A structure theorem for Boolean functions with small total influences

Hamed Hatami

School of Computer Science McGill University

September 29, 2013

Influences

Definition (Influence)

• Consider a probability space (X, μ) and a function $f: X^n \to \{0, 1\}$.

Definition (Influence)

- Consider a probability space (X, μ) and a function $f: X^n \to \{0, 1\}$.
- Let $x_1, \ldots, x_n, y_1, \ldots, y_n \sim \mu$ be i.i.d. random variables.
- The influence of the j-th variable on f is

$$I_j(f) := \Pr[f(x_1, \dots, x_j, \dots, x_n) \neq f(x_1, \dots, y_j, \dots, x_n)]$$

Definition (Influence)

- Consider a probability space (X, μ) and a function $f: X^n \to \{0, 1\}$.
- Let $x_1, \ldots, x_n, y_1, \ldots, y_n \sim \mu$ be i.i.d. random variables.
- The influence of the *j*-th variable on *f* is

$$I_j(f) := \Pr[f(x_1, \dots, \underbrace{x_j}, \dots, x_n) \neq f(x_1, \dots, \underbrace{y_j}, \dots, x_n)]$$

• $I_f = \sum_{i=1}^n I_j(f)$ is called the total influence of f.

Example

- Let $X = (\{0,1\}, \mu)$ be the uniform distribution on $\{0,1\}$.
- Let $f: \{0,1\}^n \to \{0,1\}$ be parity

$$f(x_1,\ldots,x_n)=x_1+\ldots+x_n \ (\mathrm{mod}\ 2).$$

Example

- Let $X = (\{0,1\}, \mu)$ be the uniform distribution on $\{0,1\}$.
- Let $f: \{0,1\}^n \to \{0,1\}$ be parity

$$f(x_1,\ldots,x_n)=x_1+\ldots+x_n \ (\mathrm{mod}\ 2).$$

0

$$I_{j} := \Pr[f(x_{1}, ..., x_{j}, ..., x_{n}) \neq f(x_{1}, ..., y_{j}, ..., x_{n})]$$

$$= \Pr[x_{1} + ... + x_{j} + ... + x_{n} \neq x_{1} + ... + y_{j} + ... + x_{n}]$$

$$= \Pr[x_{j} \neq y_{j}] = \frac{1}{2}.$$

Example

- Let $X = (\{0,1\}, \mu)$ be the uniform distribution on $\{0,1\}$.
- Let $f: \{0,1\}^n \to \{0,1\}$ be parity

$$f(x_1,\ldots,x_n)=x_1+\ldots+x_n \ (\mathrm{mod}\ 2).$$

0

$$I_{j} := \Pr[f(x_{1}, ..., x_{j}, ..., x_{n}) \neq f(x_{1}, ..., y_{j}, ..., x_{n})]$$

$$= \Pr[x_{1} + ... + x_{j} + ... + x_{n} \neq x_{1} + ... + y_{j} + ... + x_{n}]$$

$$= \Pr[x_{j} \neq y_{j}] = \frac{1}{2}.$$

• Total influence of f is n/2.

Example (p-biased case)

• Let $X = (\{0,1\}, \mu_p)$ be the Bernoulli distribution with parameter p = 1/n.

Example (p-biased case)

- Let $X = (\{0,1\}, \mu_p)$ be the Bernoulli distribution with parameter p = 1/n.
- Let $f: (\{0,1\}^n, \mu_p) \to \{0,1\}$ be any function.

Example (p-biased case)

- Let $X = (\{0,1\}, \mu_p)$ be the Bernoulli distribution with parameter p = 1/n.
- Let $f: (\{0,1\}^n, \mu_p) \to \{0,1\}$ be any function.

•

$$I_j := \Pr[f(x_1, \dots, x_j, \dots, x_n) \neq f(x_1, \dots, y_j, \dots, x_n)]$$

 $\leq \Pr[x_j \neq y_j] = 2p(1-p) = \frac{2(n-1)}{n^2}.$

Example (p-biased case)

- Let $X = (\{0,1\}, \mu_p)$ be the Bernoulli distribution with parameter p = 1/n.
- Let $f:(\{0,1\}^n,\mu_p)\to\{0,1\}$ be any function.

•

$$I_j := \Pr[f(x_1, \dots, \frac{x_j}{n}, \dots, x_n) \neq f(x_1, \dots, \frac{y_j}{n}, \dots, x_n)]$$

 $\leq \Pr[x_j \neq y_j] = 2p(1-p) = \frac{2(n-1)}{n^2}.$

• Total influence $I_f \leq 2(n-1)/n \approx 2$.

Main Question

What can we say about the structure of functions $f: X^n \to \{0,1\}$ with $I_f = O(1)$?

 Russo 1982: First systematic study of functions with low total influences.

- Russo 1982: First systematic study of functions with low total influences.
- Kahn-Kalai-Linial 1988: An important inequality regarding influences (uniform measure on {0, 1}ⁿ).

- Russo 1982: First systematic study of functions with low total influences.
- Kahn-Kalai-Linial 1988: An important inequality regarding influences (uniform measure on {0, 1}ⁿ).
- Talagrand 1993: An extension of the KKL inequality.

- Russo 1982: First systematic study of functions with low total influences.
- Kahn-Kalai-Linial 1988: An important inequality regarding influences (uniform measure on {0,1}ⁿ).
- Talagrand 1993: An extension of the KKL inequality.
- Friedgut 1998: Structure for the uniform case $f: \{0,1\}^n \to \{0,1\}$ with $I_f = O(1)$.

