Order Detection under Pairwise Measurements

Jiaming Xu

Krannert School of Management
Purdue University

Joint work with
Vivek Bagaria and David Tse (Stanford)
Yihong Wu (Yale)

Simons Reunion Workshop, June 8, 2017
Order detection in small-world networks [Cai-Liang-Rakhlin ’16]

4-circulant graph
Order detection in small-world networks [Cai-Liang-Rakhlin ’16]

4-circulant graph

- Edge becomes non-edge with probability $1 - p$
- Non-edge becomes edge with probability q
Order detection in small-world networks [Cai-Liang-Rakhlin ’16]

- Edge becomes non-edge with probability $1 - p$
- Non-edge becomes edge with probability q
Goal: recover the underlying vertex ordering from observed graph

Jiaming Xu (Purdue)
Goal: recover the underlying vertex ordering from observed graph
Ordering DNA scaffolds with Chicago reads

Original DNA:

```
ATCGATCGATGCTAGCTACTAGATACGATCGATCGATGCTAGCTAGCA
```

Short reads:

```
...+
```
Ordering DNA scaffolds with Chicago reads

Original DNA: \texttt{ATCGATCGATGCTAGCTAGATACGATCGATCGATGCTAGCTAGCA}

Short reads:

Unordered Scaffolds:
Ordering DNA scaffolds with Chicago reads

Original DNA

Short reads

Unordered Scaffolds + Chicago reads

Jiaming Xu (Purdue)

Order detection
Ordering DNA scaffolds with Chicago reads

Original DNA

Short reads

Ordering Scaffolds + Chicago reads

Jiaming Xu (Purdue)
Ordering DNA scaffolds with Chicago reads

Original DNA

Short reads

Ordered Scaffolds

+ Chicago reads

Jiaming Xu (Purdue)
Ordering DNA scaffolds with Chicago reads

Original DNA: ATCGATCGATGCATGCTAGCTACTAGTACGATCGATCGATGCATGCTAGCTAGCA

Short reads:

Ordered Scaffolds + Chicago reads:

1 2 3 4
Ordering DNA scaffolds with Chicago reads

Original DNA: ATCGATCGATGCATGCTAGCTAGATACGATCGATCGATGCTAGCTAGCA

Short reads:

Ordered Scaffolds + Chicago reads:

Original DNA!

1 2 3 4
Ordering DNA scaffolds with Chicago reads

Figure S3 from [Putnam et al. 16]
Chicago reads
Ordering DNA scaffolds with Chicago reads

Figure S3 from [Putnam et al. 16]
Chicago reads
Ordering DNA scaffolds with Chicago reads

Figure S3 from [Putnam et al. 16]

Chicago reads

$n = 200, k = 10, \lambda_1 = 20, \lambda_2 = 1$
Ordering DNA scaffolds with Chicago reads

Figure S3 from [Putnam et al. 16]
Chicago reads

Goal: recover hidden permutation
Data seriation (stringing) [Kendall 71’]

- Given a similarity matrix Y for n objects
- Ordering the n objects so that similar objects are near each other
A Planted Ordering Model

\[Y \sim \Pi \]

- \(\Pi \) is the permutation matrix corresponding to ordering \(\pi \)

\[\begin{align*}
Y & \sim \Pi \\
k & k \\
\Pi^T & \\
Q & \\
P & \\
\end{align*} \]

- When \(k = 1 \), reduces to hidden Hamiltonian cycle model [Broder-Frieze-Shamir 06]
A Planted Ordering Model

\[Y \sim \Pi \]

- \(\Pi \) is the permutation matrix corresponding to ordering \(\pi \)
- \(Y_{ii} = 0 \) and for \(i \neq j \):
 \[Y_{ij} \sim \begin{cases} P & \text{if } |\pi(i) - \pi(j)| \leq k \\ Q & \text{otherwise} \end{cases} \]

Goal: Learn \(\pi \) from observation of \(Y \)

When \(k = 1 \), reduces to hidden Hamiltonian cycle model

[Broder-Frieze-Shamir 06]
A Planted Ordering Model

$Y \sim \Pi$

- Π is the permutation matrix corresponding to ordering π
- $Y_{ii} = 0$ and for $i \neq j$:

 $Y_{ij} \sim \begin{cases} P & \text{if } |\pi(i) - \pi(j)| \leq k \\ Q & \text{otherwise} \end{cases}$

- Goal: Learn π from observation of Y
A Planted Ordering Model

\[Y \sim \Pi \begin{pmatrix} \mathcal{N}(\mu, 1) & \Pi^\top \\ \mathcal{N}(0, 1) & \mathcal{N}(0, 1) \end{pmatrix} \]

