Order Detection under Pairwise Measurements

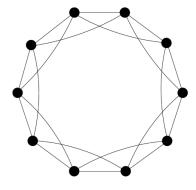
Jiaming Xu

Krannert School of Management Purdue University

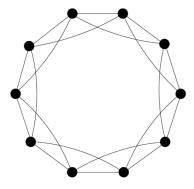
Joint work with Vivek Bagaria and David Tse (Stanford) Yihong Wu (Yale)

Simons Reunion Workshop, June 8, 2017

Order detection in small-world networks [Cai-Liang-Rakhlin '16]



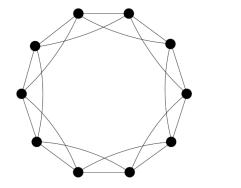
4-circulant graph



4-circulant graph

- Edge becomes non-edge with probability 1-p
- Non-edge becomes edge with probability q

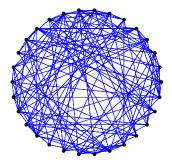
Order detection in small-world networks [Cai-Liang-Rakhlin '16]

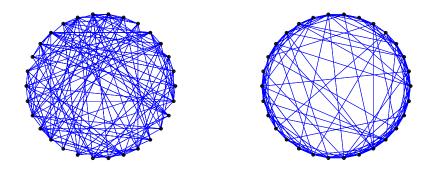


4-circulant graph

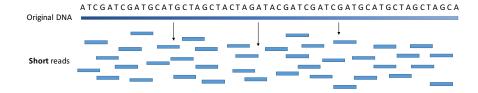
small-world graph

- Edge becomes non-edge with probability 1-p
- Non-edge becomes edge with probability q

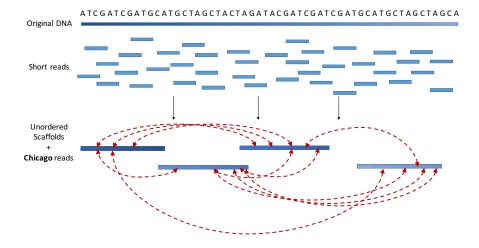


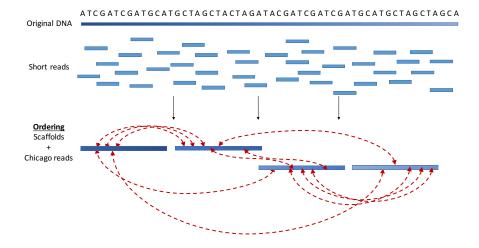


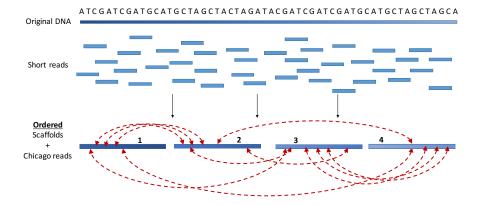
Goal: recover the underlying vertex ordering from observed graph



