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Optimization?

Goes back to many classical ideas
in mathematics and physics

Dido’s problem
(Fermat, Newton, Euler...) (Virgil's Aeneid)

Variational principles (least-action,
Hamilton, Euler-Lagrange,
calculus of variations, etc)

More recently, convexity and complexity
(Farkas, Minkowski, Caratheodory,

Kantorovich, Dantzig, Khachiyan, Karmarkar...) o

Brachistochrone
1696)

(Bernoulli
Strong links with game theory,
control theory, combinatorics, TCS, etc...




Optimization is ubiquitous

e Optimization is essential across many scientific and
engineering applications (signal processing, robotics,
VLSI, machine learning, mechanical design, revenue
management, ...)

e Often, defines what an “acceptable solution” is

* Enables whole industries:

— Airlines: jet engine design, CFD, route planning, fare
pricing, crew/plane scheduling, maintenance, ...

— Finance and insurance: trading, derivatives, statistical
modeling and optimization, ...

— E-commerce: combinatorial auctions, ad campaign design,
recommendation systems, ...



(NEOS server)

Many flavors

v e %8

Demand for increasingly
sophisticated mathematical | W e
optimization methods: | . Optimization .

* From 1950s on: linear programming, nonlinear, global,
convex, quadratic, semidefinite, hyperbolic, etc.

* Combinatorial, network, packing/covering, integer,
submodular, etc.

Mathematical infrastructure and associated computational
methods for engineering and scientific applications.



The convexity watershed

"...in fact, the great watershed in optimization
isn't between linearity and nonlinearity, but
convexity and nonconvexity.” (p. 185)
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LAGRANGE MULTIPLIERS AND OPTIMALITY"
R. TYRRELL ROCKAFELLAR!

Abstract. Lagrange multipliers used to be viewed as auxiliary variables introduced in a problem of con-
strained minimization in order to write first-order optimality conditions formally as a system of equations.
Modern applications, with their emphasis on numerical methods and more complicated side conditions than
equations, have demanded deeper understanding of the concept and how it fits into a larger theoretical picture.

A major line of research has been the nonsmooth geometry of one-sided tangent and normal vectors to the
cot nf nainte caticfuing the oiven conctrainte Another hae heen the ocame-theoretic role of multinlier vectors



Convexity

Sets: r,yesS = dx+(1-NyeS Viel0,1]

Functions: f(Axz+ (1 —-XNy) < Af(x)+(1—=XN)f(y)

Convex Non-convex

Sets

Functions u \/\\J




Why Convexity?

* Simple, but rich, geometric structure

* Principled, modular modeling approach (e.g.,
Boyd’s “disciplined convex programming”)

* Predictable algorithmic behavior

e Efficient in theory (polynomial time)
* Remarkably effective in practice

* Many successful applications




Actually, many watersheds...

e Convex vs. Nonconvex
e Linear vs. Nonlinear

e Continuous vs. Discrete

e Constrained vs. Unconstrained
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Actually, many watersheds...

All important, and relevant in suitable contexts.

e Still, how much of optimization can be done
while bridging these distinctions?

* How “real” are they? Are they really sharp?

 What can we gain (if anything) from a unified
perspective?

Analogies: linearity/curvature, invertibility/condition numbers,
complexity/parameterized complexity, etc.
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Make things convex?

Convex Hull

\/\\J Convex Envelope

Very useful, but
- Descriptions may be hard to obtain
- May lose information about points in interior

11



Convexity is relative

* Every set/problem can be “lifted” to a convex setting
(in general, infinite dimensional).

* Conceptually easy: a new dimension Lifting
for each point in the set!

— E.g., n-point set -> n-dimensional simplex P P
— “continuous” set -> infinite-dimensional space o
— Not the same thing as taking convex hull (but related) ®

— Nice projection of extreme points

* Many examples/interpretations: probability distributions over a
set, functional spaces, mixed strategies in games, “relaxed”
controls, etc.

* Related theme: in physics/control, same for linear vs. non-linear:
dynamics can always be linearized, e.g., Liouville equation). 15



So, is everything convex?

Yeah, but...
Great idea, but often not very practical (as such)

Q: Perhaps we can get away with finite
(or small) dimension??
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Nice. Do you have anything smaller?

Interestingly, however, often a finite
(and small) dimension may be enough. v

* Ex: Consider the set defined by

1<x?+y?<2 m

* Obviously non-convex. kj

* Can we use convex optimization?

