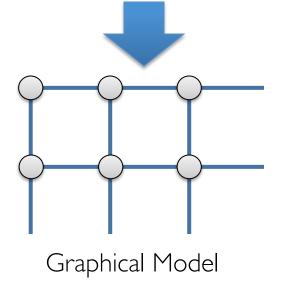


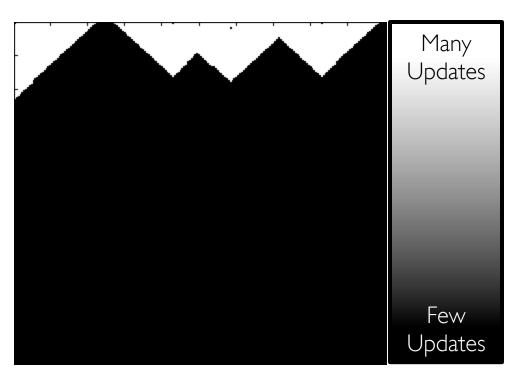
Adaptive Belief Propagation

Challenge = Boundaries



Synthetic Noisy Image



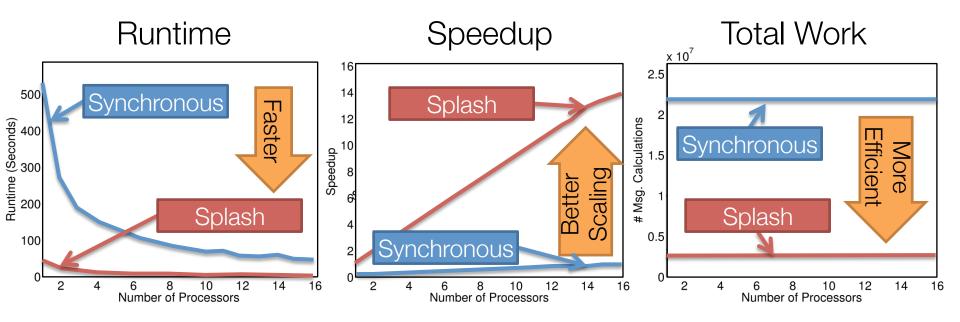


Cumulative Vertex Updates

Algorithm identifies and focuses on hidden sequential structure

Representative Results

Protein Interaction Models: 14K Vertices, 21K Factors

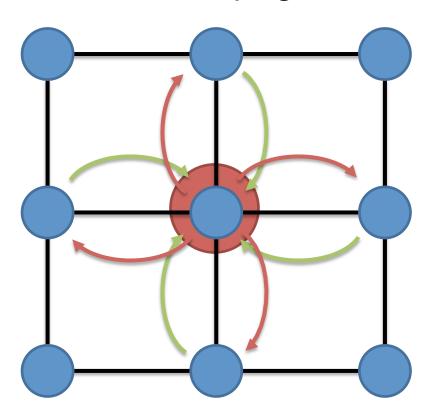


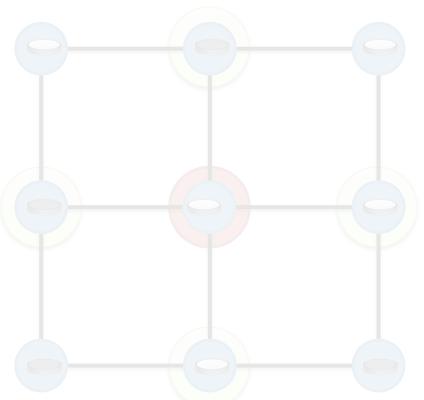
Dynamic Asynchronous (SplashBP)

- Faster and More Efficient
- Converges more often
- Achieves better prediction accuracy