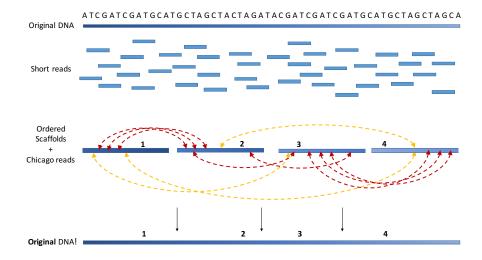


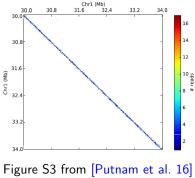




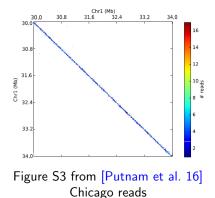


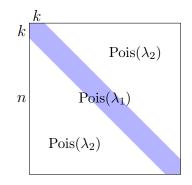


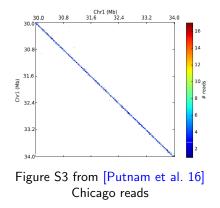


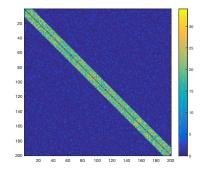


Chicago reads

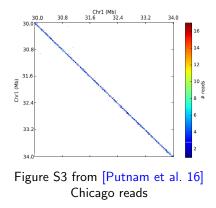








$$n = 200, k = 10, \lambda_1 = 20, \lambda_2 = 1$$

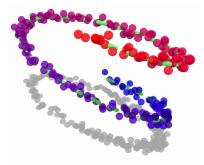


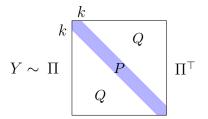


Goal: recover hidden permutation

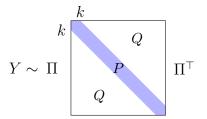
Data seriation (stringing) [Kendall 71']

- Given a similarity matrix Y for n objects
- Ordering the \boldsymbol{n} objects so that similar objects are near each other



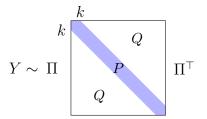


• Π is the permutation matrix corresponding to ordering π



• Π is the permutation matrix corresponding to ordering π

•
$$Y_{ii} = 0$$
 and for $i \neq j$:
 $Y_{ij} \sim \begin{cases} P & \text{if } |\pi(i) - \pi(j)| \leq k \\ Q & \text{otherwise} \end{cases}$

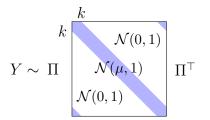


• Π is the permutation matrix corresponding to ordering π

•
$$Y_{ii} = 0$$
 and for $i \neq j$:

$$Y_{ij} \sim \begin{cases} P & \text{if } |\pi(i) - \pi(j)| \leq k \\ Q & \text{otherwise} \end{cases}$$

• Goal: Learn π from observation of Y

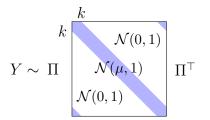


• Π is the permutation matrix corresponding to ordering π

•
$$Y_{ii} = 0$$
 and for $i \neq j$:

$$Y_{ij} \sim \begin{cases} P & \text{if } |\pi(i) - \pi(j)| \leq k \\ Q & \text{otherwise} \end{cases}$$

• Goal: Learn π from observation of Y



• Π is the permutation matrix corresponding to ordering π

•
$$Y_{ii} = 0$$
 and for $i \neq j$:

$$Y_{ij} \sim \begin{cases} P & \text{if } |\pi(i) - \pi(j)| \leq k \\ Q & \text{otherwise} \end{cases}$$

- Goal: Learn π from observation of Y
- When k = 1, reduces to hidden Hamiltonian cycle model [Broder-Frieze-Shamir 06]

• Exact recovery:

$$\mathbb{P}\left\{\hat{\pi}=\pi\right\}\xrightarrow{n\to\infty}1$$

• Exact recovery:

$$\mathbb{P}\left\{ \hat{\pi}=\pi\right\} \xrightarrow{n\rightarrow\infty}1$$

• Detection:

$$\mathcal{H}_0: \mu = 0$$
 v.s. $\mathcal{H}_1: \mu > 0$

Type-I + Type-II error probabilities $\rightarrow 0$

• Exact recovery:

$$\mathbb{P}\left\{ \hat{\pi}=\pi\right\} \xrightarrow{n\rightarrow\infty}1$$

• Detection:

$$\mathcal{H}_0: \mu = 0$$
 v.s. $\mathcal{H}_1: \mu > 0$

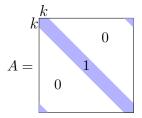
Type-I + Type-II error probabilities $\rightarrow 0$

Main Questions

- When is recovery or detection informationally possible?
- Is IT-limit achievable in polynomial-time?