14



Small liftings (sometimes) work!

* A polynomial “lifting” to a higher dimensional space:
(%,y)>(x,y,x* +y?)

* The original nonconvex set is the projection of the extreme
points of a convex set.

* In particular, the convex set
defined by

x?+y?<z, 1<z<4

3 3



Ascent towards convexity...

Lifted set
(infinite dimensional)

Want to understand and develop
systematic and efficient lifting methods

Finite-dimensional
(small) liftings

Answer: Hierarchies of relaxations

Original (nonconvex) set



Hierarchies? What’s that?

Long history in optimization:

* Integer programming (Chvatal-Gomory)

e Roof duality (Boros-Crama-Hammer)

* Reformulation/linearization (Sherali-Adams)
 Lift-project / matrix cuts (Lovasz-Schrijver)
 Sum of squares (Shor, P., Lasserre)

Applicable to general optimization problems described by polynomial

equations and constraints.

Yields nice convex problems: semidefinite programs (SDPs).
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Semidefinite programming (SDP)

A broad generalization of LP to symmetric matrices

PSD cone

min Tr C'X st. XeLlndst

" |ntersection of affine subspace and
cone of positive semidefinite matrices

= |ots of applications

* Originated in combinatorial optimization and control theory
Nowadays, used everywhere.

= Convex, finite dimensional. Nice duality theory

= Not polyhedral, solvable in polynomial time




Hierarchies of relaxations

Parameterized families of maps, with two properties:

a) Map each point in the base space, to a point “upstairs”
E.g., the Veronese embedding

¢V — Sym”*(V), T ITRLR - Q@
N\’

k times

b) But (crucially!) also must be able to effectively describe
or approximate the convex hull of the image.

How? Linear functions on Symk are polynomials!
o)) =tz ® - Q) = p(x)

Need to understand polynomial nonnegativity. .. 21




Convex hulls of real varieties

* Need to “effectively” understand convex hulls

 Many levels:
— Geometrically (e.g., facial structure)
— Algebraically (e.g., degrees, equations)
— Computationally (e.g., SDP relaxations)

e (Classical question in combinatorial optimization, but
continuous aspect adds difficulties |

Gouveia-Laurent-P.-Thomas,

Sanyal-Sottile-Sturmfels, “Orbitopes”
Permutahedron “Theta bodies”

Ranestad-Sturmfels, “Convex hull of a variety”



Sums of squares (SOS)

Simplest “nonlinear” problem: polynomial nonnegativity

\

Ep(x)zO Vx&eR"

j

An “obvious” sufficient condition: SOS

[ p(x) = iqu }

Surprisingly powerful, and computable via SDP.

Trivial !

Lots of consequences...
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Back to hierarchies!

Map each point “upstairs” via

¢V —=Sym"(V), 2—1010 --®z
k;irrnes

Replace convex hull with “SOS-convex hull”, where we only look
at inequalities for which

pe(x) = £(p(x)) is SOS

e Progressively better conditions for increasing k
e For every fixed k, polytime solvable, since dim(Symk) = O(nk)

e Gives a complete hierarchy, as k -> infinity
(under mild assumptions, details omitted...) o



Ascent towards convexity...

Hierarchies give us an explicit way
of trading off convexity vs. dimension

Tradeoffs are quantifiable, may depend on
specific problem class.

What makes a hierarchy “good”? Quantitative
and empirical results. Even very “bad”
hierarchies may converge asymptotically.

k=inf

Lifted set
(infinite dimensional)

Finite-dimensional
(small) liftings

k=1

Original (nonconvex) set



Many applications!

(essentially, anywhere polynomials appear)

Dynamical systems
and control theory
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Game equilibria:
computation and refinements

Separable

states

P

p= zpigi@)wi’ospi’ Epi =1

Rank minimization,
nuclear norm, Quantum information

compressed sensing and entanglement

Imperial College
London Department of Aeronautics SEEENTRECSETENEY

For. Prospectve Sudonts - | Sudents »  Aumni S | Busiess - Medo - | [SEEXCONSNEN G0 Peopls

Sum-Of-Squares Approach to Global Stability and Control of Fluid
Flows

Latest:
About the project

* Next progress meeting on

‘This 3-year project is funded by EPSRC under the grants EP/J011126/1 (Imperial College London, the February 23.
leading partner of the project), EPL010537/1 (University of Oxford), and EPA010073/1 (University of

* Remote conference was held
Southampton). The project also receives support in kind from Airbus Operation Ltd., ETH Zurich

(Automatic Control Laboratory), University of Michigan (Department of Mathematics), and University of
California, Santa Barbara (Department of Mechanical Engineering).