- \(\Pi \) is the permutation matrix corresponding to ordering \(\pi \)
- \(Y_{ii} = 0 \) and for \(i \neq j \):
 \[Y_{ij} \sim \begin{cases} P & \text{if } |\pi(i) - \pi(j)| \leq k \\ Q & \text{otherwise} \end{cases} \]
- Goal: Learn \(\pi \) from observation of \(Y \)
A Planted Ordering Model

$Y \sim \Pi \quad \mathcal{N}(0, 1) \quad \Pi^\top \quad \mathcal{N}(\mu, 1)$

- Π is the permutation matrix corresponding to ordering π
- $Y_{ii} = 0$ and for $i \neq j$:
 $$Y_{ij} \sim \begin{cases} P & \text{if } |\pi(i) - \pi(j)| \leq k \\ Q & \text{otherwise} \end{cases}$$
- Goal: Learn π from observation of Y
- When $k = 1$, reduces to hidden Hamiltonian cycle model [Broder-Frieze-Shamir 06]
Statistical tasks

- Exact recovery:
 \[P \{ \hat{\pi} = \pi \} \xrightarrow{n \to \infty} 1 \]
Statistical tasks

• Exact recovery:
 \[\mathbb{P}\{\hat{\pi} = \pi\} \xrightarrow{n \to \infty} 1 \]

• Detection:
 \[\mathcal{H}_0 : \mu = 0 \quad v.s. \quad \mathcal{H}_1 : \mu > 0 \]

 Type-I + Type-II error probabilities \(\to 0 \)
Statistical tasks

- **Exact recovery:**
 \[\mathbb{P}\{\hat{\pi} = \pi\} \xrightarrow{n \to \infty} 1 \]

- **Detection:**
 \[\mathcal{H}_0 : \mu = 0 \quad \text{v.s.} \quad \mathcal{H}_1 : \mu > 0 \]
 Type-I + Type-II error probabilities \(\to 0 \)

Main Questions

- When is recovery or detection informationally possible?
- Is IT-limit achievable in polynomial-time?
Outline of the remainder

1. Exact recovery
2. Detection
3. Weak recovery
4. Summary and concluding remarks
Exact recovery: maximum likelihood estimation

\[A = \begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
\end{bmatrix} \]

\[
\begin{align*}
\text{max} & \quad \langle Y, \Pi A \Pi^\top \rangle \\
\text{s.t.} & \quad \Pi \in S_n \\
\end{align*}
\]

- \(S_n \): set of \(n \times n \) permutation matrices
- When \(k = 1 \), maximum weighted Hamiltonian cycle problem
Exact recovery: necessary condition

Theorem (Necessary condition)

Exact recovery is information-theoretically impossible if

\[\mu^2 < 2 \log n \]
Theorem (Necessary condition)

Exact recovery is information-theoretically impossible if

$$\mu^2 < 2 \log n$$

Independent of bandwidth k
Theorem (Necessary condition)

Exact recovery is information-theoretically impossible if

\[\mu^2 < 2 \log n \]

Independent of bandwidth \(k \)
Exact recovery: necessary condition

Theorem (Necessary condition $k = 1$)

When $k = 1$, exact recovery is information-theoretically impossible if

$$\mu^2 < 4 \log n$$
Theorem (Necessary condition \(k = 1 \))

When \(k = 1 \), exact recovery is information-theoretically impossible if

\[
\mu^2 < 4 \log n
\]

Remarks

- MLE fails on the event

\[
\mathcal{F} \triangleq \bigcup_{j > i} \{ Y_{i-1,j} + Y_{i,j+1} > Y_{i-1,i} + Y_{j,j+1} \}
\]

- \(|\{i : Y_{i,i+1} \approx \mu/2\}| \approx n e^{-\mu^2/8} \)

- \(\mathbb{P} \{ Y_{i-1,j} + Y_{i,j+1} > \mu \} \approx e^{-\mu^2/4} \)
Exact recovery: necessary condition

Theorem (Necessary condition $k = 1$)

When $k = 1$, exact recovery is information-theoretically impossible if

$$\mu^2 < 4 \log n$$

Remarks

- MLE fails on the event

$$\mathcal{F} \triangleq \bigcup_{j > i} \{ Y_{i-1,j} + Y_{i,j+1} > Y_{i-1,i} + Y_{j,j+1} \}$$