- Exact recovery
- 2 Detection
- 3 Weak recovery
- 4 Summary and concluding remarks

Exact recovery: maximum likelihood estimation



$$\begin{array}{ll} \max & \langle Y, \Pi A \Pi^\top \rangle \\ \text{s.t.} & \Pi \in S_n \end{array}$$

- S_n : set of $n \times n$ permutation matrices
- When k = 1, maximum weighted Hamiltonian cycle problem

Theorem (Necessary condition)

Exact recovery is information-theoretically impossible if

 $\mu^2 < 2\log n$

Theorem (Necessary condition)

Exact recovery is information-theoretically impossible if

$$\mu^2 < 2\log n$$

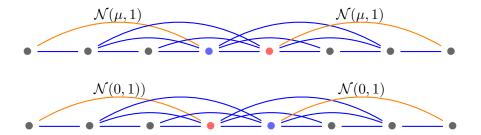
Independent of bandwidth k

Theorem (Necessary condition)

Exact recovery is information-theoretically impossible if

$$\mu^2 < 2\log n$$

Independent of bandwidth k



Theorem (Necessary condition k = 1)

When k = 1, exact recovery is information-theoretically impossible if

 $\mu^2 < 4\log n$

Theorem (Necessary condition k = 1)

When k = 1, exact recovery is information-theoretically impossible if

 $\mu^2 < 4\log n$

Remarks

• MLE fails on the event

$$\mathcal{F} \triangleq \bigcup_{j>i} \{ Y_{i-1,j} + Y_{i,j+1} > Y_{i-1,i} + Y_{j,j+1} \}$$

•
$$|\{i: Y_{i,i+1} \approx \mu/2\}| \approx ne^{-\mu^2/8}$$

•
$$\mathbb{P}\{Y_{i-1,j} + Y_{i,j+1} > \mu\} \approx e^{-\mu^2/4}$$

Theorem (Necessary condition k = 1)

When k = 1, exact recovery is information-theoretically impossible if

 $\mu^2 < 4\log n$

Remarks

• MLE fails on the event

$$\mathcal{F} \triangleq \bigcup_{j>i} \{ Y_{i-1,j} + Y_{i,j+1} > Y_{i-1,i} + Y_{j,j+1} \}$$

•
$$|\{i: Y_{i,i+1} \approx \mu/2\}| \approx ne^{-\mu^2/8}$$

•
$$\mathbb{P}\{Y_{i-1,j} + Y_{i,j+1} > \mu\} \approx e^{-\mu^2/4}$$

• The necessary condition is tight

Exact recovery: naïve thresholding k = 1

• When k = 1, MLE \Rightarrow maximum weighted Hamiltonian cycle

Exact recovery: naïve thresholding k = 1

- When k = 1, MLE \Rightarrow maximum weighted Hamiltonian cycle
- A naïve thresholding algorithm:

For every vertex, keep the two edges with the largest weights

Exact recovery: naïve thresholding k = 1

- When k = 1, MLE \Rightarrow maximum weighted Hamiltonian cycle
- A naïve thresholding algorithm:

For every vertex, keep the two edges with the largest weights

Theorem (naïve thresholding k = 1)

When k = 1, the naïve thresholding achieves exact recovery if

$$\mu^2 > 8\log n$$

Exact recovery: naïve thresholding for general \boldsymbol{k}

• A naïve thresholding algorithm for general k: For every vertex, keep the 2k edges with the largest weights

Theorem (naïve thresholding for general k)

When k = 1, the naïve thresholding exactly recovers 2k-NN graph if

 $\mu^2 > 8\log n + 4\log k$

• A naïve thresholding algorithm for general k: For every vertex, keep the 2k edges with the largest weights

Theorem (naïve thresholding for general k)

When k = 1, the naïve thresholding exactly recovers 2k-NN graph if

 $\mu^2 > 8\log n + 4\log k$

Remarks

When k = 1, a factor of 2 gap to the IT limit $\mu^2 = 4 \log n$

Exact recovery: greedy merging k = 1

Greedy merging [Motahari-Bresler-Tse '13]

