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CSPs, complexity and random instances

A constraint satisfaction problem (CSP) is a set of variables under
a set of constraints.
Question :

Is there an assignement satisfying all the constraints ?

» Worst case instances require an extensive search to be
answered: exponential run time and NP complexity.

Studying random CSPs consists in assigning a probability to each
instance.
Question :

Are typical instances satisfiable ?

> Average-case properties can be studied with analytical and
numerical methods.



Hypergraph g-coloring

Definition
» N Potts variables x; on vertices :
X; € {]., 2, ..q}
» M constraints A, on hyperedges :

0 if all variables x; are equal
1 otherwise

B siean) = {

Solutions:
» Coloring x is solution = no hyperedge is monochromatic
» The set of solutions is S = {x/A,(xg,) = 1,Vu}
» Define Z = |S| = # proper colorings



Random instances of hypergraph g-coloring

Random ensembles

» K-uniform E—regular: choose uniformly among hypergraphs with M
hyperedges of size K and N nodes of degree ¢

» K-uniform Erdds-Réyni, average degree { = KM /N:
choose uniformly M hyperedges from all the (ﬁ) possibility
(i.e. d ~ Poisson(¢))

All results are derived
> in the large size limit N — co, M — oo

» with finite density of constraints « = M/N = (/K
(i.e. sparse hypergraphs)

Density « controls how difficult is the coloring problem
» Existence of a sharp satistifiability/colorability threshold a

» Existence of several structural changes of S for a < acel



Phase transitions in random CSPs with the cavity method

> Clusters: connected subset of solutions in configuration space.

» Frozen variables: take same value in all solutions of a cluster.



Previous works around g-coloring of hypergraphs

Physics conjectures have refined progressively the picture of the
phase transitions
» Coloring on graph [Krzakala et al. '04, Zdeborova et al '07]

> Bicoloring of regular hypergraphs [Castellani et al '03, Dall'Asta et
al '08, Braunstein et al '16]

Rigorous works

» hypergraph bicoloring and NAE-SAT [Achlioptas et al '06
(algorithmic barriers and phase transitions,freezing), Coja-Oghlan et
al 12’ (condensation), Bapst et al '14 (existence and asymptotic
location of condensation at positive temperature),Achlioptas et al
06’ (leading order of colorability),Coja-Oghlan et al 12" (additional
term to asymptotics of col),Ding et al '13 (location of colorability)]

> hypergraph g-coloring: [Krivelevich et al '97 (asymptotics of the
chromatic number),Dyer et al '15 (generalisation to hypergraph of
graph asymptotics of colorability(Achlioptas and Naor)), Ayre et al
'15 (improving last results).]



Two different regimes for the cavity method
For the uniform probability distribution over valid colorings

» Replica Symmetric regime: correlations decay fast
(shortest loops O(In N))

> Replica Symmetry Breaking: long range dependencies
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» 1RSB computation assumes there is no clusters within
clusters. Believed to be the relevant regime for a large class of
CSPs (large enough q or large enough K).



RS formula and RSB complexity

M
RS equations / first moment: Zgs = gV (1 — iK)

RSB equation: Zjgsg = [ dseNstE()) = eN(s"+2(s))

Ns ¥(s)

> clusters of size €™ are e many

> > is called the complexity

. - . . . *
» typical solutions = solutions in clusters of size e™*

(exponential approximation for N — o)
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Asymptotics of phase transitions thresholds - RS

Reasoning in terms of average connectivities { = aK
lrs = —Klng/In(1—1/¢%71)

Expanding at g fixed, K — oo

K Kling
_ K—-1
ERS—Kq |nq—2|nq—|—0<qK_1>

K-1

» Expansion in 1/q"~*, small when either K — 0o or ¢ — o0

NB: ER and regular expected to give same asymptotic behavior !
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Asymptotics - Condensation and Colorability

Leading orders £eong ~ Leol ~ ¢rs proven

Expanding further at q fixed, K — oo, in 1/gX~1

> Condensation (X(s%) = 0)
gcond - Kinllnqi glr‘CI* % (17 %)2“124’6(#)

> Colorability (sup £(s) =0)

ecol:KqK 1'”@‘%'”‘7‘%( _%)—FO(ﬁ)

with O (qK{l) 0 (W)

Recovers

> known subleading orders at g =2 or K =2

» rigorous results for hypergraphs



Asymptotics - Rigidity (1/2)

Apparition of frozen variables in typical solutions, conjectured to
be equivalent to a naive reconstruction problem.
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Asymptotics - Rigidity (1/2)

Apparition of frozen variables in typical solutions, conjectured to
be equivalent to a naive reconstruction problem.

» Probability ; for the root to be
frozen in a color given the
coloring at generation L

ne = f(nL-1)

» Allow L — oo for fixed point n
» Rigidity n >0
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Asymptotics - Rigidity (2/2)

Expanding at q fixed, K — oo, in 1/¢K~1

6y =q" 1 (In((K—1)(g—1))+InlnKg+ 1+ o(1))

Recovers

» Asymptotics for graph coloring and hypergraph bicoloring

q=2 4 —oK— l(ln K+Inln K+1+O(InInK )

K=2 {4,=q(Ing+Inlng+1+0(1))

» Gap in regimes £, < leond ~ leol ~ lrs ~ ¢¥ 1K Ing



Numerical evaluations for ER small g and K - Generic

scenario
g=4 K=3, a=(/K
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Similar behavior for all cases g >3 and K >3, org>2and K > 5



Numerical evaluations for ER-g=2 K =3

» 1RSB local instability makes ¢., not tight, only upper bound
» Continuous transition .ust = feond = YKS

(Similar behavior for g =3 and K =2 )
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Numerical evaluations for ER- g =2 K =4

» 1RSB local instability makes /., not tight, only upper bound

» Continuous transition £eust = fecond = fKxs , but discontinuity
in condensed phase

» Coexistence of two 1RSB solutions (planted models)
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Conclusions

Main results
. . oly(K,In
» Generalized asymptotics O(W)
q
» Numerical evaluations
Coust  Lr(M=1)  feond Lol RS &e, &t &r

g=2K=3 4.50 (7.37) 4.50 (6.32) 723 4.50 6.07 6.16
g=2K=4 16.33 (21.62) 16.33 (19.62) 20.76 16.33 19.35 17.84
g=2K=5 47.4 (52.63) 51.5 52.32 53.70 56.25 59.42 439
g=3K=3 25.06 (28.07) 26.2 26.92 27.98 32.00 33.62 23.9
g=3K=4 97.7 105.88 114.3 115.04 116.44 225.33 225.51 90.7
g=4K=3 56.20 61.09 62.7 63.3 64.44 112.50 112.78 52.7

» Two cases where 1RSB predictions of /.. is only an upper
bound (not tight) because of local instability toward more
steps of symmetry breaking

Publication preprint: arXiv:1707.01983 !

Thanks for your attention !
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