0n5.02.2015.

‘The stabilty analysis of fluid flows, typically modelled by
artial ental

- Remote conference was held
0n30.10.2014.

* Remote conference was held
0n09.06.2014.

- A progress meeting was held
atImperial College on
27.03.2014.

FIuid naicg Latent-variable
Y graphical model séléction



Theory & Practice

Very strong relaxations
(but, won't solve NP-hard problems!) D R R e
Most powerful known general-purpose technique. 200

But, recall SDP size is O(n9)

Unless d or n are “small”, may be difficult to solve in practice.

» For generic continuous problems, extremely competitive if global
solutions are needed

» For problem classes where certification of solutions is required,
essentially unmatched

» For purely discrete problems, not too useful so far (enumeration is
way too cheap!)

* Nevertheless, among best asymptotic methods. ..

But, we can do much better if we exploit structure ...

27



Key: Exploiting structure

m Algebraic structure:

Sparsity, Newton polytopes, facial reduction.

|deal structure, SOS on quotient/coordinate rings.
Graphical: dependency graph, bounded treewidth.
e Symmetries: group invariance, representation theory

= Numerical structure:
* Interpolation and rank-one SDPs (e.g., SDPT3)
« Displacement rank, fast solvers

« Sums/intersections of easier cones (chordality, S/DSOS,
etc).

28



Math Connections

* Probability theory (moments, exchangeability, de Finetti, etc)

* Real algebraic geometry (Positivstellensatz)

e Operator theory (via Gelfand-Neimark-Segal)

* Quantum information (separability, entanglement)
 Harmonic analysis on semigroups

 Noncommutative algebra/probability (NC-SOS)

 Complexity and proof theory (certificate degree)

* Graphs/combinatorics (perfect graphs, graphons, flag algebras)
* Tropical geometry (SDP over more general fields)

29



Current research directions

What can these do (or not do)? Analysis / lower bounds:

* Barak/Brandao/Harrow/Kelner/Steurer/Zhou (SOS(d) solves all known
“hard instances” of Unique Games).

* Barak/Hopkins/Kelner/Kothari/Moitra/Potechin, Deshpande/Montanari,
etc. (SOS(o(log n)) cannot do better than n(t/2-(1)) for planted clique)

* Lee/Raghavendra/Steurer (e.g., more general relaxations are no better,
and no poly-sized SDP can beat 7/8 for MAX3SAT)

Even stronger relaxations?

* Ultimately, need novel ways of certifying inequalities
* Bienstock/Zuckerberg? (not quite automatizable/implementable)

* Fawzi/Saunderson/P. (in restricted class of problems, can do exponentially
better than SOS)

30



Practical challenges

Wonderful when it works, but SDPs quickly get big!

Intrinsic efficiency barriers
(e.g. linear vs. nonlinear approximation theory)

Scalability: even if convex, poly-space is too large!
(alternatives? e.g., low-rank Burer-Monteiro, fast spectral
algorithms - Hopkins/Schramm/Shi/Steurer)

Algorithms that are efficient in practice,
not just in Asymptopia.




Convex Algebraic Geometry

Optimization +
Convex Geometry + SEMIDEFINITE OPTIMIZATION
A Igeb raic Geom etry and CONVEX ALGEBRAIC GEOMETRY

T~ T 711

* Convex sets, algebraic structure

* Pervasive role of duality .

Grigoriy Blekherman
Pablo A. Parrilo

Rekha R. Thomas

* Exploit this structure to develop
convex optimization solutions,
with global properties

G. Blekherman, P. Parrilo, R. Thomas, *~Semidefinite Optimization and Convex
Algebraic Geometry,” MOS-SIAM Optimization Series, 2013.
www.mit.edu/~parrilo/sdocag/



Summary &

* Convex+Algebraic methods
surprisingly powerful

* “Backwards compatible,” nicely o |
generalize earlier successful techniques e
 Remarkably effective for
small and large problems @

* Right at the boundary of known theoretically efficient
methods

* Exploiting structure is fundamental in practice

Thanks for your attention!