- 1 Initialize the set of edges to be empty
- **2** Among all vertices with degree less than 2, connect two vertices i, j with largest Y_{ij}
- 8 Repeat Step 2

Exact recovery: greedy merging k = 1

Greedy merging [Motahari-Bresler-Tse '13]

- 1 Initialize the set of edges to be empty
- 2 Among all vertices with degree less than 2, connect two vertices i, j with largest Y_{ij}
- 8 Repeat Step 2

Theorem (Greedy merging k = 1)

When k = 1, the greedy merging achieves exact recovery if

 $\mu^2 > 6\log n$

Exact recovery: greedy merging k = 1

Greedy merging [Motahari-Bresler-Tse '13]

- 1 Initialize the set of edges to be empty
- 2 Among all vertices with degree less than 2, connect two vertices i, j with largest Y_{ij}
- 8 Repeat Step 2

Theorem (Greedy merging k = 1)

When k = 1, the greedy merging achieves exact recovery if

 $\mu^2 > 6\log n$

Remarks

i and j will not be connected if

$$Y_{ij} < \min\{Y_{i-1,i}, Y_{i,i+1}\}$$
 or $Y_{ij} < \min\{Y_{j-1,j}, Y_{j,j+1}\}$

Greedy merging for general k

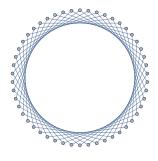
- 1 Initialize the set of edges to be empty
- **2** Among all vertices with degree less than 2k, connect two vertices i, j with largest Y_{ij}
- 8 Repeat Step 2

Theorem (Greedy merging for general k)

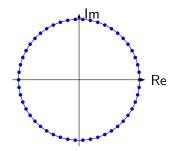
The greedy merging exactly recovers the 2k-NN graph if

 $\mu^2 > 6\log n + 6\log k$

From 2k-NN graph to vertex ordering

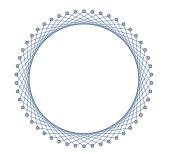


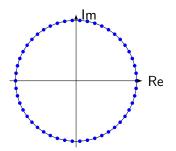
2k-NN graph



Eigenvector v_2 of circulant graph

From 2k-NN graph to vertex ordering





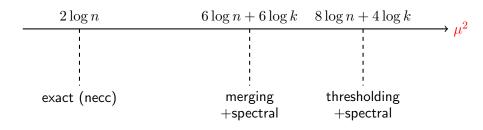
2k-NN graph

Eigenvector v_2 of circulant graph

$$v_2 = (\omega^{\pi(1)}, \dots, \omega^{\pi(n)}),$$

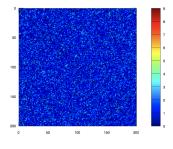
where $\omega = \exp\left(\frac{2\pi i}{n}\right)$ is the n^{th} root of unity

- 1 Estimate 2k-NN graph A
- 2 Let v₂ denote the (complex) eigenvector of A corresponding to the 2nd largest eigenvalue
- **3** Sort the phase of v_2 and output the ordering

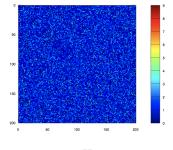


$2\log n$	$4\log n$	$6\log n + 6\log k$	$8\log n + 4\log k$	×2
	1	1		$\rightarrow \mu$
		· ·		
exact (necc)	exact	merging	thresholding	
	k = 1	+spectral	+spectral	

