Differential Privacy and Verification

Marco Gaboardi
University at Buffalo, SUNY
Given a program P, is it differentially private?
P

Verification Tool

yes?

no?
Given a differentially private program P, does it maintain its accuracy promises?
Given a differentially private program P that maintains its accuracy promises, can we guarantee that it is also efficient?
Algorithm 2 DualQuery

Input: Database $D \in \mathbb{R}^{||X||}$ (normalized) and linear queries $q_1, \ldots, q_k \in \{0, 1\}^{||X||}$.

Initialize: Let $Q = \bigcup_{j=1}^k q_j \cup \overline{q_j}$, Q^1 uniform distribution on Q,

$$T = \frac{16 \log |Q|}{\alpha^2}, \quad \eta = \frac{\alpha}{4}, \quad s = \frac{48 \log \left(\frac{2|X|T}{\beta} \right)}{\alpha^2}.$$

For $t = 1, \ldots, T$:
- Sample s queries $\{q_i\}$ from Q according to Q^t.
- Let $\overline{q} := \frac{1}{s} \sum_i q_i$.
- Find x^t with $\langle \overline{q}, x^t \rangle \geq \max_x \langle \overline{q}, x \rangle - \alpha/4$.

Update: For each $q \in Q$:
- $Q^{t+1}_q := \exp(-\eta \langle q, x^t - D \rangle) \cdot Q^t_q$.
- Normalize Q^{t+1}.

Output synthetic database $\hat{D} := \bigcup_{t=1}^T x^t$.

4.1 Privacy

The privacy proofs are largely routine, based on the composition theorems. Rather than fixing "and solving for the other parameters, we present the privacy cost as function of parameters T, s, η.

Later, we will tune these parameters for our experimental evaluation. We will use the privacy of the following mechanism (due to McSherry and Talwar [26]) as an ingredient in our privacy proof.

Definition 4.1 (McSherry and Talwar [26]).

Given some arbitrary output range R, the exponential mechanism selects and outputs an element $r \in R$ with probability proportional to $\exp(\alpha S(D, r))$, where α is the sensitivity of S, defined as $\alpha = \max_D, D_0 : |D - D_0| = 1$.

The exponential mechanism is "\(-differentially private."

We first prove pure "\(-differential privacy.

Theorem 4.2. DualQuery is "\(-differentially private for $\eta = \frac{T}{s}$."

Proof. We will argue that sampling from Q^t is equivalent to running the exponential mechanism with some quality score. At round t, let $\{x_i\}$ for $i \in [t]$ be the best responses for the previous rounds. Let $r(q, D) = t \sum_{i=1}^t \langle q, x_i \rangle - \alpha/4$.

For each $q \in Q$:
- $Q^{t+1}_q := \exp(-\eta \langle q, x^t - D \rangle) \cdot Q^t_q$.
- Normalize Q^{t+1}.

Output synthetic database $\hat{D} := \bigcup_{t=1}^T x^t$.

An algorithm
A program

https://github.com/ejgallego/dualquery/
Some issues

- Are the algorithms bug-free?
- Do the implementations respect their specifications?
- Is the system architecture bug-free?
- Is the code efficient?
- Do the optimization preserve privacy and accuracy?
- Is the actual machine code correct?
- Is the full stack attack-resistant?
Outline

• Few more words on program verification,
• Challenges in the verification of differential privacy,
• Few verification methods developed so far,
• Looking forward.
Carnegie Mellon mistakenly accepts 800 applicants, then rejects them

By Holly Yan and Katia Hetter, CNN

Updated 2:27 PM ET, Wed February 18, 2015
Algorithm 1 An instantiation of the SVT proposed in this paper.

Input: $D, Q, \Delta, T = T_1, T_2, \ldots, c$.
1: $\epsilon_1 = \epsilon/2$, $\rho = \text{Lap} (\Delta/\epsilon_1)$
2: $\epsilon_2 = \epsilon - \epsilon_1$, count = 0
3: for each query $q_i \in Q$ do
4: $\nu_i = \text{Lap} (2c\Delta/\epsilon_2)$
5: if $q_i(D) + \nu_i \geq T_i + \rho$ then
6: Output $a_i = \top$
7: count = count + 1, **Abort** if count $\geq c$.
8: else
9: Output $a_i = \perp$

Algorithm 2 SVT in Dwork and Roth 2014 [8].