Parallel and **Distributed** Algorithms for Probabilistic **Inference**

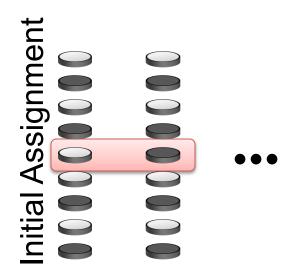
Belief Propagation

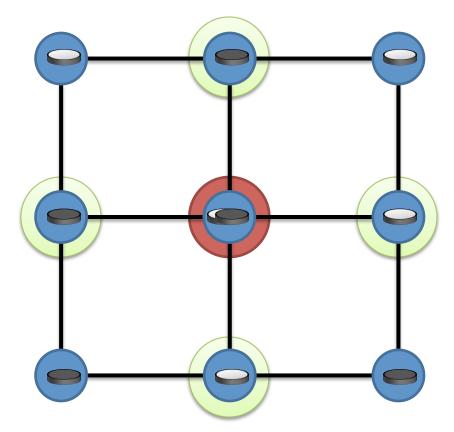




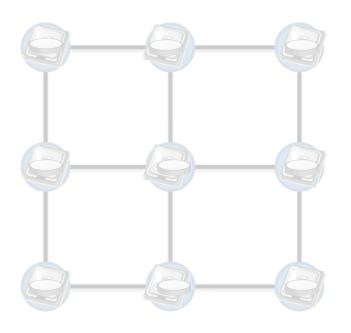
Gibbs Sampling [Geman & Geman, 1984]

- Sequentially for each variable in the model
 - Select variable
 - Construct condition using adjacent assignments
 - Sample from conditional





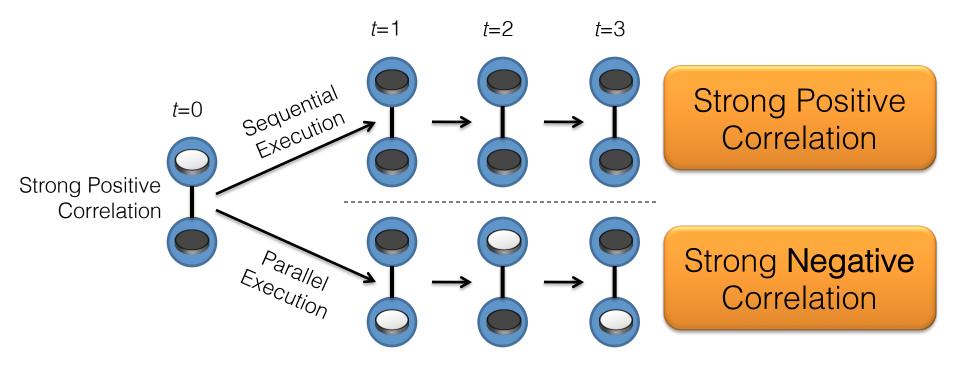
Synchronous Gibbs Sampling



Embarrassingly Parallel!

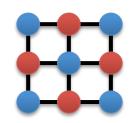
Converges to the wrong distribution!

The Problem with Synchronous Gibbs Sampling



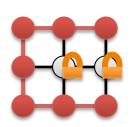
Adjacent variables cannot be sampled simultaneously.

Three Convergent Parallel Samplers [AISTATS'11]



Chromatic: Use graph coloring to synchronously sample independent sets

Asynchronous: Enable *prioritized* scheduling using Markov Blanket Locks to ensure serializable execution

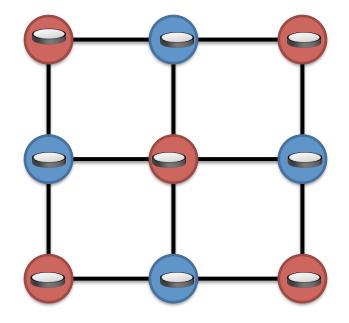


Splash: Address strong dependencies by adaptively constructing *thin junction tree* blocks

Chromatic Sampler

- Compute a k-coloring of the graphical model
- Sample all variables with same color in parallel

• Serial Equivalence:



Time

Theorem: Chromatic Sampler

- Converges to the correct distribution
 - Based on graph coloring of the Markov Random Field