- Russo 1982: First systematic study of functions with low total influences.
- Kahn-Kalai-Linial 1988: An important inequality regarding influences (uniform measure on {0,1}ⁿ).
- Talagrand 1993: An extension of the KKL inequality.
- Friedgut 1998: Structure for the uniform case $f: \{0,1\}^n \to \{0,1\}$ with $I_f = O(1)$.
- Friedgut 2000: A complete characterization of graph properties with $I_f = O(1)$ on G(n, p).

- Russo 1982: First systematic study of functions with low total influences.
- Kahn-Kalai-Linial 1988: An important inequality regarding influences (uniform measure on {0,1}ⁿ).
- Talagrand 1993: An extension of the KKL inequality.
- Friedgut 1998: Structure for the uniform case $f: \{0,1\}^n \to \{0,1\}$ with $I_f = O(1)$.
- Friedgut 2000: A complete characterization of graph properties with $I_f = O(1)$ on G(n, p).
 - 3-SAT exhibits a sharp threshold.
 - 3-colorability exhibits a sharp threshold.

- Russo 1982: First systematic study of functions with low total influences.
- Kahn-Kalai-Linial 1988: An important inequality regarding influences (uniform measure on {0,1}ⁿ).
- Talagrand 1993: An extension of the KKL inequality.
- Friedgut 1998: Structure for the uniform case $f: \{0,1\}^n \to \{0,1\}$ with $I_f = O(1)$.
- Friedgut 2000: A complete characterization of graph properties with $I_f = O(1)$ on G(n, p).
 - 3-SAT exhibits a sharp threshold.
 - 3-colorability exhibits a sharp threshold.
- Bourgain 2000: Partially extended this to general setting f: Xⁿ → {0, 1}.

Phase Transitions

Erdös-Rényi graph

 In early sixties Erdös and Rényi invented the notion of a random graph G(n, p):

Erdös-Rényi graph

- In early sixties Erdös and Rényi invented the notion of a random graph G(n, p):
- Every edge is present independently with probability p.

Thresholds

They observed that some fundamental graph properties such as connectivity exhibit a threshold as *p* increases.

sharpness of threshold

One of the main questions that arises in studying phase transitions is:

• "How sharp is the threshold?"

sharpness of threshold

One of the main questions that arises in studying phase transitions is:

- "How sharp is the threshold?"
- That is how short is the interval in which the transition occurs.

Connectivity exhibits a sharp threshold.

Containing a triangle does not exhibit a sharp threshold.

What about more complicated properties such as

- What about more complicated properties such as
 - Satisfiability of a 3-SAT formula.
 - 3-colorability of a graph.

- What about more complicated properties such as
 - Satisfiability of a 3-SAT formula.
 - ► 3-colorability of a graph.

Is there a general approach to such questions?

Observation

If $f:\{0,1\}^n \to \{0,1\}$ does not exhibit a sharp threshold, then $\frac{d\Pr_p[f(x)=1]}{dp} = O\left(\frac{1}{p}\right)$, for some p in the transition interval.

Question [Coarse Threshold]

Which functions $f: \{0,1\}^n \to \{0,1\}$ satisfy $\frac{d \Pr_p[f(x)=1]}{dp} = O\left(\frac{1}{p}\right)$?

Question [Coarse Threshold]

Which functions $f: \{0,1\}^n \to \{0,1\}$ satisfy $\frac{d \Pr_p[f(x)=1]}{dp} = O\left(\frac{1}{p}\right)$?

Russo-Margulis Lemma

The sharpness of the threshold is controlled by the total influence of the indicator function of the property:

$$\frac{d\Pr_p[f(x)=1]}{dp}=O\left(\frac{l_f}{p}\right)$$

Question [Coarse Threshold]

Which functions $f: \{0,1\}^n \to \{0,1\}$ satisfy $\frac{d \Pr_p[f(x)=1]}{dp} = O\left(\frac{1}{p}\right)$?

Russo-Margulis Lemma

The sharpness of the threshold is controlled by the total influence of the indicator function of the property:

$$\frac{d\Pr_p[f(x)=1]}{dp} = O\left(\frac{l_f}{p}\right)$$

Question Rephrased

Which functions $f:(\{0,1\}^n,\mu_p)\to\{0,1\}$ satisfy $I_f=O(1)$?

In general when a Boolean function satisfies some nice properties or fits a description, it is usually possible to bound the influences of its variables. In general when a Boolean function satisfies some nice properties or fits a description, it is usually possible to bound the influences of its variables.

More general question

What is the structure of the functions $f: X^n \to \{0, 1\}$ with bounded total influence?

Bounded Total Influence

Functions with Small Total Influence **Juntas**

The value of $f(x_1,...,x_n)$ depends on a small set of variables $\{x_{i_1},...,x_{i_k}\}$:

$$f(x):=g(x_{i_1},\ldots,x_{i_k}).$$

The value of $f(x_1, ..., x_n)$ depends on a small set of variables $\{x_{i_1}, ..., x_{i_k}\}$:

$$f(x) := g(x_{i_1}, \ldots, x_{i_k}).$$

Every variable outside the junta has influence 0.

The value of $f(x_1,...,x_n)$ depends on a small set of variables $\{x_{i_1},...,x_{i_k}\}$:

$$f(x):=g(x_{i_1},\ldots,x_{i_k}).$$

- Every variable outside the junta has influence 0.
- $\sum I_i \leq k$.

