
Marco Gaboardi
University at Buffalo, SUNY

Differential Privacy and Verification

Given a program P, is it
differentially private?

P

yes?

no?

Verification
Tool

P

yes?

no?

Verification
Tool

Proof

Given a differentially private
program P, does it maintain its

accuracy promises?

Given a differentially private
program P that maintains its
accuracy promises, can we

guarantee that it is also
efficient?

An algorithm
Algorithm 2 DualQuery

Input: Database D 2 R|X | (normalized) and linear queries q1, . . . , q
k

2 {0, 1}|X |.
Initialize: Let Q =

S
k

j=1 qj [q
j

, Q1 uniform distribution on Q,

T =

16 log |Q|
↵2

, ⌘ =

↵

4

, s =
48 log

⇣
2|X |T

�

⌘

↵2
.

For t = 1, . . . , T :
Sample s queries {q

i

} from Q according to Qt.
Let q :=

1
s

P
i

q
i

.
Find xt with hq, xti � max

x

hq, xi � ↵/4.
Update: For each q 2 Q:
Qt+1

q

:= exp(�⌘hq, xt �Di) ·Qt

q

.
Normalize Qt+1.

Output synthetic database bD :=

S
T

t=1 x
t.

4.1 Privacy

The privacy proofs are largely routine, based on the composition theorems. Rather than fixing " and solving
for the other parameters, we present the privacy cost " as function of parameters T, s, ⌘. Later, we will tune
these parameters for our experimental evaluation. We will use the privacy of the following mechanism (due
to McSherry and Talwar [26]) as an ingredient in our privacy proof.

Definition 4.1 (McSherry and Talwar [26]). Given some arbitrary output range R, the exponential mecha-
nism with score function S selects and outputs an element r 2 R with probability proportional to

exp

✓
"S(D, r)

2�

◆
,

where � is the sensitivity of S, defined as

� = max

D,D

0:|D4D

0|=1,r2R
|S(D, r)� S(D0, r)|.

The exponential mechanism is "-differentially private.

We first prove pure "-differential privacy.

Theorem 4.2. DualQuery is "-differentially private for

" =
⌘T (T � 1)s

n
.

Proof. We will argue that sampling from Qt is equivalent to running the exponential mechanism with some
quality score. At round t, let {xi} for i 2 [t � 1] be the best responses for the previous rounds. Let r(q, d)
be defined by

r(q,D) =

t�1X

i=1

(q(xi)� q(D)),

7

A program

https://github.com/ejgallego/dualquery/

Some issues
• Are the algorithms bug-free?

• Do the implementations respect their specifications?

• Is the system architecture bug-free?

• Is the code efficient?

• Do the optimization preserve privacy and accuracy?

• Is the actual machine code correct?

• Is the full stack attack-resistant?

Outline

• Few more words on program verification,

• Challenges in the verification of differential
privacy,

• Few verification methods developed so far,

• Looking forward.

Figure 1: A Selection of SVT Variants
Input/Output shared by all SVT Algorithms
Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no more than ∆, either a sequence of thresholds
T = T1, T2, · · · or a single threshold T (see footnote ∗), and c, the maximum number of queries to be answered with ⊤.
Output: A stream of answers a1, a2, · · · , where each ai ∈ {⊤,⊥} ∪ R and R denotes the set of all real numbers.

Algorithm 1 An instantiation of the SVT proposed in this paper.
Input: D,Q,∆,T = T1, T2, · · · , c.
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ − ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ϵ2)
5: if qi(D) + νi ≥ Ti + ρ then
6: Output ai = ⊤
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 2 SVT in Dwork and Roth 2014 [8].
Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/2, ρ = Lap (c∆/ϵ1)
2: ϵ2 = ϵ− ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ϵ1)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤, ρ = Lap (c∆/ϵ2)
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 3 SVT in Roth’s 2011 Lecture Notes [15].
Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1),
2: ϵ2 = ϵ − ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (c∆/ϵ2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = qi(D) + νi
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 4 SVT in Lee and Clifton 2014 [13].
Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/4, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ− ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (∆/ϵ2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 5 SVT in Stoddard et al. 2014 [18].
Input: D,Q,∆, T .
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ − ϵ1
3: for each query qi ∈ Q do
4: νi = 0
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤
7:
8: else
9: Output ai = ⊥

Algorithm 6 SVT in Chen et al. 2015 [1].
Input: D,Q,∆,T = T1, T2, · · · .
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ− ϵ1
3: for each query qi ∈ Q do
4: νi = Lap (∆/ϵ2)
5: if qi(D) + νi ≥ Ti + ρ then
6: Output ai = ⊤
7:
8: else
9: Output ai = ⊥

