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CSPs, complexity and random instances

A constraint satisfaction problem (CSP) is a set of variables under
a set of constraints.
Question :

Is there an assignement satisfying all the constraints ?

I Worst case instances require an extensive search to be
answered: exponential run time and NP complexity.

Studying random CSPs consists in assigning a probability to each
instance.
Question :

Are typical instances satisfiable ?

I Average-case properties can be studied with analytical and
numerical methods.



Hypergraph q-coloring

Definition

I N Potts variables xi on vertices :
xi ∈ {1, 2, ..q}

I M constraints ∆µ on hyperedges :

µ

⌫
jxj

xi

∆µ({xi}i∈∂µ) =

{
0 if all variables xi are equal
1 otherwise

Solutions:

I Coloring x is solution = no hyperedge is monochromatic

I The set of solutions is S = {x/∆µ(x∂µ) = 1, ∀µ}
I Define Z = |S| = # proper colorings



Random instances of hypergraph q-coloring

Random ensembles

I K -uniform `-regular: choose uniformly among hypergraphs with M

hyperedges of size K and N nodes of degree `

I K -uniform Erdős-Réyni, average degree ` = KM/N:
choose uniformly M hyperedges from all the

(
N
K

)
possibility

(i.e. d ∼ Poisson(`))

All results are derived

I in the large size limit N →∞, M →∞
I with finite density of constraints α = M/N = `/K

(i.e. sparse hypergraphs)

Density α controls how difficult is the coloring problem

I Existence of a sharp satistifiability/colorability threshold αcol

I Existence of several structural changes of S for α < αcol



Phase transitions in random CSPs with the cavity method

[Krzakala, Montanari,Ricci-Tersenghi, Semerjian,Zdeborova ’07]

Statistical physics: A ‘universality class’ of sparse CSPs (11/28)

A ‘universality class’ of sparse random CSPs

Extensive physics literature proposes a class of sparse random
CSPs exhibiting the same qualitative behavior — ‘1RSB’.

Krza̧ka la–Montanari–Ricci-Tersenghi–Semerjian–Zdeborová ’07,

Zdeborová–Krza̧ka la ’07, Montanari–Ricci-Tersenghi–Semerjian ’08

Such models are believed to exhibit a complex phase diagram:
solution space SOL exhibits several distinct behaviors.

heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k ! 4 a value of "d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at "c(k) ! "d(k)
(strict inequality holds for k ! 4 in SAT and q ! 4 in coloring, see
below). For " ! "c(k) the weights wn concentrate on a logarithmic
scale [namely, "log wn is #(N) with #(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For " $ "c(k) [and ! "s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n % xn/&xn, where xn $ 0 are the points of a Poisson
process with rate x"1"m(") and m(") ! (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(") is monotonically decreasing from 1 to 0
when " increases from "c(k) to "s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) ! [N]
are uniformly random variable indices, then, for " ! "c(k) and any
fixed n:

! !
'xi!(

"#)xi)1* . . . xi)n** $ #)xi)1** . . . #)xi)n**"3 0 [5]

as N3 +. Conversely, the quantity on the left side of Eq. 5 remains
positive for " $ "c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of "d and "c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of "d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of #!, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly ! from i, that we shall keep denoting
as x!. The idea is then to consider a large yet finite neighborhood
of i. Given !" ! !, the factor graph neighborhood of radius !" around
i converges in distribution to the radius-!" neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k". Connect
each of these function nodes with k " 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if " $
1/k(k" 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-! variables in the tree model. On
the tree, #! is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-!
variables can be computed through a recursive procedure (defining
a sequence of distributions P" !, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) % 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P! and obtain:

"d)k* %
2k

k # log k,log log k & 'd & O$ log log k
log k % & [6]

ld)q* % q- log q & log log q & 'd & o)1*. [7]

with 'd % 1 (under a technical assumption of the structure of P!).
The second approach to the determination of "d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn % Wn/& Wn),
then the number of clusters of size Wn % eNs grows approximately
as eN&(s); (ii) for each single-cluster measure #n!, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function &(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely #! is obtained as a limit of free boundary measures.