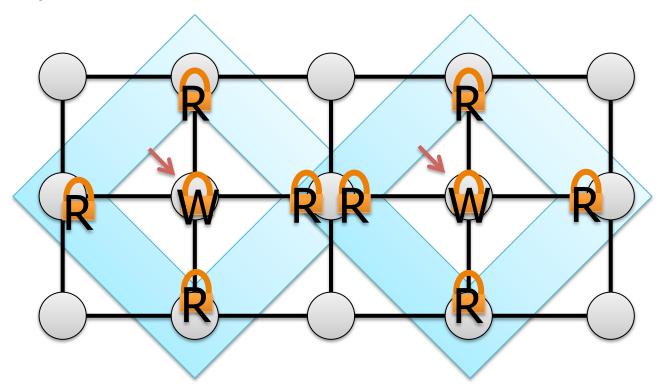
Quantifiable acceleration in mixing

Time for a single scan

$$O\left(\frac{n}{p}+k\right)$$
 # Variables # Colors # Processors

Asynchronous Gibbs Sampler: Serial Equiv. through Markov Blanket Locks

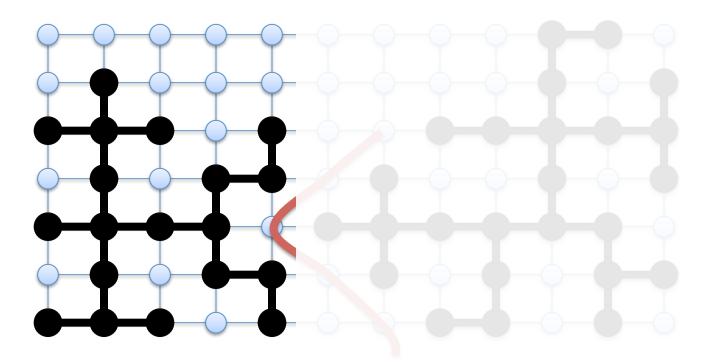
Read/Write Locks:



Enables asynchronous, prioritized sweeps

Splash Gibbs Sampler

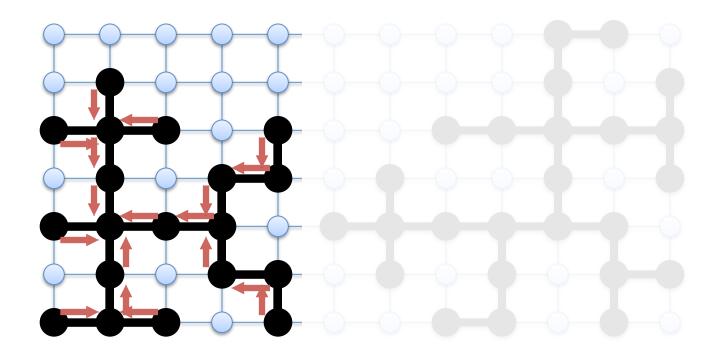
Asynchronously grow bounded size Splashes:



Focus on a Single Splash

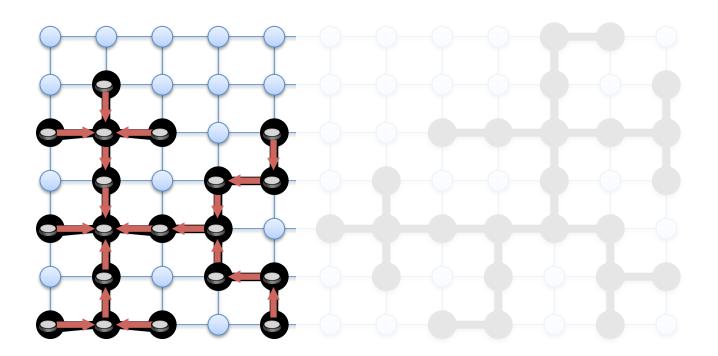
Splash Gibbs Sampler

Pass BP messages up the tree in parallel



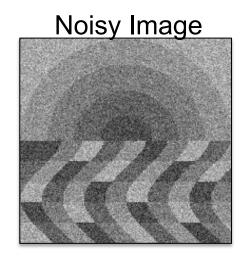
Splash Gibbs Sampler

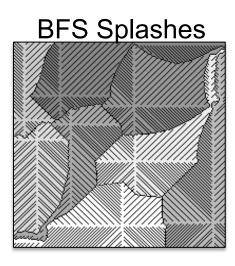
Asynchronously sample outwards in parallel:

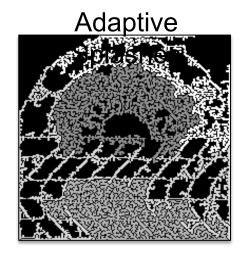


Dynamically Prioritized Sampling

- Prioritize Gibbs updates
- Adapt the shape of the junction tree to span strongly coupled variables:







Theorem

Asynchronous and Splash Gibbs Sampler

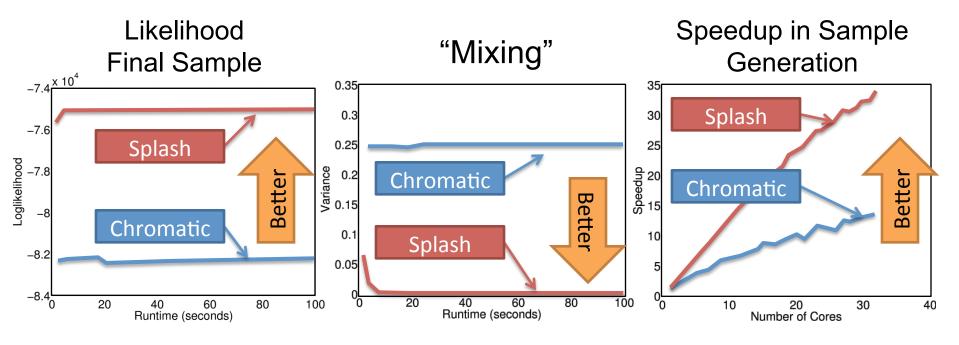
- Ergodic: converges to the correct distribution
 - Requires vanishing adaptation

Expected Parallelism:

$$\mathbf{E}(\#\text{active processors}) \\ \geq 1 + (p-1)\left(1 - (p-1)\left(\frac{d+1}{n}\right)\right) \\ \#\text{Processors} \\ \#\text{Variables}$$

Representative Results

Markov logic network with strong dependencies



The *Splash* sampler outperforms the *Chromatic* sampler on models with **strong** dependencies

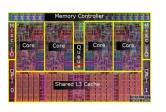
Massive Structured Problems

Graphical Representations

Parallel and Distributed Algorithms for Probabilistic Inference

Graph-Parallel Systems: GraphLab

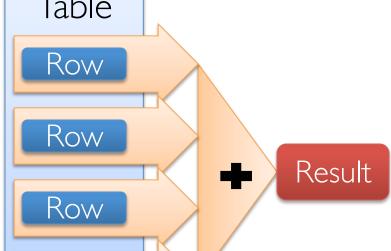
Advances Parallel Hardware



How do we design and implement graph-parallel inference algorithms?

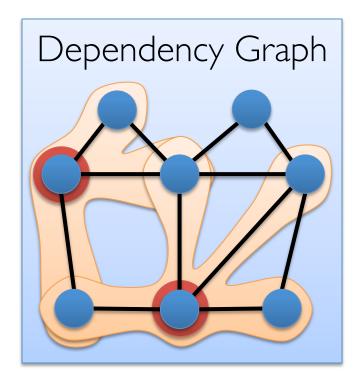
Structure of Computation

Data-Parallel
Table



Row

Graph-Parallel



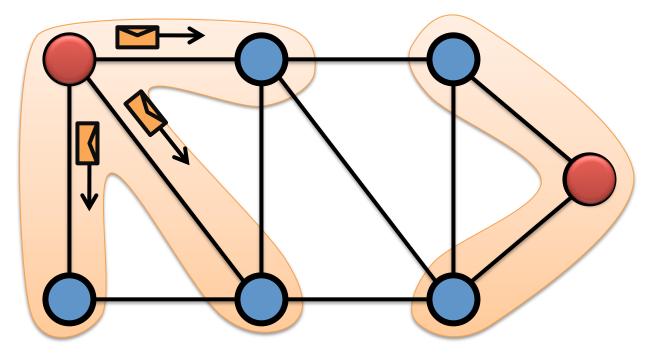
The Graph-Parallel Abstraction

A user-defined Vertex-Program runs on each vertex

Graph constrains interaction along edges

Using messages (e.g. Pregel [PODC'09, SIGMOD'10])

