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Perfect matchings

A matching in a graph G = (V ,E ) is a set of independent edges.

A perfect matching in an n-vertex graph G is a set of n/2
independent edges. Clearly n must be even.
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Deciding if G has a perfect matching, and finding one if it does, is
in P (Edmonds, 1965), but counting the number of perfect
matchings exactly is known to be #P-complete (Valiant, 1979).

If G is bipartite, the number of perfect matchings in G is called
the 0-1 permanent, and this case remains #P-complete.
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Approximate counting

Jerrum, Valiant & Vazirani (1986) showed that approximate
counting and sampling almost uniformly at random are equivalent
for self-reducible problems, such as counting perfect matchings.

Jerrum & Sinclair (1989) used a Markov chain on perfect and
near-perfect matchings (n/2− 1 edges) to approximate the
number of perfect matchings. The chain converges in polynomial
time (rapid mixing) provided there are not exponentially more
near-perfect than perfect matchings. (G is P-stable).

Jerrum, Sinclair & Vigoda (2004) showed that the permanent can
be approximated in polynomial time, settling the question
completely for bipartite graphs. Their algorithm involves running a
sequence of Markov chains multiple times. The running time is
O(n7 log4 n) (Bezáková, Štefankovič, Vazirani & Vigoda, 2008).

For general nonbipartite graphs, the question remains open.
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The switch Markov chain

Diaconis, Graham & Holmes (2001) proposed a simple Markov
chain for sampling perfect matchings almost uniformly at random.

Let the matching at time t be Mt .

Switch chain

(1) Set t ← 0, and find any perfect matching M0 in G .

(2) Choose v , v ′ ∈ V , uniformly at random. Let u, u′ ∈ V be such
that uv , u′v ′ ∈ Mt .

(3) If u′v , uv ′ ∈ E , set Mt+1 ← {u′v , uv ′} ∪Mt \ {uv , u′v ′}.
(4) Otherwise, set Mt+1 ← Mt .
(5) Set t ← t + 1. If t < tmax, repeat from (2). Otherwise, stop.

The chain involves switching two matchings edges in a 4-cycle for
two non-matching edges.

There is clearly a question about the ergodicity of the chain, before
considering its mixing time.
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Ergodicity

Diaconis, Graham & Holmes observed that this chain is not
ergodic in general. They gave a simple bipartite example

1

2 3

4

56

This graph has two perfect matchings, but the chain cannot move
between them, because the graph is a chordless 6-cycle.

A bipartite graph with no chordless cycle of length greater than 4
is called chordal bipartite. D, Jerrum & Müller (2016) showed that
the switch chain is ergodic for this class, and that any two
matchings are connected by a sequence of at most n/2 matchings.
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When is the switch chain ergodic?

The general question is: Given a graph G , is the switch chain
ergodic on G?

Settling the complexity of this question is difficult, since we have
no polynomial bound on the length of the sequence of switches
connecting two matchings. If we had such a bound, the question
would be within the second level of the polynomial hierarchy. In
fact, we can only put the problem in PSPACE. However, our best
lower bound on the length of the sequence is only Ω(n2).

For this reason, and also to have self-reducibility, we restrict
attention to hereditary classes of graphs. These are lasses for
which every (vertex) induced subgraph of a graph in the class is
also in the class.

D, Jerrum & Müller (2016) showed that chordal bipartite graphs
form the largest hereditary class of bipartite graphs for which the
switch chain is ergodic.
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Nonbipartite graphs

D & Müller (2017) show that the largest hereditary class for which
the switch chain is ergodic is a class of which we call switchable.
To define this we need the following definitions for a graph G .

A chord of a cycle C is an edge vw ∈ E \ C . If C is an even cycle,
it is an odd chord if v and w are joined by and odd-length path on
C , otherwise an even chord. Note that there are two paths, but
both are odd or even. An odd chord divides an even cycle C into
two even cycles, sharing an edge. Even and odd chords are not
defined for odd cycles.

1

2 3

4

56

even chord

odd chord
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Odd chordal and switchable graphs

Odd chordal graphs are the hereditary class such that every even
cycle has an odd chord. The switch chain is ergodic on this class,
but it is not the largest hereditary class.

Two edges of an even cycle have the same parity if they are
separated by an odd number of edges on the cycle. A legal switch
is a 4-cycle with two chords and two cycle edges of equal parity.