αd,+ αd αc αs
Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At "d,, some clusters appear, but for "d,, ! " ! "d they comprise
only an exponentially small fraction of solutions. For "d ! " ! "c the solutions are split among about eN&" clusters of size eNs". If "c ! " ! "s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above "s the problem does not admit solutions any more.
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Fig. 3. The Parisi 1RSB parameter m(") as a function of the constraint density
". In the Inset, the complexity &(s) as a function of the cluster entropy for " %
"s(k) " 0.1 [the slope at &(s) % 0 is "m(")]. Both curves have been computed
from the large k expansion.
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Structural phenomena have been linked to algorithmic barriers.
e.g. Achlioptas–Coja-Oghlan ’08, Sly ’10, Gamarnik–Sudan ’13, Rahman–Virag ’14

↵
↵clust ↵cond ↵col

↵f↵r

I Clusters: connected subset of solutions in configuration space.

I Frozen variables: take same value in all solutions of a cluster.



Previous works around q-coloring of hypergraphs

Physics conjectures have refined progressively the picture of the
phase transitions

I Coloring on graph [Krzakala et al. ’04, Zdeborová et al ’07]

I Bicoloring of regular hypergraphs [Castellani et al ’03, Dall’Asta et
al ’08, Braunstein et al ’16]

Rigorous works
I hypergraph bicoloring and NAE-SAT [Achlioptas et al ’06

(algorithmic barriers and phase transitions,freezing), Coja-Oghlan et
al 12’ (condensation), Bapst et al ’14 (existence and asymptotic
location of condensation at positive temperature),Achlioptas et al
06’ (leading order of colorability),Coja-Oghlan et al 12’ (additional
term to asymptotics of col),Ding et al ’13 (location of colorability)]

I hypergraph q-coloring: [Krivelevich et al ’97 (asymptotics of the
chromatic number),Dyer et al ’15 (generalisation to hypergraph of
graph asymptotics of colorability(Achlioptas and Naor)), Ayre et al
’15 (improving last results).]



Two different regimes for the cavity method
For the uniform probability distribution over valid colorings

I Replica Symmetric regime: correlations decay fast
(shortest loops O(lnN))

I Replica Symmetry Breaking: long range dependencies

Statistical physics: A ‘universality class’ of sparse CSPs (11/28)
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↵
↵clust ↵cond ↵col

RS RSB 

I 1RSB computation assumes there is no clusters within
clusters. Believed to be the relevant regime for a large class of
CSPs (large enough q or large enough K ).



RS formula and RSB complexity

RS equations / first moment: ZRS = qN
(

1− q
qK

)M

ZRS = # assignments× (1 - Prob(monochromatic clause))(#clauses)

= E [Z ]

⇒ E [lnZ/N] ≤ ln q + α ln
(

1− 1/qK−1
)

⇒ αcol ≤ αRS = − ln q/ ln
(

1− 1/qK−1
)

upper bound

RSB equation: Z1RSB =
∫
ds eN(s+Σ(s)) = eN(s?+Σ(s?))

I clusters of size eNs are eΣ(s) many

I Σ is called the complexity

I typical solutions = solutions in clusters of size eNs
?