The value of $f(x_1,...,x_n)$ depends on a small set of variables $\{x_{i_1},...,x_{i_k}\}$:

$$f(x):=g(x_{i_1},\ldots,x_{i_k}).$$

- Every variable outside the junta has influence 0.
- $\sum I_i \leq k$.
- Juntas have total influence O(1).

Direct theorem

f is Junta \Longrightarrow total influence O(1).

Direct theorem

f is Junta \Longrightarrow total influence O(1).

Theorem (Friedgut 98 Inverse Theorem)

For uniform measure on $\{0,1\}$: total influence $O(1) \Longrightarrow f$ is essentially a junta.

Direct theorem

f is Junta \Longrightarrow total influence O(1).

Theorem (Friedgut 98 Inverse Theorem)

For uniform measure on $\{0,1\}$: total influence $O(1) \Longrightarrow f$ is essentially a junta.

Theorem (More precisely)

Let $f: \{0,1\}^n \to \{0,1\}$ have total influence O(1). Then for every $\epsilon > 0$, there exists a $O_{\epsilon}(1)$ -junta $g: \{0,1\}^n \to \{0,1\}$ such that

$$\Pr[f(x) \neq g(x)] \leq \epsilon$$
.

• Friedgut's theorem extends to $f:(\{0,1\}^n,\mu_p)\to\{0,1\}$ when p is a constant.

- Friedgut's theorem extends to $f:(\{0,1\}^n,\mu_p)\to\{0,1\}$ when p is a constant.
- However, the proof completely fails when $p \leq n^{-c}$.

- Friedgut's theorem extends to $f:(\{0,1\}^n,\mu_p)\to\{0,1\}$ when p is a constant.
- However, the proof completely fails when $p \lesssim n^{-c}$.
- For the applications in phase transition, the range $p \lesssim n^{-c}$ is the most interesting case.

- Friedgut's theorem extends to $f:(\{0,1\}^n,\mu_p)\to\{0,1\}$ when p is a constant.
- However, the proof completely fails when $p \lesssim n^{-c}$.
- For the applications in phase transition, the range $p \lesssim n^{-c}$ is the most interesting case.
 - connectivity
 - satisfiability of 3-SAT
 - 3-colorability of graphs....

Pseudo-Juntas

$$f: X^n \to \{0, 1\}$$

• Let $\mathcal{J} = \{J_{\mathcal{S}}\}_{\mathcal{S} \subseteq [n]}$ be a collection of constraints; $J_{\mathcal{S}} : X^n \to \{0,1\}$ depends on coordinates in \mathcal{S} .

- Let $\mathcal{J} = \{J_{\mathcal{S}}\}_{\mathcal{S}\subseteq[n]}$ be a collection of constraints; $J_{\mathcal{S}}: X^n \to \{0,1\}$ depends on coordinates in \mathcal{S} .
- Active coordinates of x are variables in satisfied constraints:

$$J_{\mathcal{J}}(x) := \bigcup \{S : J_{\mathcal{S}}(x) = 1\}.$$

- Let $\mathcal{J} = \{J_{\mathcal{S}}\}_{\mathcal{S}\subseteq[n]}$ be a collection of constraints; $J_{\mathcal{S}}: X^n \to \{0,1\}$ depends on coordinates in \mathcal{S} .
- Active coordinates of x are variables in satisfied constraints:

$$J_{\mathcal{J}}(x) := \bigcup \{S : J_{\mathcal{S}}(x) = 1\}.$$

• Let $X = \{0, 1\}$.

- Let $\mathcal{J} = \{J_{\mathcal{S}}\}_{\mathcal{S}\subseteq[n]}$ be a collection of constraints; $J_{\mathcal{S}}: X^n \to \{0,1\}$ depends on coordinates in \mathcal{S} .
- Active coordinates of x are variables in satisfied constraints:

$$J_{\mathcal{J}}(x) := \bigcup \{S : J_{\mathcal{S}}(x) = 1\}.$$

- Let $X = \{0, 1\}$.
- For $S_i = \{i, i+1\}$ let $J_{S_i}(x) = 1 \Leftrightarrow x_i = x_{i+1} = 1$.

- Let $\mathcal{J} = \{J_{\mathcal{S}}\}_{\mathcal{S}\subseteq[n]}$ be a collection of constraints; $J_{\mathcal{S}}: X^n \to \{0,1\}$ depends on coordinates in \mathcal{S} .
- Active coordinates of x are variables in satisfied constraints:

$$J_{\mathcal{J}}(x) := \bigcup \{S : J_{S}(x) = 1\}.$$

- Let $X = \{0, 1\}$.
- For $S_i = \{i, i+1\}$ let $J_{S_i}(x) = 1 \Leftrightarrow x_i = x_{i+1} = 1$.

$$J_{\mathcal{I}}(0,\underline{1},\overline{1},\overline{1},0,\underline{1},\underline{1},0,0) = S_2 \cup S_3 \cup S_6 = \{2,3,4,6,7\}$$

- Let $\mathcal{J} = \{J_S\}_{S \subseteq [n]}$ be a collection of constraints; $J_S : X^n \to \{0, 1\}$ depends on coordinates in S.
- Active coordinates of x are variables in satisfied constraints:

$$J_{\mathcal{J}}(x) := \bigcup \{S : J_{S}(x) = 1\}.$$

- Let $X = \{0, 1\}$.
- For $S_i = \{i, i+1\}$ let $J_{S_i}(x) = 1 \Leftrightarrow x_i = x_{i+1} = 1$.

