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Local Computation

network G(V,E):

• Communications are 
synchronized.

• In each round:  each node can 
send messages of unbounded 
sizes to all its neighbors.

• Local computations are free.

• Complexity:  # of rounds to 
terminate in the worst case.

“Locality in distributed graph algorithms.” 

[Linial, FOCS’87, SICOMP’92]

the LOCAL model:

• In t rounds:  each node can collect information up to distance t.



Local Computation
“What can be computed locally?” 

[Noar, Stockmeyer, STOC’93, SICOMP’95]

• Locally Checkable Labeling (LCL) problems: 

• CSPs with local constraints.

• Construct a feasible solution:  vertex/edge coloring, 
maximal independent set (MIS), Lovász local lemma

• Find a local optimum: MIS, maximal matching

• Approximate the global optimum: maximum matching, 
minimum vertex cover, minimum dominating set

Q:  “Which locally definable problems are locally computable?”
by local constraints in O(1) rounds

or in small number of rounds



“What can be sampled locally?”

network G(V,E):• CSP with local constraints      
on the network:

• proper q-coloring;

• independent set;

• Sample a uniform random 
feasible solution:

• distributed algorithms 
(in the LOCAL model)

Q:  “Which locally definable joint distributions
are locally sample-able?”



Markov Random Fields
network G(V,E):• Each vertex corresponds to a 

variable with finite domain [q].

• Each edge e=(u,v)∈E imposes a 
weighted binary constraint:

• Each vertex v∈E imposes a 
weighted unary constraint:

• Gibbs distribution µ :   ∀σ∈[q]V

Ae : [q]
2 ! R�0

bv : [q] ! R�0
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Ae bv
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u v

(MRF)

~X 2 [q]V follows µ 



A Motivation: 
Distributed Machine Learning

• Data are stored in a 
distributed system.

• Sampling from a 
probabilistic graphical 
model (e.g. the Markov 
random field) by 
distributed algorithms.



Glauber Dynamics
G(V,E):

pick a uniform random vertex v;

resample X(v) according to the 
marginal distribution induced by µ at 
vertex v conditioning on Xt(N(v));

starting from an arbitrary X0 ∈ [q]V 

transition for Xt → Xt+1 :

marginal distribution:

Pr[Xv = x | XN(v)] =
bv(x)

Q
u2N(v) A(u,v)(Xu, x)P

y2[q] bv(y)
Q
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MRF: 8� 2 [q]V ,

stationary distribution:  µ

mixing time: ⌧
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Mixing of Glauber Dynamics

for q-coloring: q≥(2+ε)ΔDobrushin’s 
condition Δ = max-degree

u

vinfluence matrix                     :{⇢v,u}v,u2V

ρv,u: max discrepancy (in total variation distance) of 
marginal distributions at v caused by any pair σ,τ 
of boundary conditions that differ only at u

Dobrushin’s condition:
k⇢k1 = max

v2V

X

u2V

⇢v,u  1� ✏

contraction of one-step
optimal coupling in the worst 
case w.r.t. Hamming distance

Theorem (Dobrushin ’70; Salas, Sokal ’97):
Dobrushin’s 
condition for Glauber dynamics

⌧
mix

= O (n log n)



Parallelization
G(V,E):

vv

Glauber dynamics:

Parallelization:

• Chromatic scheduler [folklore] [Gonzalez et al., AISTAT’11]:  
Vertices in the same color class are updated in parallel. 

• “Hogwild!” [Niu, Recht, Ré, Wright, NIPS’11][De Sa, Olukotun, Ré, ICML’16]: 
All vertices are updated in parallel, ignoring concurrency issues.

pick a uniform random vertex v;

resample X(v) according to the 
marginal distribution induced by µ at 
vertex v conditioning on Xt(N(v));

starting from an arbitrary X0 ∈ [q]V 

transition for Xt → Xt+1 :



Warm-up:  When Luby meets Glauber

G(V,E):

resample X(v) according to the 
marginal distribution induced by µ at 
vertex v conditioning on Xt(N(v));

at each step, for each vertex v∈V:

starting from an arbitrary X0 ∈ [q]V 

independently sample a random 
number βv∈[0,1];
if βv is locally maximum among its 
neighborhood N(v):

Luby
step

Glauber
step

• Luby step:  Independently sample a random independent set.