Input: D, Q, Δ, T, c.
1: $\epsilon_1 = \epsilon/2$, $\rho = \text{Lap} (c\Delta/\epsilon_1)$
2: $\epsilon_2 = \epsilon - \epsilon_1$, count = 0
3: for each query $q_i \in Q$ do
4: $\nu_i = \text{Lap} (2c\Delta/\epsilon_1)$
5: if $q_i(D) + \nu_i \geq T + \rho$ then
6: Output $a_i = \top$, $\rho = \text{Lap} (c\Delta/\epsilon_2)$
7: count = count + 1, **Abort** if count $\geq c$.
8: else
9: Output $a_i = \perp$

Algorithm 3 SVT in Roth’s 2011 Lecture Notes [15].

Input: D, Q, Δ, T, c.
1: $\epsilon_1 = \epsilon/2$, $\rho = \text{Lap} (\Delta/\epsilon_1)$
2: $\epsilon_2 = \epsilon - \epsilon_1$, count = 0
3: for each query $q_i \in Q$ do
4: $\nu_i = \text{Lap} (c\Delta/\epsilon_2)$
5: if $q_i(D) + \nu_i \geq T + \rho$ then
6: Output $a_i = q_i(D) + \nu_i$
7: count = count + 1, **Abort** if count $\geq c$.
8: else
9: Output $a_i = \perp$

Algorithm 4 SVT in Lee and Clifton 2014 [13].

Input: D, Q, Δ, T, c.
1: $\epsilon_1 = \epsilon/4$, $\rho = \text{Lap} (\Delta/\epsilon_1)$
2: $\epsilon_2 = \epsilon - \epsilon_1$, count = 0
3: for each query $q_i \in Q$ do
4: $\nu_i = \text{Lap} (\Delta/\epsilon_2)$
5: if $q_i(D) + \nu_i \geq T + \rho$ then
6: Output $a_i = \top$
7: count = count + 1, **Abort** if count $\geq c$.
8: else
9: Output $a_i = \perp$

Algorithm 5 SVT in Stoddard et al. 2014 [18].

Input: D, Q, Δ, T.
1: $\epsilon_1 = \epsilon/2$, $\rho = \text{Lap} (\Delta/\epsilon_1)$
2: $\epsilon_2 = \epsilon - \epsilon_1$
3: for each query $q_i \in Q$ do
4: $\nu_i = 0$
5: if $q_i(D) + \nu_i \geq T + \rho$ then
6: Output $a_i = \top$
7: else
8: Output $a_i = \perp$

Algorithm 6 SVT in Chen et al. 2015 [1].

Input: $D, Q, \Delta, T = T_1, T_2, \ldots$.
1: $\epsilon_1 = \epsilon/2$, $\rho = \text{Lap} (\Delta/\epsilon_1)$
2: $\epsilon_2 = \epsilon - \epsilon_1$
3: for each query $q_i \in Q$ do
4: $\nu_i = \text{Lap} (\Delta/\epsilon_2)$
5: if $q_i(D) + \nu_i \geq T_i + \rho$ then
6: Output $a_i = \top$
7: else
8: Output $a_i = \perp$

Table: Algorithm Variants

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>ϵ_1</th>
<th>$\epsilon/2$</th>
<th>$\epsilon/2$</th>
<th>$\epsilon/2$</th>
<th>$\epsilon/4$</th>
<th>$\epsilon/2$</th>
<th>$\epsilon/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale of threshold noise ρ</td>
<td>Δ/ϵ_1</td>
<td>$c\Delta/\epsilon_1$</td>
<td>Δ/ϵ_1</td>
<td>Δ/ϵ_1</td>
<td>Δ/ϵ_1</td>
<td>Δ/ϵ_1</td>
<td></td>
</tr>
<tr>
<td>Reset ρ after each output of \top (unnecessary)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Scale of query noise ν_i</td>
<td>2$c\Delta/\epsilon_2$</td>
<td>2$c\Delta/\epsilon_2$</td>
<td>2$c\Delta/\epsilon_2$</td>
<td>2$c\Delta/\epsilon_2$</td>
<td>0</td>
<td>2$c\Delta/\epsilon_2$</td>
<td></td>
</tr>
<tr>
<td>Outputting $q_i + \nu_i$ instead of \top (not private)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Outputting unbounded \top’s (not private)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Privacy Property</td>
<td>ϵ-DP</td>
<td>ϵ-DP</td>
<td>ϵ-DP</td>
<td>ϵ-DP</td>
<td>ϵ-DP</td>
<td>ϵ-DP</td>
<td>ϵ-DP</td>
</tr>
</tbody>
</table>

Notes

- **Alg. 1**: An instantiation of the SVT proposed in this paper.
- **Alg. 2**: SVT in Dwork and Roth 2014 [8].
- **Alg. 3**: SVT in Roth’s 2011 Lecture Notes [15].
- **Alg. 4**: SVT in Lee and Clifton 2014 [13].
- **Alg. 5**: SVT in Stoddard et al. 2014 [18].
- **Alg. 6**: SVT in Chen et al. 2015 [1].