$$J_{\mathcal{J}}(0,\underline{1},\overline{\underline{1}},\overline{1},0,\underline{1},\underline{1},0,0) = S_2 \cup S_3 \cup S_6 = \{2,3,4,6,7\}$$

$$J_{\mathcal{J}}(0,\underline{1},\overline{1},\overline{1},0,\underline{1},\underline{1},0,1) = S_2 \cup S_3 \cup S_6 = \{2,3,4,6,7\}$$

- Let $\mathcal{J} = \{J_{\mathcal{S}}\}_{\mathcal{S}\subseteq[n]}$ be a collection of constraints; $J_{\mathcal{S}}: X^n \to \{0,1\}$ depends on coordinates in \mathcal{S} .
- Active coordinates of x are variables in satisfied constraints:

$$J_{\mathcal{J}}(x) := \bigcup \{S : J_{S}(x) = 1\}.$$

 $\mathcal{F}_{\mathcal{J}}$: Put *x* and *y* in the same part if:

- $J_{\mathcal{J}}(x) = J_{\mathcal{J}}(y) =: T;$
- \triangleright $X_T = Y_T$.

- Let $X = \{0, 1\}$.
- For $S_i = \{i, i+1\}$ let $J_{S_i}(x) = 1 \Leftrightarrow x_i = x_{i+1} = 1$.

$$J_{\mathcal{J}}(0,\underline{1},\overline{1},\overline{1},0,\underline{1},\underline{1},0,0) = S_2 \cup S_3 \cup S_6 = \{2,3,4,6,7\}$$

$$J_{\mathcal{I}}(0,\underline{1},\overline{1},\overline{1},0,\underline{1},\underline{1},0,1) = S_2 \cup S_3 \cup S_6 = \{2,3,4,6,7\}$$

- Let $\mathcal{J} = \{J_S\}_{S \subseteq [n]}$ be a collection of constraints; $J_S : X^n \to \{0, 1\}$ depends on coordinates in S.
- Active coordinates of x are variables in satisfied constraints:

$$J_{\mathcal{J}}(x) := \bigcup \{S : J_{S}(x) = 1\}.$$

 $\mathcal{F}_{\mathcal{J}}$: Put x and y in the same part if:

- $J_{\mathcal{T}}(x) = J_{\mathcal{T}}(y) =: T;$
- $\triangleright x_T = y_T.$

Definition (Pseudo-junta)

If $f: X^n \to \{0,1\}$ is measurable w.r.t. $\mathcal{F}_{\mathcal{J}}$, then f is called a k-pseudo-junta provided that

 $\mathbb{E}[\text{number of active coordiates of } x] \leq k.$

Observation

• Suppose *x* and *y* differ only in one coordinate *j*.

Observation

- Suppose x and y differ only in one coordinate j.
- E.g. $(\underline{1}, \overline{1}, \overline{1}, 0, 1, 0, 0, \underline{1}, \underline{1})$ $(\underline{1}, \overline{1}, \overline{1}, 0, 0, 0, 0, \underline{1}, \underline{1}).$

Observation

- Suppose *x* and *y* differ only in one coordinate *j*.
- E.g. $(\underline{1}, \overline{\underline{1}}, \overline{1}, 0, 1, 0, 0, \underline{1}, \underline{1})$ $(\underline{1}, \overline{\underline{1}}, \overline{1}, 0, 0, 0, 0, \underline{1}, \underline{1}).$
- $j \notin J_{\mathcal{J}}(x) \cup J_{\mathcal{J}}(y) \Leftrightarrow x$ and y are atom-mates.

Theorem (Direct Theorem)

Let $f: X^n \to \{0,1\}$ be a k-pseudo-junta. Then $I_f \leq 2k$.

$$I_{f} = \sum_{j \in [n]} \Pr[f(x_{1}, \dots, x_{j}, \dots, x_{n}) \neq f(x_{1}, \dots, y_{j}, \dots, x_{n})]$$

$$\leq \sum_{j \in [n]} \Pr[j \in J_{\mathcal{J}}(x_{1}, \dots, x_{j}, \dots, x_{n}) \cup J_{\mathcal{J}}(x_{1}, \dots, y_{j}, \dots, x_{n})]$$

Theorem (Direct Theorem)

Let $f: X^n \to \{0,1\}$ be a k-pseudo-junta. Then $I_f \leq 2k$.

$$I_{f} = \sum_{j \in [n]} \Pr[f(x_{1}, \dots, x_{j}, \dots, x_{n}) \neq f(x_{1}, \dots, y_{j}, \dots, x_{n})]$$

$$\leq \sum_{j \in [n]} \Pr[j \in J_{\mathcal{J}}(x_{1}, \dots, x_{j}, \dots, x_{n}) \cup J_{\mathcal{J}}(x_{1}, \dots, y_{j}, \dots, x_{n})]$$

$$\leq \sum_{j \in [n]} \Pr\left[j \in J_{\mathcal{J}}(x_1, \dots, x_j, \dots, x_n)\right] + \Pr\left[j \in J_{\mathcal{J}}(x_1, \dots, y_j, \dots, x_n)\right]$$

$$\leq 2\sum_{j\in [n]}\Pr[j\in J_{\mathcal{J}}(x)]\leq 2\mathbb{E}|J_{\mathcal{J}}(x)|\leq 2k.$$

If $f: X^n \to \{0,1\}$ is a pseudo-junta, then the total influence of f is O(1).

