Predicting Phase Transitions in Hypergraph q-Coloring with the Cavity Method

> Marylou Gabrié (LPS, ENS) Varsha Dani (University of New Mexico), Guilhem Semerjian (LPT, ENS), Lenka Zdeborová (CEA, Saclay)

> > June 6, 2016

Département **de Physi**que

École normale supérieure

CSPs, complexity and random instances

A constraint satisfaction problem (CSP) is a set of variables under a set of constraints. Question :

Is there an assignement satisfying all the constraints ?

Worst case instances require an extensive search to be answered: exponential run time and NP complexity.

Studying random CSPs consists in assigning a probability to each instance.

Question :

Are typical instances satisfiable ?

 Average-case properties can be studied with analytical and numerical methods.

Hypergraph q-coloring

Definition

- ► *N* Potts variables x_i on vertices : $x_i \in \{1, 2, ...q\}$
- *M* constraints Δ_{μ} on hyperedges :

 $\Delta_{\mu}(\{x_i\}_{i\in\partial\mu}) = \begin{cases} 0 \text{ if all variables } x_i \text{ are equal} \\ 1 \text{ otherwise} \end{cases}$

Solutions:

- Coloring x is solution = no hyperedge is monochromatic
- The set of solutions is $S = {\mathbf{x} / \Delta_{\mu}(\mathbf{x}_{\partial \mu}) = 1, \forall \mu}$
- Define Z = |S| = # proper colorings

Random instances of hypergraph q-coloring

Random ensembles

- ► K-uniform ℓ-regular: choose uniformly among hypergraphs with M hyperedges of size K and N nodes of degree ℓ
- ► K-uniform Erdős-Réyni, average degree l = KM/N: choose uniformly M hyperedges from all the (^N_K) possibility (i.e. d ~ Poisson(l))

All results are derived

- in the large size limit $N \to \infty$, $M \to \infty$
- ▶ with finite density of constraints α = M/N = ℓ/K (i.e. sparse hypergraphs)

Density $\boldsymbol{\alpha}$ controls how difficult is the coloring problem

- Existence of a sharp satistifiability/colorability threshold $\alpha_{
 m col}$
- Existence of several structural changes of ${\cal S}$ for $\alpha < \alpha_{\rm col}$

Phase transitions in random CSPs with the cavity method

[Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova '07]

- Clusters: connected subset of solutions in configuration space.
- Frozen variables: take same value in all solutions of a cluster.

Previous works around *q*-coloring of hypergraphs

Physics conjectures have refined progressively the picture of the phase transitions

- Coloring on graph [Krzakala et al. '04, Zdeborová et al '07]
- Bicoloring of regular hypergraphs [Castellani et al '03, Dall'Asta et al '08, Braunstein et al '16]

Rigorous works

- hypergraph bicoloring and NAE-SAT [Achlioptas et al '06 (algorithmic barriers and phase transitions, freezing), Coja-Oghlan et al 12' (condensation), Bapst et al '14 (existence and asymptotic location of condensation at positive temperature), Achlioptas et al 06' (leading order of colorability), Coja-Oghlan et al 12' (additional term to asymptotics of col), Ding et al '13 (location of colorability)]
- hypergraph q-coloring: [Krivelevich et al '97 (asymptotics of the chromatic number),Dyer et al '15 (generalisation to hypergraph of graph asymptotics of colorability(Achlioptas and Naor)), Ayre et al '15 (improving last results).]

Two different regimes for the cavity method

For the uniform probability distribution over valid colorings

- Replica Symmetric regime: correlations decay fast (shortest loops O(ln N))
- Replica Symmetry Breaking: long range dependencies

 1RSB computation assumes there is no clusters within clusters. Believed to be the relevant regime for a large class of CSPs (large enough q or large enough K).

RS equations / first moment:
$$Z_{RS} = q^N \left(1 - \frac{q}{q^K}\right)^M$$

- clusters of size e^{Ns} are $e^{\Sigma(s)}$ many
- Σ is called the **complexity**
- typical solutions = solutions in clusters of size e^{Ns[★]} (exponential approximation for N → ∞)

RS equations / first moment: $Z_{RS} = q^N \left(1 - \frac{q}{q^K}\right)^M$

 $Z_{RS} = \# \text{ assignments} \times (1 - \text{Prob(monochromatic clause}))^{(\#\text{clauses})}$

- clusters of size e^{Ns} are $e^{\Sigma(s)}$ many
- Σ is called the complexity
- typical solutions = solutions in clusters of size e^{Ns^{*}} (exponential approximation for N → ∞)

