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Local Computation

“Locality in distributed graph algorithms.”
Linmal, FOCS’87, SICOMP’92]

the LOCAL model: network G(V,E):

® Communications are
synchronized.

® |n each round: each node can
send messages of unbounded
sizes to all its neighbors.

® [ocal computations are free.

® Complexity: # of rounds to
terminate in the worst case.

® |n ¢ rounds: each node can collect information up to distance t.



Local Computation

“What can be computed locally?”
[Noar, Stockmeyer, STOC’93, SICOMP’935]

® |ocally Checkable Labeling (LCL) problems:
® (CSPs with local constraints.

® Construct a feasible solution: vertex/edge coloring,
maximal independent set (MIS), Lovasz local lemma

® Find a local optimum: MIS, maximal matching

® Approximate the global optimum: maximum matching,
minimum vertex cover, minimum dominating set

Q: "Which locally definable problems are locally computable?”

by local constraints in O(1) rounds
or in small number of rounds



“What can be sampled locally?”

® CSP with local constraints network G(V,E):
on the network: VN

® proper g-coloring; :
® independent set; é —

® Sample a uniform random
feasible solution: )

® distributed algorithms
(in the LOCAL model)

Q: “Which locally definable joint distributions
are locally sample-able?”




Markov Random Fields
(MRF)

Each vertex corresponds to a network G(V,E):
variable with finite domain [g].

Each edge e=(u,v)EE imposes a
weighted binary constraint:

Ae : [Q]Z — RZO

Each vertex v&F imposes a
weighted unary constraint:

bv X [Q] — RZO

Gibbs distribution u: Vo&[q]”
(o) o« H Ac(0y,04) H by (o)

e=(u,v)eEF veV

X € [q]" follows



A Motivation:
Distributed Machine Learning

® Data are stored in a
distributed system.

® Sampling from a
probabilistic graphical
model (e.g. the Markov

random field) by
distributed algorithms.




Glauber Dynamics

starting from an arbitrary Xo € [¢]” G(V.E):
transition for X; — X41:

pick a uniform random vertex v;

resample X(v) according to the
marginal distribution induced by u at
vertex v conditioning on X{N(v));

marginal distribution:

e AT A MRE: Vel
) [XU ) ’ XN(U>] B Zyé[q] bu(y) HUEN(U) A(u,v)(Xua y)
po)oc ] Aelow.ov) [ ] bulow

e:(u,v)EE veV

N——"

stationary distribution: u

mixing time:  Tmix = Max min {t | drv(Xt, p) < QLe}
0



Mixing of Glauber Dynamics

influence matrix {pv,u}v,uEVI

Pv,u. max discrepancy (in total variation distance) of
marginal distributions at v caused by any pair g,7

of boundary conditions that differ only at u 1

Dobrushin’s condition: contraction of one-step
optimal coupling in the worst

p — Imax p , S 1 — € . .
[plloc vev Z o case w.r.t. Hamming distance

ueV

. Theorem (Dobrushin ’70; Salas, Sokal ’97):
Dobrushin’s ::> Tmix = O (nlogn)

condition for Glauber dynamics

for g-coloring:  Dobrushin’s <}::> q=(2+€)A
condition A = max-degree



Parallelization

Glauber dynamics:

starting from an arbitrary Xo € [¢]” G(V.E):
transition for X; — X41:

pick a uniform random vertex v;

resample X(v) according to the
marginal distribution induced by u at
vertex v conditioning on X{N(v));

Parallelization:

® Chromatic scheduler [folklore] [Gonzalez et al., AISTAT 11]:
Vertices in the same color class are updated in parallel.

® “Hogwild!” [Niu, Recht, R¢, Wright, NIPS*11][De Sa, Olukotun, Ré, ICML’16]:
All vertices are updated in parallel, ignoring concurrency issues.



Warm-up: When Luby meets Glauber

starting from an arbitrary Xo € [¢]"
at each step, for each vertex v&V: G(V,E):

e

independently sample a random
number £,&[0,1];

if py is locally maximum among its
neighborhood N(v):

resample X(v) according to the
marginal distribution induced by u at

vertex v conditioning on X4 N(v));

Luby
step

Glauber
stgp

® | uby step: Independently sample a random independent set.

® Glauber step: For independent set vertices, update correctly
according to the current marginal distributions.

® Stationary distribution: the Gibbs distribution .



influence matrix {Pv.u fvuev

Dobrushin’s condition:

[plloc =max > pyu<1—e
ueV u

Dobrushin’s ::> Tmix = O (Alogn)

condition for the LubyGlauber chain

Proof (similar to [Hayes’04] [Dyer-Goldberg-Jerrum’06]):

in the one-step optimal coupling (X;,Y7), let p{t) = Pr[X;(v) # Yi(v)]
ptth) < prp®

where M = (I — D)+ Dp Pr[X, # Y:] <|[p™¥|1
D is diagonal and <n|p™||
D, , = Pr|v is picked in Luby step] <n MHZOHP(O) oo

1

> € g
— deg(v) +1 §n<1—A+1)




Crossing The Chromatic No. Barrier

Glauber LubyGlauber
O(n log n) === O(A log n)

parallel speedup
=0(n /A)

A = max-degree
¥ = chromatic no.

