Differential Privacy and Verification

Marco Gaboardi
University at Buffalo, SUNY

Given a program P, is it
differentially private?

1 <

Verification

Tool

1 <

Proof

Verification

Tool

Given a differentially private
program P, does it maintain its
accuracy promises?

Given a differentially private
program P that maintains its
accuracy promises, can we
guarantee that it is also
efficient?

An algorithm

Algorithm 2 DualQuery

Input: Database D € RI*T (normalized) and linear queries q1, - .., qr € {0, 1}|X .
Initialize: Let Q = U?f’zl qj Uqj, Q' uniform distribution on Q,

~ 161log |Q)

(8
T 2) Ui Za

87

Fort=1,...,T:
Sample s queries {¢; } from Q according to Q°.
Letq:= % > i i
Find z¢ with (g, 2*) > max,(q,) — a/4.
Update: For each g € O:

Qi1 = exp(—n(g.a’ - D)) - Q.

Normalize Q1.

Output synthetic database D := [J/_, z*.

A program

https://github.com/ejgallego/dualquery/

Some issues

Are the algorithms bug-free!

Do the implementations respect their specifications!?
Is the system architecture bug-free!?

Is the code efficient?

Do the optimization preserve privacy and accuracy!?
Is the actual machine code correct!

Is the full stack attack-resistant?

Qutline

Few more words on program verification,

Challenges in the verification of differential
privacy,

Few verification methods developed so far,

Looking forward.

2
&
~

¢ IND m

s RAL BT

»

Knight Capital Group
Jan Feb Mar Apr May Jun Jus
2012

US. Editio

Ad closed by Google

IR RIEE-Ie M AdChoices [>

Carnegie Mellon mistakenly accepts
300 applicants, then rejects them

Knight C:
~

By Holly Yan and Katia Hetter, CNN -
® Updated 2:27 PM ET, Wed February 18, 2015 xR G 1

Comey's father: TrL
'scared to death' o
director

Huma Abedin divor
Anthony Weiner

CLEE I

Algorithm 1 An instantiation of the SVT proposed in this paper.

Algorithm 2 SVT in Dwork and Roth 2014 [8].

Imput: D, Q,A, T =T1,T>,--- ,c.
1: e1 =¢/2, p=Lap(A/er)

2: e =€—¢€1, count=0

3: for each query ¢; € @ do

LRI A

v; = Lap (2cA/e2)
if ql(D) +uv, >T; + pthen

else

Outputa; = T
count = count + 1, Abort if count > c.
Output a; = L

Input: D, Q,A,T,c.

1: e1 =€¢/2, p=Lap(cA/er)
2: e2 =€— €1, count=0

3: for each query ¢; € @ do

4: v; = Lap (2cA/er)

5: if ¢:(D) 4+ v; > T + p then

6: Output a; = T, p = Lap(cA/e2)

7. count = count + 1, Abort if count > c.
8: else

9: Output a; = L

Algorithm 3 SVT in Roth’s 2011 Lecture Notes [15].

Algorithm 4 SVT in Lee and Clifton 2014 [13].

Input: D, Q,A,T,c.
1: e1 =€¢/2, p=Lap(A/er),

2:

€ =€—e€1, count=0

3: for each query ¢; € @ do

R A A

v; = Lap (cA/e2)
if gi(D) +v; > T + p then

Output a; = ¢;(D) + v;
count = count + 1, Abort if count > c.

else

Output a; = L

Input: D, Q,A,T,c.

1: e1 =¢/4, p=Lap(A/er)
2: ea =€—¢€1, count=0

3: for each query ¢; € @ do
4. V; = Lap (A/EQ)

5 if ¢i(D) + v; > T + p then

6 Outputa; =T

7. count = count + 1, Abort if count > c.
8 else

9 Output a; = L

Algorithm 5 SVT in Stoddard et al. 2014 [18].

Algorithm 6 SVT in Chen et al. 2015 [1].