An even switch is a legal switch with even chords. A crossing chord
of a switch is a chord with end vertices separated by the switch.

1
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5

678

even switch
even crossing chord

Switchable graphs are the class such that every even cycle has an
odd chord or an even switch with a crossing chord. This is the
largest hereditary class for which the switch chain is ergodic.
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Monotone graphs

D, Jerrum & Müller (2016) proved rapid mixing of the switch chain
for a certain class of chordal bipartite graphs. These graphs have a
permutation of their vertex sets so that the 1’s in the rows of the
biadjacency matrix form intervals with the leftmost and rightmost
1’s having nondecreasing order, giving a “staircase” presentation.

1

6 3 8

4

725


5 6 7 8

1 1 1 0 0
2 1 1 1 0
3 0 1 1 1
4 0 0 1 1


Diaconis, Graham & Holmes (2001) called these monotone graphs,
though they originally appeared in Spinrad, Brandstädt & Stewart
(1987) in the guise of bipartite permutation graphs.

These graphs are not P-stable in general, so the rapid mixing result
is essentially different from Jerrum & Sinclair’s (1989) algorithm.
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Quasiclasses

We considered how far the proof technique used in D, Jerrum &
Müller (2016) can be extended to nonbipartite graphs. This led us
to the following definitions.

If G = (V ,E ) is a graph, let L,R ⊆ V be such that L ∪ R = V
and L ∩ R = ∅, and let G [L:R] denote the bipartite graph with
vertex bipartition L,R, and edge set {vw ∈ E : v ∈ L,w ∈ R}.

Let C be a class of bipartite graphs. Then we will define the class
quasi-C as follows: G is in quasi-C if G [L:R] ∈ C for all bipartitions
L,R of V . This seems a demanding definition, but in fact quasi-C
is larger than C for most cases of interest. If C is hereditary and
closed under disjoint union, then so is quasi-C, and C ⊆ quasi-C.

The motivation for this definition is that techniques for bipartite
graphs can often be lifted to the corresponding quasiclass.
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graphs can often be lifted to the corresponding quasiclass.
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We considered how far the proof technique used in D, Jerrum &
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to the following definitions.
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Quasimonotone graphs

If C is the class of monotone graphs, quasi-C is the class of
quasimonotone graphs. It is easy to lift the canonical paths
analysis of D, Jerrum & Müller to prove rapid mixing for this class.

The class includes monotone graphs, but also unit interval graphs.
These are intersection graphs of sets of intervals vi = [xi , xi + 1]
(i ∈ [n])on the real line. Thus G = (V ,E ), with V = {vi : i ∈ [n]}
and vivj ∈ E if and only if i 6= j and vi ∩ vj 6= ∅.

However, the class is larger than the union of these two classes.
For example, the graph below is quasimonotone.
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Recognition

An important question now arises. For a given graph G , can we
decide efficiently whether it is in some specified class?

Quasi-chordal bipartite graphs are precisely the class of odd
chordal graphs defined above. So, since monotone graphs are
chordal bipartite, quasimonotone graphs are odd chordal.

Chordal bipartite graphs have linear time recognition, but this
implies nothing for the quasiclass. Currently we do not know
how recognise odd chordal graphs in polynomial time. If we
could recognise odd chordal graphs efficiently, we could recognise
quasimonotone graphs efficiently, simply by using a small set of
forbidden subgraphs. Currently we cannot do this.

Nevertheless, we can recognise quasimonotone graphs in
polynomial time. The algorithm is rather complicated, so we
cannot describe it here.
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An important question now arises. For a given graph G , can we
decide efficiently whether it is in some specified class?

Quasi-chordal bipartite graphs are precisely the class of odd
chordal graphs defined above. So, since monotone graphs are
chordal bipartite, quasimonotone graphs are odd chordal.

Chordal bipartite graphs have linear time recognition, but this
implies nothing for the quasiclass. Currently we do not know
how recognise odd chordal graphs in polynomial time. If we
could recognise odd chordal graphs efficiently, we could recognise
quasimonotone graphs efficiently, simply by using a small set of
forbidden subgraphs. Currently we cannot do this.

Nevertheless, we can recognise quasimonotone graphs in
polynomial time. The algorithm is rather complicated, so we
cannot describe it here.

Thank you!
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