RS equations / first moment: $Z_{RS} = q^N \left(1 - \frac{q}{q^K}\right)^M$

 $Z_{RS} = \# \text{ assignments} \times (1 - \text{Prob}(\text{monochromatic clause}))^{(\#\text{clauses})} \\ = \mathbb{E}[Z]$

- clusters of size e^{Ns} are $e^{\Sigma(s)}$ many
- Σ is called the complexity
- typical solutions = solutions in clusters of size e^{Ns^{*}} (exponential approximation for N → ∞)

RS equations / first moment: $Z_{RS} = q^N \left(1 - \frac{q}{q^K}\right)^M$

 $Z_{RS} = \# \text{ assignments} \times (1 - \text{Prob}(\text{monochromatic clause}))^{(\#\text{clauses})}$ $= \mathbb{E}[Z]$ $\Rightarrow \mathbb{E}[\ln Z/N] \le \ln q + \alpha \ln (1 - 1/q^{K-1})$

- clusters of size e^{Ns} are $e^{\Sigma(s)}$ many
- Σ is called the **complexity**
- typical solutions = solutions in clusters of size e^{Ns[★]} (exponential approximation for N → ∞)

RS equations / first moment: $Z_{RS} = q^N \left(1 - \frac{q}{q^K}\right)^M$

$$Z_{RS} = \# \text{ assignments} \times (1 - \text{Prob}(\text{monochromatic clause}))^{(\#\text{clauses})}$$
$$= \mathbb{E}[Z]$$
$$\Rightarrow \mathbb{E}[\ln Z/N] \le \ln q + \alpha \ln (1 - 1/q^{K-1})$$
$$\Rightarrow \alpha_{\text{col}} \le \alpha_{\text{RS}} = -\ln q / \ln (1 - 1/q^{K-1}) \text{ upper bound}$$

- clusters of size e^{Ns} are $e^{\Sigma(s)}$ many
- Σ is called the complexity
- typical solutions = solutions in clusters of size e^{Ns^{*}} (exponential approximation for N → ∞)

Asymptotics of phase transitions thresholds - RS

Reasoning in terms of average connectivities $\ell = \alpha K$

$$\ell_{
m RS} = - {\it K} \ln {\it q} / \ln \left(1 - 1/{\it q}^{{\it K}-1}
ight)$$

Expanding at q fixed, $K
ightarrow \infty$

$$\ell_{\mathrm{RS}} = Kq^{K-1} \ln q - rac{K}{2} \ln q + O\left(rac{K \ln q}{q^{K-1}}
ight)$$

• Expansion in $1/q^{K-1}$, small when either $K \to \infty$ or $q \to \infty$

NB: ER and regular expected to give same asymptotic behavior !

Asymptotics of phase transitions thresholds - RS

Reasoning in terms of average connectivities $\ell = \alpha K$

$$\ell_{
m RS} = - {\it K} \ln {\it q} / \ln \left(1 - 1/{\it q}^{{\it K}-1}
ight)$$

Expanding at q fixed, $K
ightarrow \infty$

$$\ell_{\rm RS} = Kq^{K-1} \ln q - \frac{K}{2} \ln q + O\left(\frac{K \ln q}{q^{K-1}}\right)$$
$$q=2 \quad \ell_{\rm RS} = K2^{K-1} \ln 2 - \frac{K}{2} \ln 2 + O\left(\frac{K}{2^{K-1}}\right)$$
$$K=2 \quad \ell_{\rm RS} = 2q \ln q - \ln q + O\left(\frac{\ln q}{q}\right)$$

• Expansion in $1/q^{K-1}$, small when either $K \to \infty$ or $q \to \infty$

NB: ER and regular expected to give same asymptotic behavior !

Asymptotics - Condensation and Colorability

Leading orders $\ell_{\rm cond} \sim \ell_{\rm col} \sim \ell_{\rm RS}$ proven [Dyer et al & Ayre et al '15]

Expanding further at q fixed, ${\cal K} \to \infty,$ in $1/q^{{\cal K}-1}$

$$\begin{array}{l} \blacktriangleright \quad \text{Condensation} \ \left(\Sigma(s*) = 0 \right) \\ \ell_{\text{cond}} = \mathcal{K}q^{\mathcal{K}-1} \ln q - \frac{\mathcal{K}}{2} \ln q - \frac{\mathcal{K}}{2} \left(1 - \frac{1}{q} \right) 2 \ln 2 + \tilde{O} \left(\frac{1}{q^{\mathcal{K}-1}} \right) \end{array}$$