Input: D, Q,A,T.
1: e1 =¢/2, p=_Lap(A/er)

2. €0 =€—¢€1

Imput: D,Q,A, T =T,,T5,---.
1: e1=¢/2, p=Lap(A/er)
2: €2 =€— €

3: for each query ¢; € @ do 3: for each query ¢; € @ do
4: v; =0 4 v, = Lap(A/e2)
5 if gi(D) + v; > T + p then 5 if gi(D) + v; > T; + p then
6: Outputa; = T 6: Outputa; = T
7: 7
8 else 8 else
9 Output a; = L 9 Output a; = L
Alg. 1 Alg.2 | Alg.3 Alg.4 Alg.5 | Alg.6
€1 €/2 €/2 €/2 e/4 €/2 €/2
Scale of threshold noise p Aler cAler | Aler Aler Aler | Aler
Reset p after each output of T (unnecessary) Yes
Scale of query noise v; 2cA/ex | 2¢AJea | cA/er Aes 0 Ales
Outputting ¢; + v; instead of T (not private) Yes
Outputting unbounded T’s (not private) Yes Yes
Privacy Property e-DP e-DP | 0o-DP | (£%%€)-DP | co-DP | oo-DP

Some successful stories - |

® CompCert - a fully verified C compiler,

® Sel4, CertiKOS - formal verification of OS
kernel

® A formal proof of the Odd order theorem,

® A formal proof of Kepler conjecture
(lead by T. Hales).

Some successful stories - |

® CompCert - a fully verified C compiler,

® Sel4, CertiKOS - formal verification of OS
kernel

® A formal proof of the Odd order theorem,

® A formal proof of Kepler conjecture
(lead by T. Hales).

Years of work from very specialized researchers!

Some successful stories - |l

® Automated verification for Integrated Circuit
Design.

® Automated verification for Floating point
computations,

® Automated verification of Boeing flight control -
Astree,

® Automated verification of Facebook code - Infer.

Some successful stories - |l

® Automated verification for Integrated Circuit
Design.

® Automated verification for Floating point
computations,

® Automated verification of Boeing flight control -
Astree,

® Automated verification of Facebook code - Infer.

The years of work go in the design of the techniques!

Verification trade-offs

required
expertise

expressivity
granularity
of the analysis

What program verification isn't...

® Algorithm design,
® Trial and error,

® Program testing,

® System engineering,

® A certification process.

What program verification can
help with...

® Designing languages for non-experts,
® Guaranteeing the correctness of algorithms,
® Guaranteeing the correctness of code,

® Designing automated techniques for
guaranteeing differential privacy,

® Help providing tools for certification process.

The challenges of differential

privacy

Given £,0 2 0, a mechanism M:db 2O is
(€,0)-differentially private iff
Vb, bz :db at distance one and for every SCO:

Pr[M(bi)e S] < exp(€) - Pr[M(ba)e S] + &

J

® Relational reasoning,
® Probabilistic reasoning,

® Quantitative reasoning

A 10 thousand ft view on program
verification

- I expert providec
annotations

verification ‘ ' (semi)-decision procedures
(SMT solvers, ITP)

Work-flow

[mechanism described as a program]

\(expert manually adds assertions)

[program annotated with assertions]

\(proof checker generates VCSJ

[whole set of VCs]

\[automatic solver checks VCSJ

[VCs not solvable automatically]

\(interactive solver checks VCSJ

[verified mechanism]

VCs = Verification Conditions

Semi-decision procedures

® Require a good decomposition of the
problem,

® Handle well logical formulas, numerical
formulas and their combination,

® |imited support for probabilistic reasoning
(usually through decision procedures for
counting).

Compositional Reasoning about the
privacy budget

Sequential Composition
Let M; be ¢;-differentially private (1 <1 < k).

Then M(z) = (M (z), ..., My(z)) is 35 €.