Through shared state (e.g., GraphLab [UAI'10,VLDB'12, OSDI'12])

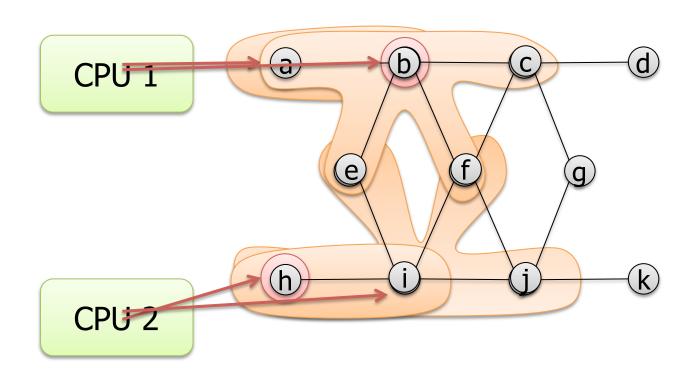


Parallelism: run multiple vertex programs simultaneously

GraphLab Asynchronous Execution

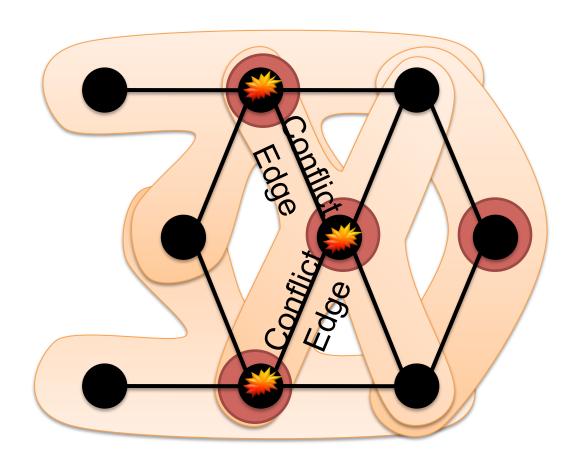
The scheduler determines the order that vertices are executed

Scheduler



Scheduler can **prioritize** vertices.