If $f: X^n \to \{0,1\}$ is a pseudo-junta, then the total influence of f is O(1).

Theorem (Friedgut 2000 - Inverse Theorem for graphs)

If the total influence of a graph property f is O(1) on G(n, p), then f is essentially a pseudo-junta.

If $f: X^n \to \{0,1\}$ is a pseudo-junta, then the total influence of f is O(1).

Theorem (Friedgut 2000 - Inverse Theorem for graphs)

If the total influence of a graph property f is O(1) on G(n, p), then f is essentially a pseudo-junta.

Shortcomings

 It is about graph properties, and the proof heavily relies on symmetries.

If $f: X^n \to \{0,1\}$ is a pseudo-junta, then the total influence of f is O(1).

Theorem (Friedgut 2000 - Inverse Theorem for graphs)

If the total influence of a graph property f is O(1) on G(n, p), then f is essentially a pseudo-junta.

Shortcomings

- It is about graph properties, and the proof heavily relies on symmetries.
- It is only applicable to p-biased distribution.

Bourgain 2000

Partially extended Friedgut's proof to general $f: X^n \to \{0,1\}$.

Bourgain 2000

Partially extended Friedgut's proof to general $f: X^n \to \{0,1\}$.

Bourgain's extension

• does not come with a corresponding direct theorem.

Bourgain 2000

Partially extended Friedgut's proof to general $f: X^n \to \{0,1\}$.

Bourgain's extension

- does not come with a corresponding direct theorem.
- does not tell anything about the global structure of f.

Main Theorem

Theorem (H. 2011, Inverse Theorem)

If the total influence of $f: X^n \to \{0,1\}$ is O(1), then f is essentially a pseudo-junta.

Theorem (H. 2011, Inverse Theorem)

If the total influence of $f: X^n \to \{0,1\}$ is O(1), then f is essentially a pseudo-junta.

Theorem (More precisely:)

Let $f: X^n \to \{0,1\}$ and $\epsilon > 0$

Theorem (H. 2011, Inverse Theorem)

If the total influence of $f: X^n \to \{0,1\}$ is O(1), then f is essentially a pseudo-junta.

Theorem (More precisely:)

Let $f: X^n \to \{0,1\}$ and $\epsilon > 0$

• There exists a $\exp(10^{15}\epsilon^{-3}\lceil I_f\rceil^3)$ -pseudo-junta $h:X^n\to\{0,1\}$ such that

$$\Pr[f(x) \neq h(x)] \leq \epsilon.$$

Proof Sketch

There is a unique decomposition $f = \sum_{S \subseteq [n]} F_S$ such that

There is a unique decomposition $f = \sum_{S \subset [n]} F_S$ such that

• F_S depends only on coordinates in S.

There is a unique decomposition $f = \sum_{S \subseteq [n]} F_S$ such that

- F_S depends only on coordinates in S.
- $\int F_S dx_i = 0$ for $i \in S$.

There is a unique decomposition $f = \sum_{S \subseteq [n]} F_S$ such that

- F_S depends only on coordinates in S.
- $\int F_S dx_i = 0$ for $i \in S$.

It follows

• The functions F_S are pairwise orthogonal.

There is a unique decomposition $f = \sum_{S \subseteq [n]} F_S$ such that

- F_S depends only on coordinates in S.
- $\int F_S dx_i = 0$ for $i \in S$.

It follows

- The functions F_S are pairwise orthogonal.
- Parseval: $||f||_2^2 = \sum_{S \subseteq [n]} ||F_S||_2^2$.

There is a unique decomposition $f = \sum_{S \subseteq [n]} F_S$ such that

- F_S depends only on coordinates in S.
- $\int F_S dx_i = 0$ for $i \in S$.

It follows

- The functions F_S are pairwise orthogonal.
- Parseval: $||f||_2^2 = \sum_{S \subseteq [n]} ||F_S||_2^2$.

•

$$I_i = \sum_{S \ni i} \|F_S\|_2^2.$$

Proof plan:

• Approximate *f* with a simpler function *g* in *L*₂ norm.

Proof plan:

- Approximate f with a simpler function g in L_2 norm.
- Find proper $\mathcal{J} = \{J_{\mathcal{S}}\}_{\mathcal{S} \subseteq [n]}$ with $\mathbb{E}[|J_{\mathcal{J}}|] = O_l(1)$.

Proof plan:

- Approximate f with a simpler function g in L₂ norm.
- Find proper $\mathcal{J} = \{J_{\mathcal{S}}\}_{\mathcal{S} \subset [n]}$ with $\mathbb{E}[|J_{\mathcal{J}}|] = O_l(1)$.
- Show $||g \mathbb{E}[g|\mathcal{F}_{\mathcal{J}}]||_2$ is small.

ullet Start from the expansion $f = \sum_{\mathcal{S} \subseteq [n]} F_{\mathcal{S}}$

- Start from the expansion $f = \sum_{S \subseteq [n]} F_S$
- Recall $I_i = \sum_{S \ni i} \|F_S\|_2^2$.

- Start from the expansion $f = \sum_{S \subseteq [n]} F_S$
- Recall $I_i = \sum_{S \ni i} ||F_S||_2^2$.
- Hence

$$I_f = \sum I_i = \sum |S| \times |F_S|_2^2.$$

- Start from the expansion $f = \sum_{S \subseteq [n]} F_S$
- Recall $I_i = \sum_{S \ni i} ||F_S||_2^2$.
- Hence

$$I_f = \sum I_i = \sum |\mathcal{S}| \times ||F_{\mathcal{S}}||_2^2.$$

So

$$\sum_{S:|S|\geq k} \|F_S\|_2^2 \leq I_f/k$$

is small for k large enough.