® We can reason about DP programs by monitoring
the privacy budget,

® |f we have basic components for privacy we can just
focus on counting,

® |t requires a limited reasoning about probabilities,

® This way of reasoning adapt to other compositions.

Iterated - CDF

CDF(X) = number of records with value < X.

CDF(Xn)

Joe [(29)] 19144 | diabets

Bob [(48)| 19146 | tumor

Jim |(25)| 34505 | flue CDF(0)=1
Alice | 62 9144 | diabets CDF(40)=3

Bill 6544 | anemia CDF(30)=2
Sam 61 9144 | diabets

List of

buckets

B ———

PINQ-like languages - McSherry

it—-CDF (raw : data) (budget : R) (buckets : list) (€: R)
: list

{
var agent = new PINQAgentBudget (budget);
var db = new PINQueryable<data>(rawdata, agent);
foreach (var b in buckets)
b = db.where(y = y.val = b).noisyCount(&);

yleld return b;

PINQ-like languages - McSherry

it—-CDF (raw : data) (budget : R) (buckets : list) (€: R)

+ list

{
var agent =(ﬁGW'PINQAgentBudget(budget)B

var db = new PINQueryable<data>(rawdata, agent);

foreach (var b in buckets)

yield return b; -

\

agent is
responsible for
the budget

J

PINQ-like languages - McSherry

1t-CDF (raw : data) (budget : R) (buckets :

{

+ list

var agent = new PINQAgentBudget (budget);

list) (£: R)

var db = new(?INQueryable<data>(rawdata, agentD;

foreach (var b in buckets)

yleld return b;

-

raw data are

~

accessed through
a PINQueryable

PINQ-like languages - McSherry

it—-CDF (raw : data) (budget : R) (buckets : list) (€: R)
: list

{
var agent = new PINQAgentBudget (budget);
var db = new PINQueryable<data>(rawdata, agent);
foreach (var b in buckets)
b = db.@vhere(y => y.val = bD.noisyCount(&);
yield’;eturn b;
} we have

transformations
(scaling factor)
_ J

\

PINQ-like languages - McSherry

it—-CDF (raw : data) (budget : R) (buckets : list) (€: R)
: list

{
var agent = new PINQAgentBudget (budget);
var db = new PINQueryable<data>(rawdata, agent);
foreach (var b in buckets)
b = db.@vhere(y => y.val = b).&loisyCount(ﬁ);)

yield’;eturn b;

) 4 .)
} we have aggregate operations
transformations (actual budget
(scaling factor) consumption)
o J

Enough budget!?

it-CDF (raw : data) (@udget : @) (buckets : list)
¢+ list

var agent = new PINQAgentBudget (budget);
var db = new PINQueryable<data>(rawdata, agent);
foreach (var b in buckets)

yield return b; - N
) We can check

local vs global
budget

Compositional reasoning about
sensitivity

GS(f) =max|f(v) — f(v')]

v~/
® |t allows to decompose the
analysis/construction of a DP program,
® A metric property of the function (DMNS06),
® |t requires a limited reasoning about probabilities,

® Similar worst case reasoning as basic composition.

Fuzz-like languages - Penn

1t-CDF (b : data) (buckets : list) : list

{

case buckets of
Inil => nil
|x::xs => size (filter (fun y =>y = x) b)))
:: 1t—CDF xs b

Fuzz-like languages - Penn

How

L sensitive!

it-CDF@: [22] da@(buckets : 1ist) : list
{

case buckets of
Inil => nil
|x::xs => size (filter (fun y => y = x) b)))
:: 1t-CDF xS b

Fuzz-like languages - Penn

1t—-CDF (b :[??] data) (buckets : list) : list

{
case buckets of
Inil => nil
| %2 :xs =(filter (fun y = y = x) b)))
¢k 1t-CDF xS b
} \

Let’s assume |- size : [1]data —o R

| —————

Fuzz-like languages - Penn

1t—-CDF (b :[??] data) (buckets : list) : list

{
case buckets of
Inil => nil
|x::xs => size ((fun y => y = x) b)))
:: 1t-CDF, XS b
} T