• Glauber step:  For independent set vertices, update correctly 
according to the current marginal distributions.

• Stationary distribution:  the Gibbs distribution µ.



Dobrushin’s condition:
k⇢k1 = max

v2V

X

u2V

⇢v,u  1� ✏

influence matrix                    {⇢v,u}v,u2V

u

v

Dobrushin’s 
condition for the LubyGlauber chain

⌧
mix

= O (� log n)

Dv,v = Pr[v is picked in Luby step]

� 1

deg(v) + 1

D is diagonal and

p(t)v = Pr[Xt(v) 6= Yt(v)]in the one-step optimal coupling (Xt,Yt), let 

where

Proof (similar to [Hayes’04] [Dyer-Goldberg-Jerrum’06]):

p(t+1)  Mp(t)

Pr[Xt 6= Yt] kp(t)k1
nkp(t)k1
nkMkt1kp(0)k1

n

✓
1� ✏

�+ 1

◆t

M = (I �D) +D⇢



Crossing The Chromatic No. Barrier

Glauber LubyGlauber

O(n log n) O(Δ log n)

∆ = max-degree 

parallel speedup 
= θ(n /Δ)

Q:  “How to update all variables simultaneously and 
still converge to the correct distribution?”

χ = chromatic no.

Do not update adjacent vertices simultaneously.
It takes ≥χ steps to update all vertices at least once.



The LocalMetropolis Chain

starting from an arbitrary X ∈ [q]V,  at each step:

each vertex v∈V independently proposes a random 
σv∈[q] with probability                                ;

u v w
Xu Xv Xwcurrent:

proposals: σu σv σw

bv(�v)/
P

i2[q] bv(i)



Markov Random Fields
network G(V,E):• Each vertex corresponds to a 

variable with finite domain [q].

• Each edge e=(u,v)∈E imposes a 
weighted binary constraint:

• Each vertex v∈E imposes a 
weighted unary constraint:

• Gibbs distribution µ :   ∀σ∈[q]V
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The LocalMetropolis Chain

starting from an arbitrary X ∈ [q]V,  at each step:

each vertex v∈V independently proposes a random 
σv∈[q] with probability                                ;

each edge e=(u,v) passes its check independently 
with prob. ;

each vertex v∈V accepts its proposal and update 
Xv to σv if all incident edges pass their checks;

a collective
coin flipping

made between  
u and v 

u v w
Xu Xv Xwcurrent:

proposals: σu σv σw

• [Feng, Sun, Y. ’17]:  the LocalMetropolis chain is time-reversible 
w.r.t. the MRF Gibbs distribution µ.

bv(�v)/
P

i2[q] bv(i)

Ae(Xu,�v)Ae(�u, Xv)Ae(�u,�v)/ max

i,j2[q]
(Ae(i, j))

3



P (X,Y )

P (Y,X)
=

P
(�,C)2⌦X!Y

Pr(�)Pr(C | �, X)
P

(�,C)2⌦Y !X
Pr(�)Pr(C | �, Y )

Detailed Balance Equation:
µ(X)P (X,Y ) = µ(Y )P (Y,X)8X,Y 2 [q]V ,

� 2 [q]V : the proposals of all vertices

C 2 {0, 1}E : indicates whether each edge e∈E passes its check

⌦X!Y , {(�, C) | X ! Y when the random choice is (�, C)}

Bijection is constructed as:�X,Y : ⌦X!Y ! ⌦Y!X

(�, C) �X,Y7�! (�0, C0)
C = C0

Ce = 1if            for all e incident with v, then �0
v = Xv

otherwise �0
v = �v

⇢
s.t.