Do not update adjacent vertices simultaneously.

I::> It takes =y steps to update all vertices at least once.

Q: “How to update all variables simultaneously and
still converge to the correct distribution?”




The LocaIMetropoIls Chain

proposals: g, Oy
)

W—0—W

current: X, X, X,

starting from an arbitrary X € [¢]’, at each step:

each vertex v&€V independently proposes a random
0vE[q] with probability b,(c,)/ Zig[q] by(2);




Markov Random Fields
(MRF)

Each vertex corresponds to a network G(V,E):
variable with finite domain [g].

Each edge e=(u,v)EE imposes a
weighted binary constraint:

Ae : [Q]Z — RZO

Each vertex v&F imposes a
weighted unary constraint:

bv X [Q] — RZO

Gibbs distribution u: Vo&[q]”
(o) o« H Ac(0y,04) H by (o)

e=(u,v)eEF veV

X € [q]" follows



The LocalMetropolis Chain

proposals: o¢,<—> ¢, <—>0w

current: X, X, X,

starting from an arbitrary X € [¢]’, at each step:

each vertex v&V independently proposes a random
0vE[q] with probability b,(c0,)/ Zié[q] by(1); @ FOlI?CtiYe
f &~ coin flipping
made between
uand v

each edge e=(u,v) passes its check independently
with pl’Ob. Ac( Xy, 00)Ac(0u, Xy)Ae(ou,0,)/ max (Ac(i,5))°;

i,5€[q]

each vertex v&V accepts its proposal and update
Xy to oy if all incident edges pass their checks;

e |[Feng, Sun, Y. ’17]: the LocalMetropolis chain is time-reversible
w.r.t. the MRF Gibbs distribution wu.



. Detailed Balance Equation:
VX,V elg", wuX)PX,Y)=puY)P(Y,X)

V.

o € [q] the proposals of all vertices

C € {0, 1}E . indicates whether each edge e&L passes its check
Qx_v = {(0,C) | X = Y when the random choice is (¢,C)}

P(Xv Y) o Z(J,C)EQX_)Y PI(O)PI(C ’ O',X) /L(Y)

P(Y,X) Z(g,c)ggy_)X Pr(o)Pr(C | 0,Y) pu(X)
Bijection ¢x vy : Qx_y — {ly_x is constructed as:
C=C"

X,y
(0,C) == (¢',C") s.t. { if Cc = 1 for all e incident with v, then o/, = X,
otherwise a?’j = o,

::> Pr(o)Pr(C | o, X) _ H A (Y, Yy) _ u(Y)
Pr(o’)Pr(C’' | 0’,Y) Ac( Xy, X)) u(X)

veV U e=uvek




The LocalMetropolis Chain

proposals: o¢,<—> ¢, <—>0w

current: X, X, X,

starting from an arbitrary X € [¢]’, at each step:

each vertex v&V independently proposes a random
0vE[q] with probability b,(c0,)/ Zié[q] by(1); @ FOlI?CtiYe
f &~ coin flipping
made between
uand v

each edge e=(u,v) passes its check independently
with pl’Ob. Ac( Xy, 00)Ac(0u, Xy)Ae(ou,0,)/ max (Ac(i,5))°;

i,5€[q]

each vertex v&V accepts its proposal and update
Xy to oy if all incident edges pass their checks;

e |[Feng, Sun, Y. ’17]: the LocalMetropolis chain is time-reversible
w.r.t. the MRF Gibbs distribution wu.



LocalMetropolis for g-Coloring

%g

O—0—=~0

starting from an arbitrary X € [¢]’, at each step, each vertex vEV:

proposes a color ,&[g] uniformly and independently at random;

accepts the proposal and update X, to o, if for all v's neighbors u:
Xutov N 0 EXy N 0uF0y ;

‘Theorem (Feng, Sun, Y. ’17):
> (2+V2+eA = > wmx=0(logn)

for LocalMetropolis on g-coloring

The O(log n) mixing time bound holds even for unbounded A and gq.



A-regular tree each v:

proposes a uniform random color 6,€[q];

update X, to oy if for all v’s neighbors u:
Xutov N 0uEXy N O4F0v;

Xroot = red y Yroot = blue
V non-root v, X, =Y, & {red, blue}

coupling: coupling the proposals (6%, ¢%) so that (x,v) " ")

vertex v proposes consistently: o = o)

;

(X", Y7)

red if oY =Dblue
vertex v proposes bijectively: X = { blue if oY =red

Y

& otherwise

|. the root proposes consistently;
2. each child of the root proposes bijectively;

3. each vertex of depth =2 proposes bijectively if its parent proposed
different colors in the two chains, and proposes consistently if otherwise;



each v:

A-regular tree
proposes a uniform random color 6,€[q];

update X, to oy if for all v’s neighbors u:
Xutov N 0uEXy N O4F0v;