- $|\{i : Y_{i,i+1} \approx \mu/2\}| \approx ne^{-\mu^2/8}$

- $\mathbb{P} \{ Y_{i-1,j} + Y_{i,j+1} > \mu \} \approx e^{-\mu^2/4}$

- The necessary condition is tight
• When $k = 1$, MLE \Rightarrow maximum weighted Hamiltonian cycle
Exact recovery: naïve thresholding $k = 1$

- When $k = 1$, MLE \Rightarrow maximum weighted Hamiltonian cycle
- A naïve thresholding algorithm:
 For every vertex, keep the two edges with the largest weights
Exact recovery: naïve thresholding $k = 1$

- When $k = 1$, MLE \Rightarrow maximum weighted Hamiltonian cycle
- A naïve thresholding algorithm:
 For every vertex, keep the two edges with the largest weights

Theorem (naïve thresholding $k = 1$)

When $k = 1$, the naïve thresholding achieves exact recovery if

$$\mu^2 > 8 \log n$$
A naïve thresholding algorithm for general k:
For every vertex, keep the $2k$ edges with the largest weights

Theorem (naïve thresholding for general k)
When $k = 1$, the naïve thresholding exactly recovers $2k$-NN graph if

$$\mu^2 > 8 \log n + 4 \log k$$
A naïve thresholding algorithm for general k:
For every vertex, keep the $2k$ edges with the largest weights

Theorem (naïve thresholding for general k)

When $k = 1$, the naïve thresholding exactly recovers $2k$-NN graph if

$$\mu^2 > 8 \log n + 4 \log k$$

Remarks
When $k = 1$, a factor of 2 gap to the IT limit $\mu^2 = 4 \log n$
Greedy merging [Motahari-Bresler-Tse '13]

1. Initialize the set of edges to be empty
2. Among all vertices with degree less than 2, connect two vertices i, j with largest Y_{ij}
3. Repeat Step 2
Exact recovery: greedy merging $k = 1$

Greedy merging [Motahari-Bresler-Tse '13]

1. Initialize the set of edges to be empty
2. Among all vertices with degree less than 2, connect two vertices i, j with largest Y_{ij}
3. Repeat Step 2

Theorem (Greedy merging $k = 1$)

When $k = 1$, the greedy merging achieves exact recovery if

$$\mu^2 > 6 \log n$$
Exact recovery: greedy merging $k = 1$

Greedy merging [Motahari-Bresler-Tse ’13]

1. Initialize the set of edges to be empty
2. Among all vertices with degree less than 2, connect two vertices i, j with largest Y_{ij}
3. Repeat Step 2

Theorem (Greedy merging $k = 1$)

When $k = 1$, the greedy merging achieves exact recovery if

$$\mu^2 > 6 \log n$$

Remarks

i and j will not be connected if

$$Y_{ij} < \min\{Y_{i-1,i}, Y_{i,i+1}\} \quad \text{or} \quad Y_{ij} < \min\{Y_{j-1,j}, Y_{j,j+1}\}$$
Greedy merging for general k

1. Initialize the set of edges to be empty
2. Among all vertices with degree less than $2k$, connect two vertices i, j with largest Y_{ij}
3. Repeat Step 2

Theorem (Greedy merging for general k)

The greedy merging exactly recovers the $2k$-NN graph if

$$\mu^2 > 6 \log n + 6 \log k$$
From $2k$-NN graph to vertex ordering

$2k$-NN graph

Eigenvector v_2 of circulant graph

Jiaming Xu (Purdue)
From $2k$-NN graph to vertex ordering

$2k$-NN graph

Eigenvector v_2 of circulant graph

$$v_2 = (\omega^{\pi(1)}, \ldots, \omega^{\pi(n)})$$

where $\omega = \exp\left(\frac{2\pi i}{n}\right)$ is the n^{th} root of unity
Exact recovery of vertex ordering for general k

1. Estimate $2k$-NN graph A
2. Let v_2 denote the (complex) eigenvector of A corresponding to the 2nd largest eigenvalue
3. Sort the phase of v_2 and output the ordering
Summary for exact recovery

\[
\mu^2
\]

- Exact (necc): \(2 \log n\)
- Merging + spectral: \(6 \log n + 6 \log k\)
- Thresholding + spectral: \(8 \log n + 4 \log k\)
Summary for exact recovery

- $2 \log n$: exact (necc)
- $4 \log n$: exact
- $6 \log n + 6 \log k$: merging + spectral
- $8 \log n + 4 \log k$: thresholding + spectral

