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Collaborative research on 
human health

There are many data sharing challenges in human 
health research: 

• Secondary use of clinical data for research: can 
we use existing hospital records for tasks such 
as comparative effectiveness research? 

• Designing multi-site studies: multi-site clinical 
trials, meta-analyses on original data, etc. 

• Collaborative research/data sharing initiatives to 
get population statistics from research subjects.



Research consortia for 
human health

Research consortia are common in many 
research areas involving human health: 

• focused on specific conditions: 
Alzheimer’s, autism, breast cancer, etc. 

• strong mandate to share data (e.g. from 
the NIH) 

• significant concerns about privacy and 
ethics



Privacy technologies can 
help research consortia 

Offering privacy protections can incentivize 
researchers to join research consortia: 

• Allow research groups to hold and maintain 
“control” over their data. 

• Need to design software systems to allow 
consortium members to run analyses 

• What is “privacy” in this context?



State of the art: ENIGMA
• Improve reproducibility, 

sample sizes by allowing 
easier meta-analyses. 

• Example : genetic variation 
associated with intercranial 
and hippocampal volumes. 

• 30+ working groups on a 
wide range of conditions 
and topics.

``The ENIGMA Network brings 
together researchers in imaging 
genomics to understand brain 

structure, function, and disease, 
based on brain imaging and 

genetic data.''

http://enigma.ini.usc.edu



ENIGMA Workflow
• Study proposal is approved by 

ENIGMA managers. 

•  Analyses performed on local sites 
and emailed to ENIGMA manager as 
Excel spreadsheets. 

• Manager has to perform ``manual'' 
meta-analysis.



Collaborative Informatics 
Neuroimaging Suite

• End-to-end system for managing data for 
studies on the brain 

• Current usage: 37,903 participants in 
42,961 scan sessions from 612 studies for 
a total of 486,955 clinical assessments. 

• Data from 34 states, 38 countries



COINSTAC
Extend COINS to to allow automated 
analyses:  

• register data sets in COINSTAC 

• perform automated analyses using 
message passing 

• data held locally, analyses run 
automatically



Typical applications
Focus on popular  
neuroimaging tools: 

• Feature learning: ICA,  
IVA, NMF, deep learning… 

• Regression and classification: ridge 
regression, LASSO, SVM, etc. 

• Visualization: t-SNE, network visualization, etc.



What about privacy?
What sort of privacy can we 
guarantee in a system like 
COINSTAC? 

• hand-waving: “data is held 
locally” 

• formal: develop DP algorithms 
for neuroimaging tasks



Building DP into COINSTAC
• Designing decentralized/distributed 

versions of some of these algorithms is 
sometimes open. 

• Given a distributed algorithm, we can 
apply “the DP toolkit” to make a DP 
version. 

• “Utility first” approach to setting ε. 



Challenges
Types of challenges in using DP: 

• Statistical 

• Definitional 

• Algorithmic 

• Policy



Small n, large p
The goal is to leverage multiple data sets to get 
larger sample size to learn about the population: 

• Number of samples is still small. MRIs are big. 

• Constants matter, log factors matter. 

• Algorithm performance is very data dependent. 

• How can we understand non-asymptotic 
performance?

≈



Types of algorithms

Much of the work in differentially private learning has 
been driven by trends in “big data:” 

• Other domains often have preferred tools/methods. 

• Visualization is very important. 

• How should we expand the “basic toolkit” to allow 
easier development of these tools? ≈



ε- versus (ε,δ)-DP

Practitioners want stronger privacy guarantees: δ = 0. 

• Risk averse: nonzero δ is seen as unacceptable. 

• Practically: choosing δ ≈ 1/n destroys utility. 

• Strong composition rules are nice, but may not help 
as much: can we get better (ε,0) algorithms or help 
make smaller δ practical?≈



Multi-stage algorithms
Computational analyses in neuroimaging involve 
processing pipelines: 

• Many (or all) stages need to guarantee DP. 

• How should we think about allocating privacy risk 
across stages? Is there something better than 
empirical? 

• Pipelines are used more than once: can we reuse 
parameter tuning to ease overall privacy loss?

≈



Prior domain knowledge
Domain experts either “know” or assume “w.l.o.g.” many 
things about their data: 

• Priors are a good way to incorporate this information, but 
knowledge may not be explicitly encoded Bayes-style. 

• Restricting the data domain (or database schema) 
seems like a good start, but many prior assumptions are 
about the “population.” 

• What kind of property testing methods should we use/
develop? Is local sensitivity enough?

≈



Trust models in consortia
Research consortia have different trust models and 
assumptions.  

• Extreme view 1: everyone is trusted here, this is just 
between “friends” etc. 

• Extreme view 2: I’m not going to let those #$%^# 
look at my hard-earned data. 

• In reality, we operate somewhere in between…
≈



Less pessimistic models
Much of the utility loss comes from conservative (strong) 
threat modeling in DP: 

• Real workflows will require significant interaction with 
the data  

• Privacy budgets may need to be renewed, privacy 
restrictions may expire. 

• Are there some relaxations or different threat models (or 
modified privacy definitions) that are appropriate for 
these systems?

≈



Lessons learned

• Good application domains have (i) mandate or 
desire for data sharing that is (ii) hampered by 
privacy concerns 

• Not all algorithms/problems may be appropriate for 
differential privacy (at least for now). 

• Accept large ε, at least initially.
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