=
µ(Y )

µ(X)

Pr(�)Pr(C | �, X)

Pr(�0)Pr(C0 | �0, Y )
=

Y

v2V

bv(Yv)

bv(Xv)

Y

e=uv2E

Ae(Yu, Yv)

Ae(Xu, Xv)
=

µ(Y )

µ(X)



The LocalMetropolis Chain

starting from an arbitrary X ∈ [q]V,  at each step:

each vertex v∈V independently proposes a random 
σv∈[q] with probability                                ;

each edge e=(u,v) passes its check independently 
with prob. ;

each vertex v∈V accepts its proposal and update 
Xv to σv if all incident edges pass their checks;

a collective
coin flipping

made between  
u and v 

u v w
Xu Xv Xwcurrent:

proposals: σu σv σw

• [Feng, Sun, Y. ’17]:  the LocalMetropolis chain is time-reversible 
w.r.t. the MRF Gibbs distribution µ.
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LocalMetropolis for q-Coloring

starting from an arbitrary X ∈ [q]V, at each step, each vertex v∈V:

proposes a color σv∈[q] uniformly and independently at random;

accepts the proposal and update Xv to σv if for all v’s neighbors u:
Xu≠σv ∧ σu≠Xv ∧ σu≠σv ;

The O(log n) mixing time bound holds even for unbounded Δ and q.

Theorem (Feng, Sun, Y. ’17):
τmix=O(log n) q � (2 +

p
2 + ✏)�

for LocalMetropolis on q-coloring



Xroot = red ,   Yroot = blue

Δ-regular tree

∀ non-root v,  Xv = Yv ∉ {red, blue}

proposes a uniform random color σv∈[q];
update Xv to σv if for all v’s neighbors u:

         Xu≠σv ∧ σu≠Xv ∧ σu≠σv ;

each v:

coupling: coupling the proposals (σX, σY) so that (X,Y )
(�X ,�Y )�! (X 0, Y 0)

1. the root proposes consistently;
2. each child of the root proposes bijectively;
3. each vertex of depth ≥2 proposes bijectively if its parent proposed 

different colors in the two chains, and proposes consistently if otherwise;

vertex v proposes consistently:         �X
v = �Y

v

vertex v proposes bijectively:         �X
v =

8
><

>:

red if �Y
v = blue

blue if �Y
v = red

�Y
v otherwise



Xroot = red ,   Yroot = blue

Δ-regular tree

∀ non-root v,  Xv = Yv ∉ {red, blue}

proposes a uniform random color σv∈[q];
update Xv to σv if for all v’s neighbors u:

         Xu≠σv ∧ σu≠Xv ∧ σu≠σv ;

each v:

coupling: coupling the proposals (σX, σY) so that (X,Y )
(�X ,�Y )�! (X 0, Y 0)

Pr[X 0
root

6= Y 0
root

]  1�
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Xroot = red ,   Yroot = blue

Δ-regular tree

∀ non-root v,  Xv = Yv ∉ {red, blue}

proposes a uniform random color σv∈[q];
update Xv to σv if for all v’s neighbors u:

         Xu≠σv ∧ σu≠Xv ∧ σu≠σv ;

each v:

for general graph:

1. deal with irregularity by the path coupling metric;
2. deal with cycles by the self-avoiding walks;
3. deal with red/blue non-root vertices by a monotone 

argument;



LocalMetropolis for q-Coloring

starting from an arbitrary X ∈ [q]V, at each step, each vertex v∈V:

proposes a color σv∈[q] uniformly and independently at random;

accepts the proposal and update Xv to σv if for all v’s neighbors u:
Xu≠σv ∧ σu≠Xv ∧ σu≠σv ;

• q≥(1+ε)Δ:  each vertex is updated at Ω(1) rate in LocalMetropolis

τmix=O(log n) q � (2 +
p
2 + ✏)�



Lower Bounds
Q:  “How local can a distributed sampling algorithm be?”