- Start from the expansion $f = \sum_{S \subseteq [n]} F_S$
- Recall $I_i = \sum_{S \ni i} ||F_S||_2^2$.
- Hence

$$I_f = \sum I_i = \sum |S| \times |F_S|_2^2.$$

So

$$\sum_{S:|S|\geq k} \|F_S\|_2^2 \leq I_f/k$$

is small for k large enough.

So

$$f \approx \sum_{S:|S| < k} F_S =: g.$$

Bourgain 2000

$$||f||_2^2 = \sum \int |F_S|^2 \approx \sum \int_{[|F_S| > \epsilon_1]} |F_S|^2.$$

Bourgain 2000

$$||f||_2^2 = \sum \int |F_S|^2 \approx \sum \int_{[|F_S| > \epsilon_1]} |F_S|^2.$$

• Next we define functions $J_S: X^S \to \{0, 1\}$.

Bourgain 2000

$$||f||_2^2 = \sum \int |F_S|^2 \approx \sum \int_{[|F_S| > \epsilon_1]} |F_S|^2.$$

- Next we define functions $J_S: X^S \to \{0,1\}$.
- For $|S| \le k$:

$$J_{\mathcal{S}}(y) = \left\{ egin{array}{ll} 1 & |F_{\mathcal{S}}(y)| > \epsilon_1 \\ 0 & ext{otherwise.} \end{array}
ight.$$

Bourgain 2000

$$||f||_2^2 = \sum \int |F_S|^2 \approx \sum \int_{[|F_S| > \epsilon_1]} |F_S|^2.$$

• Note that if $|F_S(x)| > \epsilon_1$ then *S* is activated. So

$$F_{\mathcal{S}}(x) = \mathbb{E}[F_{\mathcal{S}}(x)|\mathcal{F}_{\mathcal{J}}].$$

Bourgain 2000

$$||f||_2^2 = \sum \int |F_S|^2 \approx \sum \int_{[|F_S| > \epsilon_1]} |F_S|^2.$$

• Note that if $|F_S(x)| > \epsilon_1$ then *S* is activated. So

$$F_{\mathcal{S}}(x) = \mathbb{E}[F_{\mathcal{S}}(x)|\mathcal{F}_{\mathcal{J}}].$$

• So by Bourgain's Ineq. we have $\sum \int |F_S - \mathbb{E}[F_S|\mathcal{F}_J]|^2 \approx 0$.

Bourgain 2000

$$||f||_2^2 = \sum \int |F_S|^2 \approx \sum \int_{[|F_S| > \epsilon_1]} |F_S|^2.$$

• Note that if $|F_S(x)| > \epsilon_1$ then *S* is activated. So

$$F_{\mathcal{S}}(x) = \mathbb{E}[F_{\mathcal{S}}(x)|\mathcal{F}_{\mathcal{J}}].$$

- So by Bourgain's Ineq. we have $\sum \int |F_S \mathbb{E}[F_S|\mathcal{F}_J]|^2 \approx 0$.
- But we want

$$\int |f - \mathbb{E}[f|\mathcal{F}_{\mathcal{J}}]|^2 = \int \left| \sum (F_{\mathcal{S}} - \mathbb{E}[F_{\mathcal{S}}|\mathcal{F}_{\mathcal{J}}]) \right|^2 \approx 0.$$

Note bounding $\mathbb{E}[|J_{\mathcal{J}}|]$ is easy:

$$\mathbb{E}[|J_{\mathcal{J}}(x)|] \leq \sum |S| \times \Pr[J_{\mathcal{S}}(x) = 1]$$

$$\leq k \sum \int J_{\mathcal{S}}(x)$$

$$\leq k \sum \int \epsilon_1^{-1} |F_{\mathcal{S}}|^2 \leq \epsilon_1^{-1} k = O(1).$$

• We approximated f with $g := \sum_{|S| \le k} F_S$.

- We approximated f with $g := \sum_{|S| < k} F_S$.
- We need to show $\|g \mathbb{E}[g|\mathcal{F}_{\mathcal{J}}]\|_2$ is small.

• We have $\mathbb{E}[g|\mathcal{F}_{\mathcal{J}}] = \sum_{|\mathcal{S}| \leq k} \mathbb{E}[\mathcal{F}_{\mathcal{S}}|\mathcal{F}_{\mathcal{J}}].$

- We have $\mathbb{E}[g|\mathcal{F}_{\mathcal{J}}] = \sum_{|\mathcal{S}| \leq k} \mathbb{E}[\mathcal{F}_{\mathcal{S}}|\mathcal{F}_{\mathcal{J}}].$
- Since $\mathcal{F}_{\mathcal{J}}$ depends on all coordinates, so does $\mathbb{E}[F_{\mathcal{S}}|\mathcal{F}_{\mathcal{J}}]$.