(exponential approximation for N →∞)
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Asymptotics of phase transitions thresholds - RS

Reasoning in terms of average connectivities ` = αK

`RS = −K ln q/ ln
(
1− 1/qK−1

)
Expanding at q fixed, K →∞

`RS = KqK−1 ln q − K

2
ln q + O

(
K ln q

qK−1

)

q=2 `RS = K2K−1 ln 2−K
2

ln 2+O
(

K

2K−1

)
K=2 `RS = 2q ln q−ln q+O

(
ln q
q

)

I Expansion in 1/qK−1, small when either K →∞ or q →∞

NB: ER and regular expected to give same asymptotic behavior !
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Asymptotics - Condensation and Colorability

Leading orders `cond ∼ `col ∼ `RS proven [Dyer et al & Ayre et al ’15]

Expanding further at q fixed, K →∞, in 1/qK−1

I Condensation (Σ(s∗) = 0)

`cond = KqK−1 ln q − K
2 ln q − K

2

(
1− 1

q

)
2 ln 2 + Õ

(
1

qK−1

)
I Colorability (sup

s
Σ(s) = 0)

`col = KqK−1 ln q − K
2 ln q − K

2

(
1− 1

q

)
+ Õ

(
1

qK−1

)
with Õ

(
1

qK−1

)
= O

(
poly(K ,lnq)

qK−1

)
Recovers

I known subleading orders at q = 2 or K = 2
[Zdeborová et al ’07, Braunstein et al ’16]

I rigorous results for hypergraphs [Dyer et al ’15, Ayre et al ’15]



Asymptotics - Rigidity (1/2)

Apparition of frozen variables in typical solutions, conjectured to
be equivalent to a naive reconstruction problem.
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Asymptotics - Rigidity (1/2)

Apparition of frozen variables in typical solutions, conjectured to
be equivalent to a naive reconstruction problem.

I Probability ηL for the root to be
frozen in a color given the
coloring at generation L

ηL = f (ηL−1)

I Allow L→∞ for fixed point η

I Rigidity η > 0



Asymptotics - Rigidity (2/2)

Expanding at q fixed, K →∞, in 1/qK−1

`r = qK−1 (ln ((K − 1)(q − 1)) + ln lnKq + 1 + o(1))

Recovers

I Asymptotics for graph coloring and hypergraph bicoloring

q=2 `r=2K−1(lnK+ln lnK+1+O( ln ln K
ln K ))

K=2 `r=q(ln q+ln ln q+1+o(1))

I Gap in regimes `r � `cond ∼ `col ∼ `RS ∼ qK−1K ln q



Numerical evaluations for ER small q and K - Generic
scenario

q = 4, K = 3, α = `/K
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Similar behavior for all cases q ≥ 3 and K ≥ 3, or q ≥ 2 and K ≥ 5



Numerical evaluations for ER - q = 2 K = 3

I 1RSB local instability makes `col not tight, only upper bound
I Continuous transition `clust = `cond = `KS

(Similar behavior for q = 3 and K = 2 [Zdeborová et al ’07])
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Numerical evaluations for ER - q = 2 K = 4
I 1RSB local instability makes `col not tight, only upper bound
I Continuous transition `clust = `cond = `KS , but discontinuity

in condensed phase
I Coexistence of two 1RSB solutions (planted models)
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Conclusions
Main results

I Generalized asymptotics O(poly(K ,lnq)
qK−1 )

I Numerical evaluations

`clust `r (m = 1) `cond `col `RS `RS
stab `SPI `SPII

q = 2 K = 3 4.50 (7.37) 4.50 (6.32) 7.23 4.50 6.07 6.16
q = 2 K = 4 16.33 (21.62) 16.33 (19.62) 20.76 16.33 19.35 17.84
q = 2 K = 5 47.4 (52.63) 51.5 52.32 53.70 56.25 59.42 43.9
q = 3 K = 3 25.06 (28.07) 26.2 26.92 27.98 32.00 33.62 23.9
q = 3 K = 4 97.7 105.88 114.3 115.04 116.44 225.33 225.51 90.7
q = 4 K = 3 56.20 61.09 62.7 63.3 64.44 112.50 112.78 52.7

I Two cases where 1RSB predictions of `col is only an upper
bound (not tight) because of local instability toward more
steps of symmetry breaking

Publication preprint: arXiv:1707.01983 !

Thanks for your attention !
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