- ϵ_1: Threshold for sensitivity normalization.
- ϵ: Privacy parameter.
- Δ: Scale of threshold noise.
- ρ: Scale of query noise.
- ν_i: Query noise for each query q_i.
- \top: Output 1.
- \perp: Output 0.
Some successful stories - I

- CompCert - a fully verified C compiler,
- Sel4, CertiKOS - formal verification of OS kernel
- A formal proof of the Odd order theorem,
- A formal proof of Kepler conjecture (lead by T. Hales).
Some successful stories - I

- CompCert - a fully verified C compiler,
- Sel4, CertiKOS - formal verification of OS kernel
- A formal proof of the Odd order theorem,
- A formal proof of Kepler conjecture (lead by T. Hales).

Years of work from very specialized researchers!
Some successful stories - II

• Automated verification for Integrated Circuit Design.
• Automated verification for Floating point computations,
• Automated verification of Boeing flight control - Astree,
• Automated verification of Facebook code - Infer.
Some successful stories - II

• Automated verification for Integrated Circuit Design.
• Automated verification for Floating point computations,
• Automated verification of Boeing flight control - Astree,
• Automated verification of Facebook code - Infer.

The years of work go in the design of the techniques!
Verification trade-offs

required expertise

expressivity

granularity of the analysis
What program verification isn’t…

- Algorithm design,
- Trial and error,
- Program testing,
- System engineering,
- A certification process.
What program verification can help with…

- Designing languages for non-experts,
- Guaranteeing the correctness of algorithms,
- Guaranteeing the correctness of code,
- Designing automated techniques for guaranteeing differential privacy,
- Help providing tools for certification process.
The challenges of differential privacy

Given $\varepsilon, \delta \geq 0$, a mechanism $M: db \rightarrow O$ is (ε, δ)-differentially private iff

\[
\forall b_1, b_2 : db \text{ at distance one and for every } S \subseteq O:
Pr[M(b_1) \in S] \leq \exp(\varepsilon) \cdot Pr[M(b_2) \in S] + \delta
\]

- Relational reasoning,
- Probabilistic reasoning,
- Quantitative reasoning
A 10 thousand ft view on program verification

- Verification tools
- Expert provided annotations
- (semi)-decision procedures (SMT solvers, ITP)
Work-flow

- mechanism described as a program
 - expert manually adds assertions
- program annotated with assertions
 - proof checker generates VCs
- whole set of VCs
 - automatic solver checks VCs
 - VCs not solvable automatically
 - interactive solver checks VCs
- verified mechanism

VCs = Verification Conditions
Semi-decision procedures

• Require a good decomposition of the problem,

• Handle well logical formulas, numerical formulas and their combination,

• Limited support for probabilistic reasoning (usually through decision procedures for counting).
Compositional Reasoning about the privacy budget

Sequential Composition
Let M_i be ϵ_i-differentially private ($1 \leq i \leq k$). Then $M(x) = (M_1(x), \ldots, M_k(x))$ is $\sum_{i=0}^{k} \epsilon_i$.

• We can reason about DP programs by monitoring the privacy budget,

• If we have basic components for privacy we can just focus on counting,

• It requires a limited reasoning about probabilities,

• This way of reasoning adapt to other compositions.
Iterated - CDF

CDF(X) = number of records with value ≤ X.

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Code</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>29</td>
<td>19144</td>
<td>diabets</td>
</tr>
<tr>
<td>Bob</td>
<td>48</td>
<td>19146</td>
<td>tumor</td>
</tr>
<tr>
<td>Jim</td>
<td>25</td>
<td>34505</td>
<td>flue</td>
</tr>
<tr>
<td>Alice</td>
<td>62</td>
<td>19144</td>
<td>diabets</td>
</tr>
<tr>
<td>Bill</td>
<td>39</td>
<td>16544</td>
<td>anemia</td>
</tr>
<tr>
<td>Sam</td>
<td>61</td>
<td>19144</td>
<td>diabets</td>
</tr>
</tbody>
</table>