Xroot — I‘Ed Yroot blue
V non-root v, X, =Y, & {red, blue}

(GX )

coupling: coupling the proposals (6%, ¢?) so that (X, Y)

A 2\ &
root:  Pr[Xl,,, # mot]s1—(1—5) (1_5)

(X',Y")

q q q

/ / A 2\ 2 A 2\ 271
[ root7é root]+ Z PI[XU#YU]§1—<1—> <1—) —|—q_2A <1_)

non-root uw q q

A—1 -1
1 2 2
non-root u at level /:  Pr[X, #Y;] < - (1 — —) (_)

1 1
(assume g > aA) <1—e 2@ (1 _ - >



A-regular tree each v:

proposes a uniform random color 6,€[q];

update X, to oy if for all v’s neighbors u:
Xutov N 0uEXy N O4F0v;

Xroot = red root = blue
V non-root v, X, =Y, & {red, blue}

for general graph:

|. deal with irregularity by the path coupling metric;
2. deal with cycles by the self-avoiding walks;

3. deal with red/blue non-root vertices by a monotone
argument;



LocalMetropolis for g-Coloring

%g

O—0—=~0

starting from an arbitrary X € [¢]’, at each step, each vertex vEV:

proposes a color ,&[g] uniformly and independently at random;

accepts the proposal and update X, to o, if for all v's neighbors u:
Xutov N 0 EXy N 0uF0y ;

¢>(2+V2+e)A =>  Tmx=0(log n)

® g>(1+¢)A: each vertex is updated at €2(1) rate in LocalMetropolis



[Lower Bounds

Q: “How local can a distributed sampling algorithm be?”

Q: “What cannot be sampled locally?”




The LOCAL Model

Communications between
adjacent nodes are synchronized.

In each round: each node can
send messages of unbounded
sizes to all its neighbors.

Local computations are free.

Complexity: # of rounds to
terminate in the worst case.

In ¢ rounds: each node can collect information up to distance t.

> Outputs returned by vertices at distance >2¢
from each other are mutually independent.




Theorem (Feng, Sun, Y. ’17):

For any non-degenerate MREF any distributed algorithm that
samples from its distribution ¢ within bounded total variation
distance requires €2(log n) rounds of communications.

outputs of f-round algorithm: mutually independent X,’s

Gibbs distribution u: exponential correlation between X, ’s

ou # T |t = plt|lvv > exp(—O(t)) >n~

forat=0(log n)
drv(X, X) > 5o for any product distribution X



Theorem (Feng, Sun, Y. ’17):

For any non-degenerate MREF any distributed algorithm that
samples from its distribution ¢ within bounded total variation
distance requires (2(log n) rounds of communications.

® The ((log n) lower bound holds for all
MRFs with exponential correlation:

® non-trivial spin systems with O(1) spin states.

® O(log n) is the new criteria of “being local”
for distributed sampling algorithms.



Theorem (Feng, Sun, Y. ’17):

For any A>6, any distributed algorithm that samples uniform
independent set within bounded total variation distance in graphs

with max-degree A requires Q(diam) rounds of communications.

Sampling almost uniform independent set in graphs with
max-degree A by by poly-time Turing machines:

® [Weitz’06] If A<5, there are poly-time algorithms.

® [Sly’10] If A=6, there is no poly-time algorithm unless
NP=RP.

The Q(diam) lower bound holds for sampling from the

hardcore model with fugacity A > A(A) = (A — 1)A-1
T (A=2)A




Theorem (Feng, Sun, Y. ’17):

For any A>6, any distributed algorithm that samples uniform
independent set within bounded total variation distance in graphs

with max-degree A requires Q(diam) rounds of communications.

G: even cycle

H: random A-regular bipartite gadget of [Sly’10]

if A>6:

sample nearly uniform
independent set in G/

N

sample nearly uniform
max-cut in even cycle G

(long-range correlation!)




Theorem (Feng, Sun, Y. ’17):

For any A>6, any distributed algorithm that samples uniform
independent set within bounded total variation distance in graphs

with max-degree A requires Q(diam) rounds of communications.

A strong separation of sampling from other
local computation tasks:

® |ndependent set is trivial to construct locally (because
@ is an independent set).

® The Q(diam) lower bound for sampling holds even
when every vertex knows the entire graph:

® The lower bound holds not because of the locality of input
information, but because of the locality of randomness.



Open Problems

® Better analysis of LocalMetropolis.
® Distributed sampling of:
® matchings;
® ferromagnetic Ising model on graphs of unbounded degree;

® anti-ferromagnetic 2-spin systems in the uniqueness regime on
graphs of unbounded degree;

® Self-reducible sampling in the LOCAL model?

® Complexity hierarchy for distributed sampling?

® New ideas for distributed sampling: e.g.the LLL sampler for
hardcore model of Guo-Jerrum-Liu.

Weiming Feng, Yuxin Sun, Yitong Yin. What can be sampled locally?
To appear in PODC’17. arxiv: 1702.00142.