- We have $\mathbb{E}[g|\mathcal{F}_{\mathcal{J}}] = \sum_{|S| < k} \mathbb{E}[F_{S}|\mathcal{F}_{\mathcal{J}}].$
- Since $\mathcal{F}_{\mathcal{J}}$ depends on all coordinates, so does $\mathbb{E}[F_{\mathcal{S}}|\mathcal{F}_{\mathcal{J}}]$.
- To remedy this we define some auxiliary σ -algebras $\mathcal{F}_{\mathcal{S}}$ (activate coordinates only if $x_{\mathcal{S}}$ activates them, E.g.

$$(\underbrace{1,1,0,1}_{S},1,0,0)$$
 vs. $(\underbrace{1,1,0,1}_{S},1,0,0)$

- We have $\mathbb{E}[g|\mathcal{F}_{\mathcal{J}}] = \sum_{|S| < k} \mathbb{E}[F_{S}|\mathcal{F}_{\mathcal{J}}].$
- Since $\mathcal{F}_{\mathcal{J}}$ depends on all coordinates, so does $\mathbb{E}[F_{\mathcal{S}}|\mathcal{F}_{\mathcal{J}}]$.
- To remedy this we define some auxiliary σ -algebras $\mathcal{F}_{\mathcal{S}}$ (activate coordinates only if $x_{\mathcal{S}}$ activates them, E.g.

$$(\underbrace{1,1,0,1}_{S},1,0,0)$$
 vs. $(\underbrace{1,1,0,1}_{S},1,0,0)$

 $ightharpoonup \mathcal{F}_{\mathcal{S}}$ depends only on coordinates in \mathcal{S} .

- We have $\mathbb{E}[g|\mathcal{F}_{\mathcal{J}}] = \sum_{|S| < k} \mathbb{E}[F_{S}|\mathcal{F}_{\mathcal{J}}].$
- Since $\mathcal{F}_{\mathcal{J}}$ depends on all coordinates, so does $\mathbb{E}[F_{\mathcal{S}}|\mathcal{F}_{\mathcal{J}}]$.
- To remedy this we define some auxiliary σ -algebras $\mathcal{F}_{\mathcal{S}}$ (activate coordinates only if $x_{\mathcal{S}}$ activates them, E.g.

$$(\underbrace{1,1,0,1}_{S},1,0,0)$$
 vs. $(\underbrace{1,1,0,1}_{S},1,0,0)$.

- F_S depends only on coordinates in S.
- $\mathcal{F}_{\mathcal{S}}$ is coarser than $\mathcal{F}_{\mathcal{J}}$.

• Since $\mathcal{F}_{\mathcal{S}}$ is coarser than $\mathcal{F}_{\mathcal{J}}$:

$$\|g - \mathbb{E}[g|\mathcal{F}_{\mathcal{J}}]\|_2^2 \leq \left\|g - \sum \mathbb{E}[F_{\mathcal{S}}|\mathcal{F}_{\mathcal{S}}]\right\|_2^2.$$

• Since $\mathcal{F}_{\mathcal{S}}$ is coarser than $\mathcal{F}_{\mathcal{J}}$:

$$\|g - \mathbb{E}[g|\mathcal{F}_{\mathcal{J}}]\|_2^2 \leq \left\|g - \sum \mathbb{E}[\mathcal{F}_{\mathcal{S}}|\mathcal{F}_{\mathcal{S}}]\right\|_2^2.$$

• Since $\mathcal{F}_{\mathcal{S}}$ depends only on coordinates in \mathcal{S} :

$$\int \mathbb{E}[F_{\mathcal{S}_1}|\mathcal{F}_{\mathcal{S}_1}]\mathbb{E}[F_{\mathcal{S}_2}|\mathcal{F}_{\mathcal{S}_2}] = 0,$$

if $S_1 \cap S_2 = \emptyset$.

Step IV: Bounding the error

• Since $\mathcal{F}_{\mathcal{S}}$ is coarser than $\mathcal{F}_{\mathcal{J}}$:

$$\|g - \mathbb{E}[g|\mathcal{F}_{\mathcal{J}}]\|_2^2 \le \|g - \sum \mathbb{E}[\mathcal{F}_{\mathcal{S}}|\mathcal{F}_{\mathcal{S}}]\|_2^2.$$

• Since $\mathcal{F}_{\mathcal{S}}$ depends only on coordinates in \mathcal{S} :

$$\int \mathbb{E}[F_{S_1}|\mathcal{F}_{S_1}]\mathbb{E}[F_{S_2}|\mathcal{F}_{S_2}] = 0,$$

if $S_1 \cap S_2 = \emptyset$.

We get

$$\begin{split} \|g - \mathbb{E}[g|\mathcal{F}_{\mathcal{J}}]\|_2^2 &\lesssim \int \sum |F_S - \mathbb{E}[F_S|\mathcal{F}_S]|^2 \\ &+ \sum_{\substack{S_1, S_2 \in \mathcal{S} \\ S_1 \cap S_2 \neq \emptyset \ S_1 \neq S_2}} \left| \int \mathbb{E}[F_{S_1}|\mathcal{F}_{S_1}] \mathbb{E}[F_{S_2}|\mathcal{F}_{S_2}] \right|. \end{split}$$

$$egin{align*} \|g - \mathbb{E}[g|\mathcal{F}_{\mathcal{J}}]\|_2^2 &\lesssim & \int \sum |F_S - \mathbb{E}[F_S|\mathcal{F}_S]|^2 \ &+ \sum_{\substack{S_1, S_2 \in \mathcal{S} \\ S_1 \cap S_2
eq \emptyset, S_1
eq S_2}} \left| \int \mathbb{E}[F_{S_1}|\mathcal{F}_{S_1}] \mathbb{E}[F_{S_2}|\mathcal{F}_{S_2}] \right|. \end{split}$$