GraphLab is Serializable

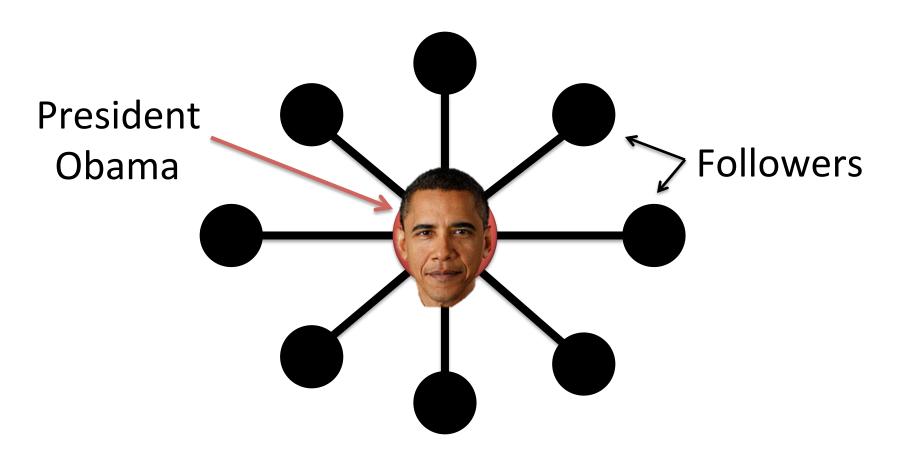


Automatically ensures serializable executions

The Challenge of Power-Law Graphs

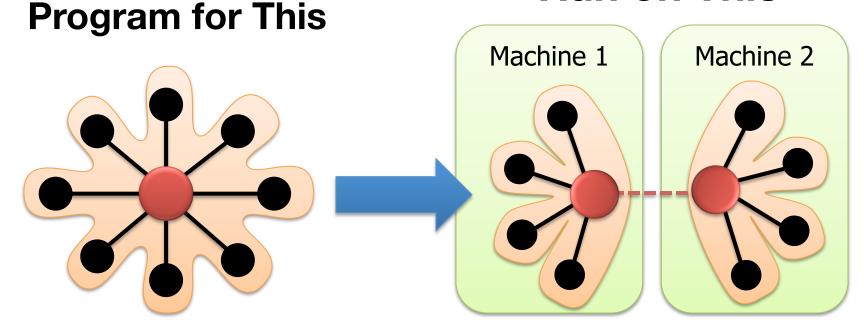
Power-Law Degree Distribution

"Star Like" Motif



Graph Lab [OSDI'12]

Run on This



Split **High-Degree** vertices

New Abstraction → **Equivalence** on Split Vertices

A Common Pattern for Vertex-Programs

GraphLab_Belief_Propagation(Vertex i)

Compute product of inbound messages

Commutative Associative Agg.

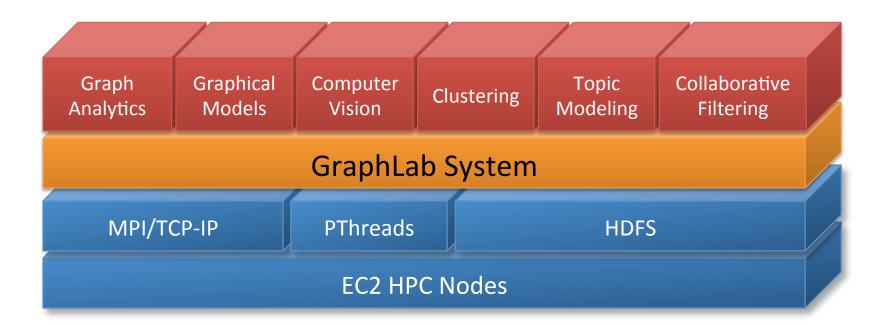
Update belief

Vertex-Parallel

Compute new outbound message

Edge-Parallel Map Operation

Machine Learning and Data-Mining Toolkits

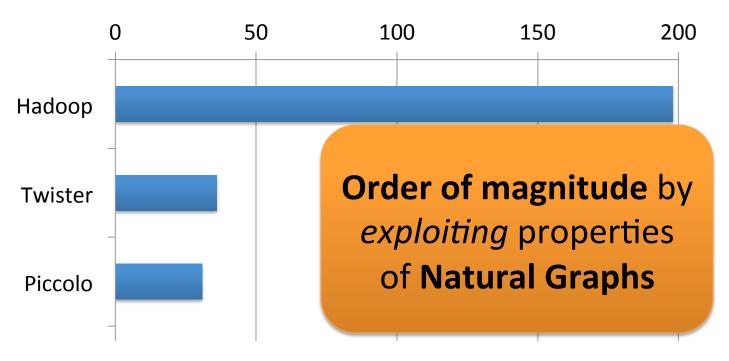


http://graphlab.org

Apache 2 License

PageRank on Twitter Follower Graph

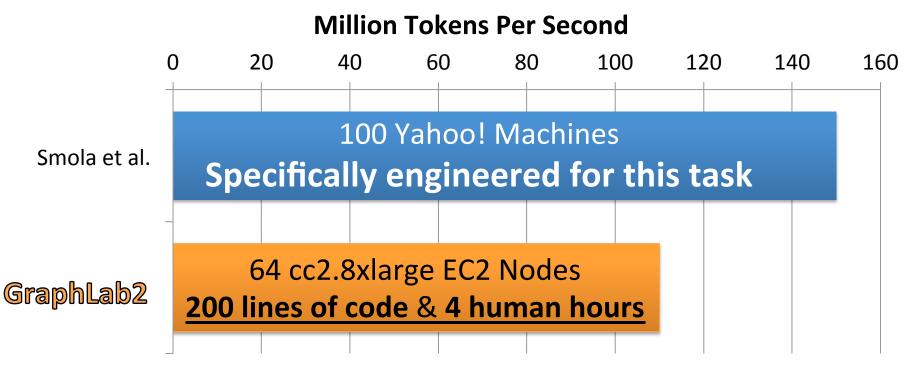
Natural Graph with 40M Users, 1.4 Billion Links