CDF(Xn) List of buckets

CDF(50) = 4
CDF(40) = 3
CDF(30) = 2
PINQ-like languages - McSherry

it-CDF (raw : data) (budget : R) (buckets : list) (ε : R)
 : list
{
 var agent = new PINQAgentBudget(budget);
 var db = new PINQueryable<data>(rawdata, agent);
 foreach (var b in buckets)
 {
 b = db.where(y => y.val ≤ b).noisyCount(ε);
 yield return b;
 }
}
it-CDF (raw : data) (budget : R) (buckets : list) (ε : R) : list
{
 var agent = new PINQAgentBudget(budget);
 var db = new PINQueryable<data>(rawdata, agent);
 foreach (var b in buckets)
 {
 b = db.where(y => y.val ≤ b).noisyCount(ε);
 yield return b;
 }
}
PINQ-like languages - McSherry

```csharp
it-CDF (raw : data) (budget : R) (buckets : list) (ε : R)
  : list
{
  var agent = new PINQAgentBudget(budget);
  var db = new PINQueryable<data>(rawdata, agent);
  foreach (var b in buckets)
    b = db.where(y => y.val ≤ b).noisyCount(ε);
  yield return b;
}
```

raw data are accessed through a PINQueryable
we have transformations (scaling factor)
PINQ-like languages - McSherry

```csharp
it-CDF (raw : data) (budget : R) (buckets : list) (\(\varepsilon\) : R) : list
{
    var agent = new PINQAgentBudget(budget);
    var db = new PINQueryable<data>(rawdata, agent);
    foreach (var b in buckets)
    {
        b = db.where(y => y.val \leq b).noisyCount(\(\varepsilon\));
        yield return b;
    }
}
```

we have transformations (scaling factor)

aggregate operations (actual budget consumption)
Enough budget?

\[
\text{it-CDF} \ (\text{raw : data}) \ (\text{budget : R}) \ (\text{buckets : list}) \ (\varepsilon : R) \\
\text{ : list}
\]

{
 var agent = new PINQAgentBudget(budget);
 var db = new PINQueryable<data>(rawdata, agent);
 foreach (var b in buckets)

 b = db.where(y => y.val \leq b).noisyCount(\varepsilon);
 yield return b;
}
Compositional reasoning about sensitivity

\[GS(f) = \max_{v \sim v'} |f(v) - f(v')| \]

- It allows to decompose the analysis/construction of a DP program,
- A metric property of the function (DMNS06),
- It requires a limited reasoning about probabilities,
- Similar worst case reasoning as basic composition.
Fuzz-like languages - Penn

\[
\text{it-CDF} \ (b : \text{data}) \ (\text{buckets} : \text{list}) : \text{list} \\
\{ \\
\quad \text{case buckets of} \\
\quad \quad |\text{nil} \Rightarrow \text{nil} \\
\quad \quad |x::xs \Rightarrow \text{size} \ (\text{filter} \ (\text{fun} \ y \Rightarrow y \leq x) \ b)) \\
\quad \quad \quad :: \ \text{it-CDF} \ xs \ b \\
\}
\]
Fuzz-like languages - Penn

```
let it-CDF (b : [??] data) (buckets : list) : list =
  let rec aux buckets =
    match buckets with
    | [] => nil
    | x :: xs -> size (filter (fun y => y <= x) b)) :: aux xs
  in aux buckets
```

How sensitive?
Fuzz-like languages - Penn

\[\text{let-CDF} \ (b : \text{data}) \ (\text{buckets} : \text{list}) : \text{list} \ \\
\{ \ \\
\quad \text{case buckets of} \ \\
\qquad | \text{nil} \ => \text{nil} \ \\
\qquad | x::xs => \text{size} (\text{filter} (\text{fun} \ y => y \leq x) \ b)) \ \\
\quad \quad :: \text{let-CDF} \ xs \ b \ \\
\} \ \\
\]

Let's assume \(|- \text{size} : [1]\text{data} \rightarrow \text{O} \ \text{R} \)
Similarly, \(-\ filter : [\infty]prop \rightarrow [1]data \rightarrow R\)
Fuzz-like languages - Penn

```
\text{it-CDF} \ (b : [??] \ data) \ (\text{buckets} : \text{list}) : \text{list} \\
\{ \\
\text{case buckets of} \\
|\text{nil} \ => \text{nil} \\
|x::xs \ => \text{size} \ (\text{filter} \ (\text{fun} \ y \Rightarrow y \leq x) \ b)) \\
\} :: \text{it-CDF} \ xs \ b \\
(b : [0] \ data) \\
(b : [n+1] \ data)
```
it-CDF (b : [n] data) (buckets : list[n]) : list
{
 case buckets of
 | nil => nil
 | x::xs => size (filter (fun y => y ≤ x) b))
 :: it-CDF xs b
}

n-sensitive!
Fuzz-like languages - Penn

\[
\text{it-CDF} (b : [\varepsilon^* n] \text{ data}) (\text{buckets : list}[n]) (\varepsilon: \text{num}): \text{nlist}
\{
\text{case buckets of}
\begin{align*}
|\text{nil} & \Rightarrow \text{nil} \\
|\text{x::xs} & \Rightarrow \text{Lap } \varepsilon \text{ size (filter (fun y \Rightarrow y \leq x) b))}
\end{align*}
:: \text{it-CDF} \text{ xs b}
\}
\]
Reasoning about DP via probabilistic coupling - BGGHS

For two (sub)-distributions $\mu_1, \mu_2 \in \text{Dist}(A)$ we have an approximate coupling $\mu_1 C_{\epsilon, \delta}(R) \mu_2$ iff there exists $\mu \in \text{Dist}(A \times A)$ s.t.