► Colorability
$$(\sup_{s} \Sigma(s) = 0)$$

 $\ell_{col} = Kq^{K-1} \ln q - \frac{K}{2} \ln q - \frac{K}{2} \left(1 - \frac{1}{q}\right) + \tilde{O}\left(\frac{1}{q^{K-1}}\right)$
with $\tilde{O}\left(\frac{1}{q^{K-1}}\right) = O\left(\frac{poly(K,lnq)}{q^{K-1}}\right)$

Recovers

 known subleading orders at q = 2 or K = 2 [Zdeborová et al '07, Braunstein et al '16]

rigorous results for hypergraphs [Dyer et al '15, Ayre et al '15]

Apparition of frozen variables in typical solutions, conjectured to be equivalent to a naive reconstruction problem.

Apparition of frozen variables in typical solutions, conjectured to be equivalent to a naive reconstruction problem.

Apparition of frozen variables in typical solutions, conjectured to be equivalent to a naive reconstruction problem.

Apparition of frozen variables in typical solutions, conjectured to be equivalent to a naive reconstruction problem.

 Probability η_L for the root to be frozen in a color given the coloring at generation L

$$\eta_L = f(\eta_{L-1})$$

- Allow $L \to \infty$ for fixed point η
- Rigidity $\eta > 0$

Expanding at q fixed, $K \to \infty$, in $1/q^{K-1}$

$$\ell_r = q^{K-1} \left(\ln \left((K-1)(q-1) \right) + \ln \ln Kq + 1 + o(1) \right)$$

Recovers

Asymptotics for graph coloring and hypergraph bicoloring

$$q=2 \quad \ell_r=2^{K-1}\left(\ln K+\ln \ln K+1+O\left(\frac{\ln \ln K}{\ln K}\right)\right)$$

$$K=2 \quad \ell_r=q(\ln q+\ln \ln q+1+o(1))$$

▶ Gap in regimes $\ell_r \ll \ell_{
m cond} \sim \ell_{
m col} \sim \ell_{
m RS} \sim q^{K-1} K \ln q$

Numerical evaluations for ER small q and K - Generic scenario

$$q = 4$$
, $K = 3$, $\alpha = \ell/K$

Similar behavior for all cases $q \ge 3$ and $K \ge 3$, or $q \ge 2$ and $K \ge 5$

Numerical evaluations for ER - q = 2 K = 3

- ▶ 1RSB local instability makes ℓ_{col} not tight, only upper bound
- ► Continuous transition l_{clust} = l_{cond} = l_{KS} (Similar behavior for q = 3 and K = 2 [Zdeborová et al '07])

Numerical evaluations for ER - q = 2 K = 4

- \blacktriangleright 1RSB local instability makes ℓ_{col} not tight, only upper bound
- \blacktriangleright Continuous transition $\ell_{clust} = \ell_{cond} = \ell_{KS}$, but discontinuity in condensed phase
- Coexistence of two 1RSB solutions (planted models)

Conclusions

Main results

- Generalized asymptotics $O(\frac{poly(K,lnq)}{q^{K-1}})$
- Numerical evaluations

	$\ell_{\rm clust}$	$\ell_r(m=1)$	$\ell_{\rm cond}$	$\ell_{\rm col}$	$\ell_{\rm RS}$	$\ell_{\mathrm{stab}}^{\mathrm{RS}}$	$\ell_{\rm I}^{\rm SP}$	$\ell_{\mathrm{II}}^{\mathrm{SP}}$
q = 2 K = 3	4.50	(7.37)	4.50	(6.32)	7.23	4.50	6.07	6.16
q = 2 K = 4	16.33	(21.62)	16.33	(19.62)	20.76	16.33	19.35	17.84
q = 2 K = 5	47.4	(52.63)	51.5	52.32	53.70	56.25	59.42	43.9
q = 3 K = 3	25.06	(28.07)	26.2	26.92	27.98	32.00	33.62	23.9
q = 3 K = 4	97.7	105.88	114.3	115.04	116.44	225.33	225.51	90.7
q = 4 K = 3	56 20	61.09	62.7	63.3	64 44	112 50	112 78	52 7

 Two cases where 1RSB predictions of l_{col} is only an upper bound (not tight) because of local instability toward more steps of symmetry breaking

Publication preprint: arXiv:1707.01983 !

Thanks for your attention !