μ^2
Detection threshold

Theorem

Detection is possible if and only if

\[k_2 \mu \to \infty \]
Theorem

Detection is possible if and only if

\[k^2 \mu^2 \rightarrow \infty \]
Proof of detection threshold

- Upper bound: sum statistic $\sum_{i<j} Y_{ij}$
- Lower bound: bounded second moment

$$
\mathbb{E}_{Y \sim Q} \left[\left(\frac{P(Y)}{Q(Y)} \right)^2 \right] = \mathbb{E}_{\pi, \pi'} \exp \left(\mu^2 \omega(\pi, \pi') \right),
$$

where

$$
\omega(\pi, \pi') = \sum_{i<j} \mathbf{1}_{\{|\pi(i) - \pi(j)| \leq k, |\hat{\pi}(i) - \hat{\pi}(j)| \leq k\}}
$$

- Heuristically, $\omega(\pi, \pi') \sim \text{Pois}(2k^2)$
- Hence, if $k^2 \mu^2 = O(1)$, then the second moment is bounded
Summary for exact recovery and detection

\[\omega(k^{-2}) \quad 2 \log n \quad 4 \log n \quad 6 \log n + 6 \log k \quad 8 \log n + 4 \log k \]

- detection
- exact (necc)
- exact
- merging + spectral
- thresholding + spectral

Jiaming Xu (Purdue)
Weak recovery:

$$\frac{1}{nk} \sum_{i<j} 1\{|\pi(i) - \pi(j)| \leq k, \, |\hat{\pi}(i) - \hat{\pi}(j)| \leq k\} \to 1$$
Theorem

When $k = 1$, weak recovery is information-theoretically possible if and only if

$$\mu^2 > 2 \log n$$
Weak recovery for $k = 1$

Theorem

When $k = 1$, weak recovery is information-theoretically possible if and only if

$$\mu^2 > 2 \log n$$

Remarks

- Upper bound: analysis of MLE
Weak recovery for $k = 1$

Theorem

When $k = 1$, weak recovery is information-theoretically possible if and only if

$$\mu^2 > 2 \log n$$

Remarks

- Upper bound: analysis of MLE
- Lower bound: rate distortion argument
Proof of lower bound for weak recovery

\[I(Y; \pi) \geq I(\hat{\pi}; \pi) \]
\[\geq \min_{\mathbb{E}[\omega(\hat{\pi}, \pi)] = (1 + o(1))n} I(\hat{\pi}; \pi) \]
\[\approx H(\pi) \approx n \log n \]
Proof of lower bound for weak recovery

\[I(Y; \pi) \geq I(\hat{\pi}; \pi) \]

\[\geq \min_{\mathbb{E}[\omega(\hat{\pi}, \pi)] = (1+o(1))n} I(\hat{\pi}; \pi) \]

\[\approx H(\pi) \approx n \log n \]

\[I(Y; \pi) = \min_{\mathcal{Q}} D(P_{Y|\pi} \| \mathcal{Q} | \mathbb{P}_\pi) \]

\[\leq D(P_{Y|\pi^*} \| \mathcal{N}(0, 1) \otimes (\binom{n}{2}) | \mathbb{P}_\pi) \]

\[= n \mu^2 / 2 \]
Conclusion and remarks

\[\omega(k^{-2}) \quad 2 \log n \quad 4 \log n \quad 6 \log n + 6 \log k \quad 8 \log n + 4 \log k \]

- detection
- exact (necc) weak \(k = 1 \)
- exact \(k = 1 \)
- merging +spectral
- thresholding +spectral

\[\mu^2 \]
Conclusion and remarks

\[\omega(k^{-2}) \quad 2 \log n \quad 4 \log n \quad 6 \log n + 6 \log k \quad 8 \log n + 4 \log k \]

\[\mu^2 \]

Detection

- Exact (necc)
- Weak $k = 1$
- Exact $k = 1$
- Merging + spectral
- Thresholding + spectral

Future work

- Recovery threshold for general k
- SDP relaxation of MLE
<table>
<thead>
<tr>
<th>$\omega(k^{-2})$</th>
<th>$2 \log n$</th>
<th>$4 \log n$</th>
<th>$6 \log n + 6 \log k$</th>
<th>$8 \log n + 4 \log k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>detection</td>
<td>exact (necc)</td>
<td>exact</td>
<td>merging + spectral</td>
<td>thresholding + spectral</td>
</tr>
<tr>
<td>weak $k = 1$</td>
<td>$k = 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Future work

- Recovery threshold for general k
- SDP relaxation of MLE
- Real data experiment