Gibbs Sampling for LDA

English language Wikipedia

- 2.6M Documents, 8.3M Words, 500M Tokens
- Computationally intensive algorithm



Triangle Counting on Twitter

40M Users, 1.4 Billion Links

Counted: 34.8 Billion Triangles

Hadoop [//////]

1536 Machines423 Minutes

GraphLab

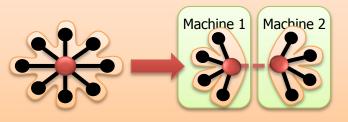
64 Machines 15 Seconds

1000 x Faster

By exploiting common patterns in graph data and computation:

New ways to **represent** real-world graphs

New ways **execute** graph algorithms



Orders of magnitude improvements over existing systems

Thank You

Joseph Gonzalez

Postdoc, UC Berkeley AMPLab

jegonzal@eecs.berkeley.edu

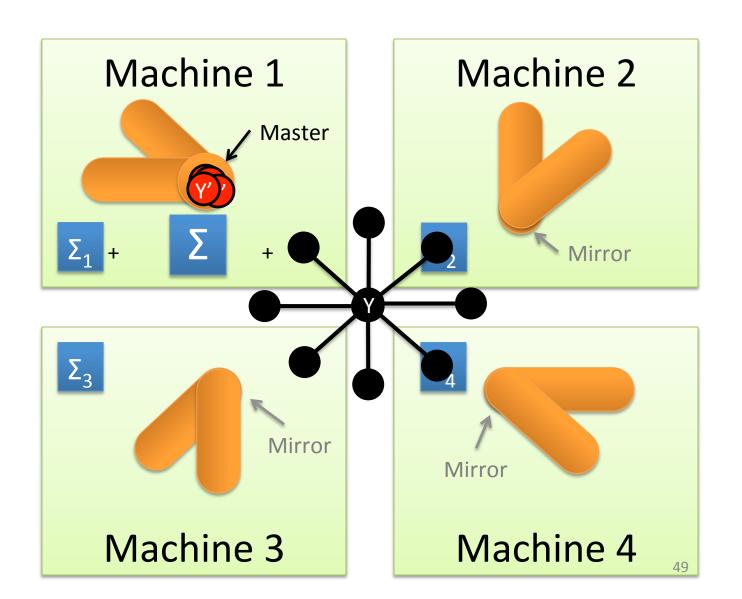
Co-Founder GraphLab Inc,

joseph@graphlab.com

Checkout the NIPS http://biglearn.org Workshop on December 9th in Tahoe

GAS Decomposition

Gather
Apply
Scatter



Minimizing Communication in PowerGraph

New Theorem:

For any edge-cut we can directly construct a vertex-cut which requires strictly less communication and storage.

Percolation theory suggests that power law graphs have **good vertex cuts**. [Albert et al. 2000]