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6
ϵ1 ϵ/2 ϵ/2 ϵ/2 ϵ/4 ϵ/2 ϵ/2

Scale of threshold noise ρ ∆/ϵ1 c∆/ϵ1 ∆/ϵ1 ∆/ϵ1 ∆/ϵ1 ∆/ϵ1
Reset ρ after each output of ⊤ (unnecessary) Yes

Scale of query noise νi 2c∆/ϵ2 2c∆/ϵ2 c∆/ϵ1 ∆/ϵ2 0 ∆/ϵ2
Outputting qi + νi instead of ⊤ (not private) Yes
Outputting unbounded ⊤’s (not private) Yes Yes

Privacy Property ϵ-DP ϵ-DP ∞-DP
(

1+6c
4 ϵ

)

-DP ∞-DP ∞-DP

Figure 2: Differences among Algorithms 1-6.

∗ Algorithms 1 and 6 use a sequence of thresholds T = T1, T2, · · · , allowing different thresholds for different queries. The other
algorithms use the same threshold T for all queries. We point out that this difference is mostly syntactical. In fact, having an SVT where
the threshold always equals 0 suffices. Given a sequence of queries q1, q2, · · · , and a sequence of thresholds T = T1, T2, · · · , we can
define a new sequence of queries ri = qi − Ti, and apply the SVT to ri using 0 as the threshold to obtain the same result. In this paper,
we decide to use thresholds to be consistent with the existing papers.

Some successful stories - 1

• CompCert - a fully verified C compiler,

• Sel4, CertiKOS - formal verification of OS
kernel

• A formal proof of the Odd order theorem,

• A formal proof of Kepler conjecture  
(lead by T. Hales).

Some successful stories - 1

• CompCert - a fully verified C compiler,

• Sel4, CertiKOS - formal verification of OS
kernel

• A formal proof of the Odd order theorem,

• A formal proof of Kepler conjecture  
(lead by T. Hales).

Years of work from very specialized researchers!

Some successful stories - II
• Automated verification for Integrated Circuit

Design.

• Automated verification for Floating point
computations,

• Automated verification of Boeing flight control -
Astree,

• Automated verification of Facebook code - Infer.

Some successful stories - II
• Automated verification for Integrated Circuit

Design.

• Automated verification for Floating point
computations,

• Automated verification of Boeing flight control -
Astree,

• Automated verification of Facebook code - Infer.

The years of work go in the design of the techniques!

Verification trade-offs

expressivity

required
expertise

granularity
of the analysis

What program verification isn’t…

• Algorithm design,

• Trial and error,

• Program testing,

• System engineering,

• A certification process.

• Designing languages for non-experts,

• Guaranteeing the correctness of algorithms,

• Guaranteeing the correctness of code,

• Designing automated techniques for
guaranteeing differential privacy,

• Help providing tools for certification process.

What program verification can
help with…

The challenges of differential
privacy

Given ε,δ ≥ 0, a mechanism M: db →O is
(ε,δ)-differentially private iff
∀b1, b2 :db at distance one and for every S⊆O:

Pr[M(b1)∈ S] ≤ exp(ε)· Pr[M(b2)∈ S] + δ

• Relational reasoning,

• Probabilistic reasoning,

• Quantitative reasoning  

A 10 thousand ft view on program
verification

+ expert provided 
annotations

verification 
tools

(semi)-decision procedures 
(SMT solvers, ITP)

Work-flow
A:8

mechanism described as a program

program annotated with assertions

whole set of VCs

VCs not solvable automatically

verified mechanism

expert manually adds assertions

proof checker generates VCs

automatic solver checks VCs

interactive solver checks VCs

Fig. 2: Verification workflow

We will later discuss our verification of VCG in more detail, but for now, it is enough to
note that VCG takes a list of buyers and a list of goods. VCG will output a permutation
of goods (representing the assigninment), and a corresponding list of payments.
1 def Rsmdet(j, coins, truety, report) =
2 (rs´i, ss, i) = coins;
3 vcgbuyers = (report, rs´i);
4 vcggoods = ss;
5 (surrs, pays) = Vcg(vcgbuyers, vcggoods);
6 return (surrs[j], pays[j])

For a brief explanation, line (2) names the three components of coins: the replicas,
the surrogates, and the slot; line (3) puts the agent’s report in the proper slot for the
replicas; and the code at line (6) selects the surrogate and payment.

The Expwts function implements the w. function from Equation (1), with an additional
parameter to indicate the agent:
1 def Expwts(j, t, s) =
2 sample others´j = mun´1;
3 algInput = (s, others´j);
4 outcome = alg(algInput);
5 return expect_num {
6 value(t, outcome)
7 }

The expect_num function takes the expectation of a numeric distribution.
To check the BIC property, we will code the expected utility for the first bidder, and

then check that this function is maximized by truthful reporting. To decompose the
code a bit, we will suppose that the function takes in a list of functions othermoves that
correspond to transforming each of the other bidder’s type.