Q:  “What cannot be sampled locally?”



• Communications between 
adjacent nodes are synchronized.

• In each round:  each node can 
send messages of unbounded 
sizes to all its neighbors.

• Local computations are free.

• Complexity:  # of rounds to 
terminate in the worst case.

• In t rounds:  each node can collect information up to distance t.

The LOCAL Model

Outputs returned by vertices at distance >2t 
from each other are mutually independent. 



Theorem (Feng, Sun, Y. ’17):
For any non-degenerate MRF, any distributed algorithm that 
samples from its distribution µ within bounded total variation 
distance requires Ω(log n) rounds of communications.

outputs of t-round algorithm: mutually independent eXv

Gibbs distribution µ: exponential correlation between Xv 

path:
t

>2t
vu

’s 

’s 

kµ�u
v � µ⌧u

v kTV � exp(�O(t))�u 6= ⌧u : > n�1/4

for a t = O(log n)

dTV(X,fX) > 1
2e

for any product distribution fX



Theorem (Feng, Sun, Y. ’17):
For any non-degenerate MRF, any distributed algorithm that 
samples from its distribution µ within bounded total variation 
distance requires Ω(log n) rounds of communications.

• The Ω(log n)  lower bound holds for all 
MRFs with exponential correlation:

• non-trivial spin systems with O(1) spin states. 

• O(log n) is the new criteria of “being local” 
for distributed sampling algorithms.



Theorem (Feng, Sun, Y. ’17):
For any ∆≥6, any distributed algorithm that samples uniform 
independent set within bounded total variation distance in graphs 
with max-degree ∆ requires Ω(diam) rounds of communications.

• [Weitz’06] If ∆≤5, there are poly-time algorithms.

• [Sly’10] If ∆≥6, there is no poly-time algorithm unless 
NP=RP.

Sampling almost uniform independent set in graphs with 
max-degree ∆ by by poly-time Turing machines:

The Ω(diam) lower bound holds for sampling from the 
hardcore model with fugacity � > �c(�) =

(�� 1)��1

(�� 2)�



Theorem (Feng, Sun, Y. ’17):
For any ∆≥6, any distributed algorithm that samples uniform 
independent set within bounded total variation distance in graphs 
with max-degree ∆ requires Ω(diam) rounds of communications.

G:  even cycle

H:  random ∆-regular bipartite gadget

GH : if ∆≥6:

max-degree 
∆

sample nearly uniform 
independent set in GH

sample nearly uniform 
max-cut in even cycle G

(long-range correlation!)

of [Sly’10]



Theorem (Feng, Sun, Y. ’17):
For any ∆≥6, any distributed algorithm that samples uniform 
independent set within bounded total variation distance in graphs 
with max-degree ∆ requires Ω(diam) rounds of communications.

• Independent set is trivial to construct locally (because 
∅ is an independent set).

• The Ω(diam) lower bound for sampling holds even 
when every vertex knows the entire graph:

• The lower bound holds not because of the locality of input 
information, but because of the locality of randomness.

A strong separation of sampling from other 
local computation tasks:



Open Problems
• Better analysis of LocalMetropolis.

• Distributed sampling of:

• matchings;

• ferromagnetic Ising model on graphs of unbounded degree;

• anti-ferromagnetic 2-spin systems in the uniqueness regime on 
graphs of unbounded degree;

• Self-reducible sampling in the LOCAL model? 

• Complexity hierarchy for distributed sampling?

• New ideas for distributed sampling:  e.g. the LLL sampler for 
hardcore model of Guo-Jerrum-Liu.

Weiming Feng, Yuxin Sun, Yitong Yin. What can be sampled locally? 
To appear in PODC’17. arxiv: 1702.00142.



Thank you!
Any questions?