Similarly, |- filter : [©]prop ——o [1l]data ——o R

Fuzz-like languages - Penn

1t—-CDF (b :[??] data) (buckets : list) : list

{ .
case buckets of (b :[0] data)
lnil => nil «

|x::xs => size (filter (fun y => y = x) b)))

:: 1t-CDF xs b

(b :[n+1] data)

| e——— T

Fuzz-like languages - Penn

/ n-sensitive!
it—CDF @[n] data) Ybuckets : list[n]) : list
{

case buckets of
Inil => nil
|x::xs => size (filter (fun y => y = x) b)))
:: 1t-CDF xS b

Fuzz-like languages - Penn

1t—CDF (b :[€*n] data) (buckets : list[n]) (€:num): nlist

{
case buckets of
Inil => nil
|x::xs => Lap € size (filter (fun y =>/y < X) b)))
s it—Cm\
}

adding Noise!

S

Reasoning about DP via probabilistic
coupling - BGGHS

For two (sub)-distributions pui, s € Dist(A) we have an
approximate coupling 11 C, 5(R) po iff
there exists pu € Dist(A x A) s.t.

e suppu C R

® [l < [

o max(mip — e puy, phy — eSmip) <90

® Generalize indistinguishability to other relations allowing more
general relational reasoning,

® More involved reasoning about probability distances and
divergences,

® Preserving the ability to use semi-decision logical and numerical
procedures.

pPRHL-like languages

CDF example similar to the previous ones

b~ b = (itcdfble) Ceo(=) (itcdf b L)

pPRHL-like languages

CDF example similar to the previous ones

b~ b = (itcdfble) Ceo(=) (itcdf b L)

\ /

Having two copies of the
program allows to compare
different parts of the same
program.

R

Why this helps!?

It allows to internalize better the properties of Laplace

(Lap (1/€) 01) Cltpos—uafe (1 + k =) (Lap (1/e) v2)

can be used to assert symbolically several facts about
probabilities.

Why this helps!?

(Lap (1/€) v1) Clv, —vyle0(®1 = 22) (Lap (1/€) v2)

expresses

Pr(Lap (1/¢) v,
|10g (Pr(:

|
©
~~
ek
\
N
~—
-
\)

Why this helps!?
‘Ul — Ug‘ S k‘ — (ﬂ(l/e) 1)1) Cgk€,0($1 —+ k = £132) (@(1/6) ?}2)

expresses

Pr(Lap (1/€) v1 = r + k)
Pr(Lap (1/€) v2 = 1)

|vl—v2\§k:>‘log()‘g%e

Why this helps!?

(Lap (1/6) Ul) C0,0(xl — X9 = VU1 — Ug) (@(1/6) 2}2)

expresses

<0

Pr(Lap (1/€) vy + k = r + k)
|1Og(?f(@(l/e;@ —))|

Other works

Bisimulation based methods (Tschantz&al - Xu&al)
Fuzz with distributed code (Eigner&Maffei)
Satisfiability modulo counting (Friedrikson&|ha)
Bayesian Inference (BFGGHS)

Adaptive Fuzz (Penn)

Accuracy bounds (BGGHYS)

Continuous models (Sato)

Lightweight verification - injective function argument
(Zhang&Kifer)

Relational symbolic execution for R - generating DP
counterexamples (Chong&Farina&Gaboardi)

Formalizing the local model (Ebadi&Sands)
zCDP (BGHYS)

Challenges

® All of these tools are research projects and
most of them are usable only by experts.

Can we use them to certify correct a library of basic
mechanism!?

Which non-expert we should aim for?

Other Challenges

Are there other fundamental principles that we
can use!

How can we extend them to verify accuracy and
efficiency?

There are several works on the verification of
randomness, floating points, SMC, etc. Can we
combine the different approaches!?

How can we internalize more involved data
models assumptions?

From benchmarks to certification?