We elide the distribution rsmcoins for lack of space; it defines the distribution over
the coins to R, i.e., sampling the replica r, the two surrogates s1, s2, and the coin i. On
line (2) we take expectation of the function Helper over these coins, with expect.

Draft., Vol. V, No. N, Article A, Publication date: January YYYY.

VCs = Verification Conditions

Semi-decision procedures

• Require a good decomposition of the
problem,

• Handle well logical formulas, numerical
formulas and their combination,

• Limited support for probabilistic reasoning
(usually through decision procedures for
counting).

Compositional Reasoning about the
privacy budget

• We can reason about DP programs by monitoring
the privacy budget,

• If we have basic components for privacy we can just
focus on counting,

• It requires a limited reasoning about probabilities,

• This way of reasoning adapt to other compositions.

Sequential Composition

Let Mi be ✏i-di↵erentially private (1  i  k).

Then M(x) = (M1(x), . . . ,Mk(x)) is
Pk

i=0 ✏i.

 CDF(X) = number of records with value ≤ X.

CDF(Xn)

.....

CDF(50)=4

CDF(40)=3

CDF(30)=2

Joe
Black

29 19144 diabets
Bob 48 19146 tumor
Jim 25 34505 flue

Alice
Smey

62 19144 diabets
Bill 39 16544 anemia
Sam 61 19144 diabets
... List of

buckets

Iterated - CDF

PINQ-like languages - McSherry

it-CDF (raw : data) (budget : R) (buckets : list) (ε: R)
 : list
{
 var agent = new PINQAgentBudget(budget);
 var db = new PINQueryable<data>(rawdata, agent);
 foreach (var b in buckets)

 b = db.where(y => y.val ≤ b).noisyCount(ε);
 yield return b;
}

agent is
responsible for

the budget

it-CDF (raw : data) (budget : R) (buckets : list) (ε: R)
 : list
{
 var agent = new PINQAgentBudget(budget);
 var db = new PINQueryable<data>(rawdata, agent);
 foreach (var b in buckets)

 b = db.where(y => y.val ≤ b).noisyCount(ε);
 yield return b;
}

PINQ-like languages - McSherry

raw data are
accessed through
a PINQueryable

it-CDF (raw : data) (budget : R) (buckets : list) (ε: R)
 : list
{
 var agent = new PINQAgentBudget(budget);
 var db = new PINQueryable<data>(rawdata, agent);
 foreach (var b in buckets)

 b = db.where(y => y.val ≤ b).noisyCount(ε);
 yield return b;
}

PINQ-like languages - McSherry

we have
transformations
(scaling factor)

it-CDF (raw : data) (budget : R) (buckets : list) (ε: R)
 : list
{
 var agent = new PINQAgentBudget(budget);
 var db = new PINQueryable<data>(rawdata, agent);
 foreach (var b in buckets)

 b = db.where(y => y.val ≤ b).noisyCount(ε);
 yield return b;
}

PINQ-like languages - McSherry

it-CDF (raw : data) (budget : R) (buckets : list) (ε: R)
 : list
{
 var agent = new PINQAgentBudget(budget);
 var db = new PINQueryable<data>(rawdata, agent);
 foreach (var b in buckets)

 b = db.where(y => y.val ≤ b).noisyCount(ε);
 yield return b;
} we have

transformations 
(scaling factor)

aggregate operations
(actual budget
consumption)

PINQ-like languages - McSherry

it-CDF (raw : data) (budget : R) (buckets : list) (ε: R)
 : list
{
 var agent = new PINQAgentBudget(budget);
 var db = new PINQueryable<data>(rawdata, agent);
 foreach (var b in buckets)

 b = db.where(y => y.val ≤ b).noisyCount(ε);
 yield return b;
}

Enough budget?

We can check
local vs global

budget

Compositional reasoning about
sensitivity

• It allows to decompose the  
analysis/construction of a DP program,

• A metric property of the function (DMNS06),

• It requires a limited reasoning about probabilities,

• Similar worst case reasoning as basic composition.