Constructing Vertex-Cuts

- Evenly assign edges to machines
 - Minimize machines spanned by each vertex

- Assign each edge as it is loaded
 - Touch each edge only once

- Propose two distributed approaches:
 - Random Vertex Cut
 - Greedy Vertex Cut

Random Vertex-Cut

Randomly assign edges to machines

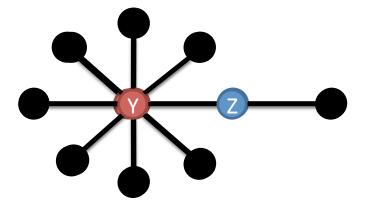
Machine 1

Machine 2

Machine 3

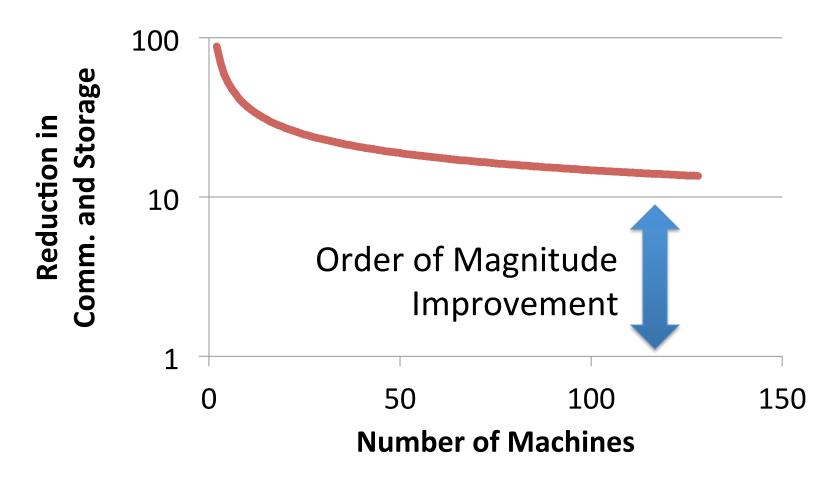
Balanced Vertex-Cut

- Spans 3 Machines
- Spans 2 Machines
- Not cut!



Random Vertex-Cuts vs. Edge-Cuts

Expected improvement from vertex-cuts:

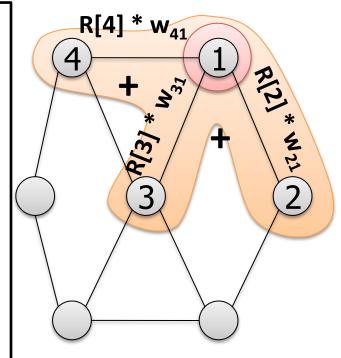


The GraphLab Vertex Program

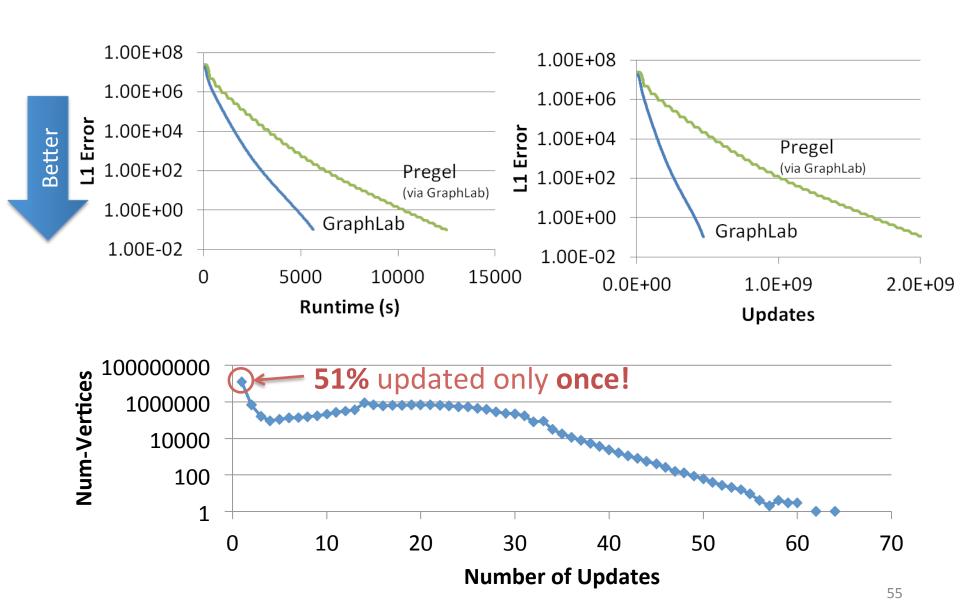
Vertex Programs directly access adjacent vertices and edges

```
GraphLab_PageRank(i)
 // Compute sum over neighbors
  total = 0
  foreach( j in neighbors(i)):
    total = total + R[j] * W<sub>ii</sub>
  // Update the PageRank
  R[i] = 0.15 + total
 // Trigger neighbors to run again
  if R[i] not converged then
```

signal nbrsOf(i) to be recomputed



Convergence of Dynamic PageRank



Predicting Political Bias