Detection threshold

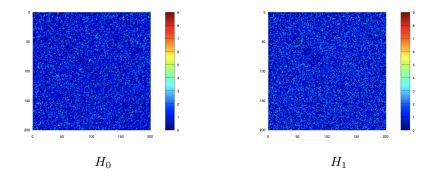


 H_0



 H_1

Detection threshold



Theorem

Detection is possible if and only if

$$k^2 \mu^2 \to \infty$$

Proof of detection threshold

- Upper bound: sum statistic $\sum_{i < j} Y_{ij}$
- Lower bound: bounded second moment

$$\mathbb{E}_{Y \sim \mathbb{Q}}\left[\left(\frac{\mathbb{P}(Y)}{\mathbb{Q}(Y)}\right)^2\right] = \mathbb{E}_{\pi,\pi'} \exp\left(\mu^2 \omega(\pi,\pi')\right),$$

where

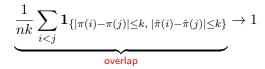
$$\omega(\pi, \pi') = \sum_{i < j} \mathbf{1}_{\{|\pi(i) - \pi(j)| \le k, |\hat{\pi}(i) - \hat{\pi}(j)| \le k\}}$$

• Heuristically, $\omega(\pi, \pi') \sim \text{Pois}(2k^2)$

• Hence, if $k^2 \mu^2 = O(1)$, then the second moment is bounded

$\omega(k^{-2})$	$2\log n$	$4\log n$	$6\log n + 6\log k$	$8\log n + 4\log k$
	1	1	1	μ
1	1	1	1	I. I
1	1	1	1	I
1	1	1	1	I
1	1	1	1	1
1	I	1	1	I
detection	exact (necc)	exact	merging	thresholding
		k = 1	+spectral	+spectral

Weak recovery:



Theorem

When k = 1, weak recovery is information-theoretically possible if and only if

 $\mu^2 > 2\log n$

Theorem

When k = 1, weak recovery is information-theoretically possible if and only if

 $\mu^2 > 2\log n$

Remarks

• Upper bound: analysis of MLE

Theorem

When k = 1, weak recovery is information-theoretically possible if and only if

 $\mu^2 > 2\log n$

Remarks

- Upper bound: analysis of MLE
- Lower bound: rate distortion argument

Proof of lower bound for weak recovery

$$I(Y;\pi) \ge I(\hat{\pi};\pi)$$

$$\ge \min_{\mathbb{E}[\omega(\tilde{\pi},\pi)]=(1+o(1))n} I(\tilde{\pi};\pi)$$

$$\approx H(\pi) \approx n \log n$$

Proof of lower bound for weak recovery

$$I(Y;\pi) \ge I(\hat{\pi};\pi)$$

$$\ge \min_{\mathbb{E}[\omega(\tilde{\pi},\pi)]=(1+o(1))n} I(\tilde{\pi};\pi)$$

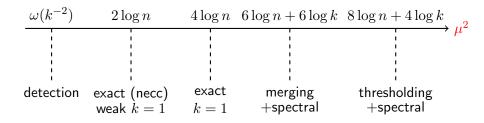
$$\approx H(\pi) \approx n \log n$$

$$I(Y;\pi) = \min_{\mathbb{Q}} D(\mathbb{P}_{Y|\pi} ||\mathbb{Q}||\mathbb{P}_{\pi})$$

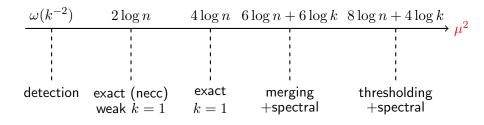
$$\leq D(P_{Y|\pi^*} ||\mathcal{N}(0,1)^{\otimes \binom{n}{2}}|\mathbb{P}_{\pi})$$

$$= n\mu^2/2$$

Conclusion and remarks



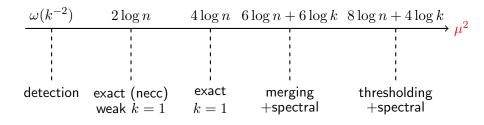
Conclusion and remarks



Future work

- Recovery threshold for general k
- SDP relaxation of MLE

Conclusion and remarks



Future work

- Recovery threshold for general k
- SDP relaxation of MLE
- Real data experiment