First sum is small by Bourgain's inequality.

$$\begin{split} \|g - \mathbb{E}[g|\mathcal{F}_{\mathcal{J}}]\|_2^2 &\lesssim \int \sum |F_S - \mathbb{E}[F_S|\mathcal{F}_S]|^2 \\ &+ \sum_{\substack{S_1, S_2 \in \mathcal{S} \\ S_1 \cap S_2 \neq \emptyset, S_1 \neq S_2}} \left| \int \mathbb{E}[F_{S_1}|\mathcal{F}_{S_1}] \mathbb{E}[F_{S_2}|\mathcal{F}_{S_2}] \right|. \end{split}$$

- First sum is small by Bourgain's inequality.
- Second term is analyzed by considering $T := S_1 \cap S_2$:

$$\begin{split} &\int \mathbb{E}[F_{\mathcal{S}_1}(x_T,\cdot)|\mathcal{F}_{\mathcal{S}_1}]\mathbb{E}[F_{\mathcal{S}_2}(x_T,\cdot)|\mathcal{F}_{\mathcal{S}_2}] = \\ &\int \mathbb{E}[F_{\mathcal{S}_1}(x_T,\cdot)|\mathcal{F}_{\mathcal{S}_1}] \times \int \mathbb{E}[F_{\mathcal{S}_2}(x_T,\cdot)|\mathcal{F}_{\mathcal{S}_2}]. \end{split}$$

$$J_T(y) := \left\{ \begin{array}{ll} 1 & \max_{R \subseteq T} \delta_0^{-2|T \setminus R|} \int \xi_T(y_R, x_{T \setminus R}) dx_{T \setminus R} \geq 1, \\ 0 & \text{otherwise}. \end{array} \right.$$

where

$$\xi_{\mathcal{T}}(y) := \left\{ \begin{array}{ll} 1 & \sum_{R \subseteq \mathcal{T}} \sum_{S \in \mathcal{S}: S \supseteq \mathcal{T}} \int a_S(y_R, x_{S \setminus R}) dx_{S \setminus R} > \epsilon_2, \\ \text{otherwise}. \end{array} \right.$$

where

$$a_{\mathcal{S}}(y) := 2^{3k} \delta^{-2k} \sum_{T \subseteq \mathcal{S}} \int 1_{[|F_{\mathcal{S}}(y_{\mathcal{S}\setminus T}, x_{\mathcal{T}})| > \epsilon_1]} dx_{\mathcal{T}}.$$

Furthermore in the case of general *X*:

• We need a bound on $\sum_{|S| \le k} ||F_S||_1$.

- We need a bound on $\sum_{|S| \le k} ||F_S||_1$.
- We find G_S such that

- We need a bound on $\sum_{|S| \le k} ||F_S||_1$.
- We find G_S such that
 - G_S shares the nice properties of F_S.

- We need a bound on $\sum_{|S| \le k} ||F_S||_1$.
- We find G_S such that
 - G_S shares the nice properties of F_S.

- We need a bound on $\sum_{|\mathcal{S}| \leq k} \|F_{\mathcal{S}}\|_1$.
- We find G_S such that
 - G_S shares the nice properties of F_S.
 - $\blacktriangleright \sum \|F_S G_S\|_2^2 \text{ is small.}$
 - $\sum_{|S|\leq k} \|G_S\|_1 = O(1).$

Increasing Functions

Friedgut 2000

For an increasing graph property f, if $I_f = O(1)$, then there exists a small set of coordinates J such that

$$\mathbb{E}[f(x)|x_J=\vec{1}]\geq 1-\epsilon.$$

Friedgut 2000

For an increasing graph property f, if $I_f = O(1)$, then there exists a small set of coordinates J such that

$$\mathbb{E}[f(x)|x_J=\vec{1}]\geq 1-\epsilon.$$

Bourgain 2000

If $I_f = O(1)$ for an increasing $f: (\{0,1\}^n, \mu_p) \to \{0,1\}$, then $\exists \delta > 0$ and a small J such that

$$\mathbb{E}[f(x)|x_J=\vec{1}] \geq \mathbb{E}[f(x)] + \delta.$$

Friedgut 2000

For an increasing graph property f, if $I_f = O(1)$, then there exists a small set of coordinates J such that

$$\mathbb{E}[f(x)|x_J=\vec{1}]\geq 1-\epsilon.$$

Bourgain 2000

If $I_f = O(1)$ for an increasing $f: (\{0,1\}^n, \mu_p) \to \{0,1\}$, then $\exists \delta > 0$ and a small J such that

$$\mathbb{E}[f(x)|x_J=\vec{1}]\geq \mathbb{E}[f(x)]+\delta.$$

H 2011

Under the above assumptions

$$\mathbb{E}[f(x)|x_J=\vec{1}]\geq 1-\epsilon.$$

Open problem

Conjecture[Friedgut]

If $I_f = O(1)$ for an increasing $f: (\{0,1\}^n, \mu_p) \to \{0,1\}$, then

$$f \approx O(1)$$
 – Monotone DNF.

Conjecture

If $f: [0,1]^n \to \{0,1\}$ is increasing, and $I_f = O(1)$, then there is $|J| = O_{\epsilon}(1)$ such that either

$$\mathbb{E}[f(x)|x_J=\vec{1}]\geq 1-\epsilon,$$

or

$$\mathbb{E}[f(x)|x_J=\vec{0}]\leq \epsilon.$$

Thank you!