GS(f) = max

v⇠v0
|f(v)� f(v0)|

it-CDF (b : data) (buckets : list) : list
{
case buckets of
 |nil => nil
 |x::xs => size (filter (fun y => y ≤ x) b)))

:: it-CDF xs b
}

Fuzz-like languages - Penn

it-CDF (b :[??] data) (buckets : list) : list
{
case buckets of
 |nil => nil
 |x::xs => size (filter (fun y => y ≤ x) b)))

:: it-CDF xs b
}

Fuzz-like languages - Penn
How

sensitive?

it-CDF (b :[??] data) (buckets : list) : list
{
case buckets of
 |nil => nil
 |x::xs => size (filter (fun y => y ≤ x) b)))

:: it-CDF xs b
}

Let’s assume |- size : [1]data --o R

Fuzz-like languages - Penn

Similarly, |- filter : [∞]prop --o [1]data --o R

it-CDF (b :[??] data) (buckets : list) : list
{
case buckets of
 |nil => nil
 |x::xs => size (filter (fun y => y ≤ x) b)))

:: it-CDF xs b
}

Fuzz-like languages - Penn

it-CDF (b :[??] data) (buckets : list) : list
{
case buckets of
 |nil => nil
 |x::xs => size (filter (fun y => y ≤ x) b)))

:: it-CDF xs b
}

(b :[n+1] data)

(b :[0] data)

Fuzz-like languages - Penn

it-CDF (b :[n] data) (buckets : list[n]) : list
{
case buckets of
 |nil => nil
 |x::xs => size (filter (fun y => y ≤ x) b)))

:: it-CDF xs b
}

n-sensitive!

Fuzz-like languages - Penn

it-CDF (b :[ε*n] data) (buckets : list[n]) (ε:num): nlist
{
case buckets of
 |nil => nil
 |x::xs => Lap ε size (filter (fun y => y ≤ x) b)))

:: it-CDF xs b
}

adding Noise!

Fuzz-like languages - Penn

Reasoning about DP via probabilistic
coupling - BGGHS

• Generalize indistinguishability to other relations allowing more
general relational reasoning,

• More involved reasoning about probability distances and
divergences,

• Preserving the ability to use semi-decision logical and numerical
procedures.

For two (sub)-distributions µ1, µ2 2 Dist(A) we have an

approximate coupling µ1 C✏,�(R)µ2 i↵

there exists µ 2 Dist(A⇥A) s.t.

• suppµ ✓ R
• ⇡iµ  µi

• maxA(⇡iµ� e✏µi, µi � e✏⇡iµ)  �

pRHL-like languages

CDF example similar to the previous ones

b ⇠ b0) (itcdf b l ✏) C✏,0(=) (itcdf b0 l ✏)

pRHL-like languages

CDF example similar to the previous ones

b ⇠ b0) (itcdf b l ✏) C✏,0(=) (itcdf b0 l ✏)

Having two copies of the
program allows to compare
different parts of the same

program.

Why this helps?

It allows to internalize better the properties of Laplace

(Lap (1/✏) v1) C|k+v1�v2|✏,0(x1 + k = x2) (Lap (1/✏) v2)

can be used to assert symbolically several facts about
probabilities.

Why this helps?

expresses

(Lap (1/✏) v1) C|v1�v2|✏,0(x1 = x2) (Lap (1/✏) v2)

��� log
⇣
Pr(Lap (1/✏) v1 = r)

Pr(Lap (1/✏) v2 = r)

⌘���  |v1 � v2|✏

Why this helps?
|v1 � v2|  k) (Lap (1/✏) v1) C2k✏,0(x1 + k = x2) (Lap (1/✏) v2)

expresses

|v1 � v2|  k)
��� log

⇣
Pr(Lap (1/✏) v1 = r + k)

Pr(Lap (1/✏) v2 = r)

⌘���  2k✏

Why this helps?

(Lap (1/✏) v1) C0,0(x1 � x2 = v1 � v2) (Lap (1/✏) v2)

expresses

��� log
⇣
Pr(Lap (1/✏) v2 + k = r + k)

Pr(Lap (1/✏) v2 = r)

⌘���  0

Other works
• Bisimulation based methods (Tschantz&al - Xu&al)

• Fuzz with distributed code (Eigner&Maffei)

• Satisfiability modulo counting (Friedrikson&Jha)

• Bayesian Inference (BFGGHS)

• Adaptive Fuzz (Penn)

• Accuracy bounds (BGGHS)

• Continuous models (Sato)

• Lightweight verification - injective function argument
(Zhang&Kifer)

• Relational symbolic execution for R - generating DP
counterexamples (Chong&Farina&Gaboardi)

• Formalizing the local model (Ebadi&Sands)

• zCDP (BGHS)

• All of these tools are research projects and
most of them are usable only by experts.

Challenges

Can we use them to certify correct a library of basic
mechanism?

Which non-expert we should aim for?

Other Challenges
• Are there other fundamental principles that we

can use?

• How can we extend them to verify accuracy and
efficiency?

• There are several works on the verification of
randomness, floating points, SMC, etc. Can we
combine the different approaches?

• How can we internalize more involved data
models assumptions?

• From benchmarks to certification?

