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Order detection in small-world networks [Cai-Liang-Rakhlin ’16]

4-circulant graph

small-world graph

• Edge becomes non-edge with probability 1− p
• Non-edge becomes edge with probability q
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Goal: recover the underlying vertex ordering from observed graph
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Ordering DNA scaffolds with Chicago reads
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Ordering DNA scaffolds with Chicago reads

Figure S3 from [Putnam et al. 16]
Chicago reads
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Ordering DNA scaffolds with Chicago reads

Figure S3 from [Putnam et al. 16]
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Ordering DNA scaffolds with Chicago reads

Figure S3 from [Putnam et al. 16]
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Ordering DNA scaffolds with Chicago reads

Figure S3 from [Putnam et al. 16]
Chicago reads
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Goal: recover hidden permutation
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Data seriation (stringing) [Kendall 71’]

• Given a similarity matrix Y for n objects

• Ordering the n objects so that similar objects are near each other

Jiaming Xu (Purdue) Order detection 12



A Planted Ordering Model

Y ∼

k
k

Π Π>P

Q

Q

• Π is the permutation matrix corresponding to ordering π

• Yii = 0 and for i 6= j:

Yij ∼

{
P if |π(i)− π(j)| ≤ k
Q otherwise

• Goal: Learn π from observation of Y

• When k = 1, reduces to hidden Hamiltonian cycle model
[Broder-Frieze-Shamir 06]
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Statistical tasks

• Exact recovery:
P {π̂ = π} n→∞−−−→ 1

• Detection:
H0 : µ = 0 v.s. H1 : µ > 0

Type-I + Type-II error probabilities → 0

Main Questions

• When is recovery or detection informationally possible?

• Is IT-limit achievable in polynomial-time?
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Outline of the remainder

1 Exact recovery

2 Detection

3 Weak recovery

4 Summary and concluding remarks
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Exact recovery: maximum likelihood estimation

A =

k
k

1

0

0

max 〈Y,ΠAΠ>〉
s.t. Π ∈ Sn

• Sn: set of n× n permutation matrices

• When k = 1, maximum weighted Hamiltonian cycle problem
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Exact recovery: necessary condition

Theorem (Necessary condition)

Exact recovery is information-theoretically impossible if

µ2 < 2 log n

Independent of bandwidth k

• • • • • • • •

N (µ, 1) N (µ, 1)

• • • • • • • •

N (0, 1)) N (0, 1)
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Exact recovery: necessary condition

Theorem (Necessary condition k = 1)

When k = 1, exact recovery is information-theoretically impossible if

µ2 < 4 log n

Remarks

• MLE fails on the event

F , ∪j>i{Yi−1,j + Yi,j+1 > Yi−1,i + Yj,j+1}

• |{i : Yi,i+1 ≈ µ/2}| ≈ ne−µ
2/8

• P {Yi−1,j + Yi,j+1 > µ} ≈ e−µ2/4

• The necessary condition is tight
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Exact recovery: näıve thresholding k = 1

• When k = 1, MLE ⇒ maximum weighted Hamiltonian cycle

• A näıve thresholding algorithm:
For every vertex, keep the two edges with the largest weights

µ
µ0

0• • • • • • •

Theorem (näıve thresholding k = 1)

When k = 1, the näıve thresholding achieves exact recovery if

µ2 > 8 log n
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Exact recovery: näıve thresholding for general k

• A näıve thresholding algorithm for general k:
For every vertex, keep the 2k edges with the largest weights

Theorem (näıve thresholding for general k )

When k = 1, the näıve thresholding exactly recovers 2k-NN graph if

µ2 > 8 log n+ 4 log k

Remarks
When k = 1, a factor of 2 gap to the IT limit µ2 = 4 log n
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Exact recovery: greedy merging k = 1

Greedy merging [Motahari-Bresler-Tse ’13]

1 Initialize the set of edges to be empty

2 Among all vertices with degree less than 2, connect two vertices i, j
with largest Yij

3 Repeat Step 2

Theorem (Greedy merging k = 1)

When k = 1, the greedy merging achieves exact recovery if

µ2 > 6 log n

Remarks
i and j will not be connected if

Yij < min{Yi−1,i, Yi,i+1} or Yij < min{Yj−1,j , Yj,j+1}
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Exact recovery: greedy merging for genearl k

Greedy merging for general k

1 Initialize the set of edges to be empty

2 Among all vertices with degree less than 2k, connect two vertices
i, j with largest Yij

3 Repeat Step 2

Theorem (Greedy merging for general k)

The greedy merging exactly recovers the 2k-NN graph if

µ2 > 6 log n+ 6 log k
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From 2k-NN graph to vertex ordering

2k-NN graph

Re

Im

Eigenvector v2 of circulant graph

v2 = (ωπ(1), . . . , ωπ(n)),

where ω = exp
(
2πi
n

)
is the nth root of unity
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Exact recovery of vertex ordering for genearl k

1 Estimate 2k-NN graph A

2 Let v2 denote the (complex) eigenvector of A corresponding to the
2nd largest eigenvalue

3 Sort the phase of v2 and output the ordering
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Summary for exact recovery

µ2
2 log n

exact (necc)

4 log n

exact

k = 1

6 log n+ 6 log k

merging
+spectral

8 log n+ 4 log k

thresholding
+spectral
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Detection threshold

H0 H1

Theorem

Detection is possible if and only if

k2µ2 →∞
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Proof of detection threshold

• Upper bound: sum statistic
∑

i<j Yij

• Lower bound: bounded second moment

EY∼Q

[(
P(Y )

Q(Y )

)2
]

= Eπ,π′ exp
(
µ2ω(π, π′)

)
,

where
ω(π, π′) =

∑
i<j

1{|π(i)−π(j)|≤k, |π̂(i)−π̂(j)|≤k}

• Heuristically, ω(π, π′) ∼ Pois(2k2)

• Hence, if k2µ2 = O(1), then the second moment is bounded
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Summary for exact recovery and detection

µ2
ω(k−2)

detection

2 log n

exact (necc)

4 log n

exact
k = 1

6 log n+ 6 log k

merging
+spectral

8 log n+ 4 log k

thresholding
+spectral
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Weak recovery

Weak recovery:

1

nk

∑
i<j

1{|π(i)−π(j)|≤k, |π̂(i)−π̂(j)|≤k}︸ ︷︷ ︸
overlap

→ 1
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Weak recovery for k = 1

Theorem

When k = 1, weak recovery is information-theoretically possible if and
only if

µ2 > 2 log n

Remarks

• Upper bound: analysis of MLE

• Lower bound: rate distortion argument
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Proof of lower bound for weak recovery

•

I(Y ;π) ≥ I(π̂;π)

≥ min
E[ω(π̃,π)]=(1+o(1))n

I(π̃;π)

≈ H(π) ≈ n log n

•

I(Y ;π) = min
Q
D(PY |π‖Q | Pπ)

≤ D(PY |π∗‖N (0, 1)⊗(n2)|Pπ)

= nµ2/2
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Conclusion and remarks

µ2
ω(k−2)

detection

2 log n

exact (necc)
weak k = 1

4 log n

exact
k = 1

6 log n+ 6 log k

merging
+spectral

8 log n+ 4 log k

thresholding
+spectral

Future work

• Recovery threshold for general k

• SDP relaxation of MLE

• Real data experiment
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