- $\text{supp}\mu \subseteq R$
- $\pi_i \mu \leq \mu_i$
- $\max_A (\pi_i \mu - e^\epsilon \mu_i, \mu_i - e^\epsilon \pi_i \mu) \leq \delta$

- Generalize indistinguishability to other relations allowing more general relational reasoning,

- More involved reasoning about probability distances and divergences,

- Preserving the ability to use semi-decision logical and numerical procedures.
pRHL-like languages

CDF example similar to the previous ones

\[b \sim b' \Rightarrow (\text{itcdf } b \ l \ \epsilon) \ C_{\epsilon,0}(=) \ (\text{itcdf } b' \ l \ \epsilon) \]
pRHL-like languages

CDF example similar to the previous ones

\[b \sim b' \Rightarrow (\text{itcdf } b \ l \ \epsilon) \ C_{\epsilon,0}(=) \ (\text{itcdf } b' \ l \ \epsilon) \]

Having two copies of the program allows to compare different parts of the same program.
Why this helps?

It allows to internalize better the properties of Laplace

\[
\left(\text{Lap} \left(\frac{1}{\epsilon} v_1 \right) \right) \mathcal{C}_{|k + v_1 - v_2|, \epsilon, 0}(x_1 + k = x_2) \left(\text{Lap} \left(\frac{1}{\epsilon} v_2 \right) \right)
\]

can be used to assert symbolically several facts about probabilities.
Why this helps?

\[(\text{Lap} (1/\epsilon) v_1) \cdot C_{|v_1-v_2|\epsilon,0}(x_1 = x_2) \cdot (\text{Lap} (1/\epsilon) v_2)\]

expresses

\[|\log \left(\frac{\Pr(\text{Lap} (1/\epsilon) v_1 = r)}{\Pr(\text{Lap} (1/\epsilon) v_2 = r)} \right) | \leq |v_1 - v_2|\epsilon\]
Why this helps?

\[|v_1 - v_2| \leq k \Rightarrow (\text{Lap}(1/\epsilon) v_1) \mathcal{C}_{2k\epsilon,0}(x_1 + k = x_2) (\text{Lap}(1/\epsilon) v_2) \]

expresses

\[|v_1 - v_2| \leq k \Rightarrow \left| \log \left(\frac{\Pr(\text{Lap}(1/\epsilon) v_1 = r + k)}{\Pr(\text{Lap}(1/\epsilon) v_2 = r)} \right) \right| \leq 2k\epsilon \]
Why this helps?

\[(\text{Lap}(1/\epsilon) v_1) C_{0,0}(x_1 - x_2 = v_1 - v_2) (\text{Lap}(1/\epsilon) v_2) \]

expresses

\[\left| \log \left(\frac{\Pr(\text{Lap}(1/\epsilon) v_2 + k = r + k)}{\Pr(\text{Lap}(1/\epsilon) v_2 = r)} \right) \right| \leq 0 \]
Other works

- Bisimulation based methods (Tschantz & al - Xu & al)
- Fuzz with distributed code (Eigner & Maffei)
- Satisfiability modulo counting (Friedrikson & Jha)
- Bayesian Inference (BFGGHS)
- Adaptive Fuzz (Penn)
- Accuracy bounds (BGGHS)
- Continuous models (Sato)
- Lightweight verification - injective function argument (Zhang & Kifer)
- Relational symbolic execution for R - generating DP counterexamples (Chong & Farina & Gaboardi)
- Formalizing the local model (Ebadi & Sands)
- zCDP (BGHS)
Challenges

- All of these tools are research projects and most of them are usable only by experts.

Can we use them to certify correct a library of basic mechanism?

Which non-expert we should aim for?
Other Challenges

- Are there other fundamental principles that we can use?
- How can we extend them to verify accuracy and efficiency?
- There are several works on the verification of randomness, floating points, SMC, etc. Can we combine the different approaches?
- How can we internalize more involved data models assumptions?
- From benchmarks to certification?