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Task: 2000 range queries; Dataset: trace; 
Scale = 10000; domain size = 4096

Impressive progress (?)
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• Privacy researchers have adopted an idealized and simplistic view of a data 
analyst’s workflow, often ignoring: 

• data representation, data cleaning, model selection, feature selection, 
algorithm tuning, iterative analysis. 

• Practical performance of privacy algorithms is opaque to users and, in some 
cases, poorly understood by researchers. 

• The best algorithm for a task may depend on: setting of epsilon, “amount” 
of data, tunable algorithm parameters, data pre-processing (cleaning, 
representation) 

• Algorithm performance can be data-dependent because algorithms adapt 
or introduce bias. 

• The research community lacks rigorous methodology for empirical 
evaluation.

Obstacles to adoption
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Conflicting results
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From Li et al. PVLDB 2014
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Our inspiration
• Self-critique in machine learning: 

• E.g. simple classifiers work well in practice; algorithm improvements 
dwarfed by ignored real-world factors; extreme focus on UCI 
datasets. Holte 1993, Hand 2006, Carbonell 1992, Wagstaff 2012. 

• Value of benchmarks: 

• “When a field has good benchmarks, we settle debates and the field 
makes rapid progress.”  David Patterson, CACM 2012. 

• MLcomp: 

• Automated help for practitioners selecting algorithms for ML tasks.
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DPBench / DPComp.org
• A set of evaluation principles.  

• Tools to aid evaluation. 

• A benchmark study for the task of answering 
workloads of range queries: 
• 15 published algorithms evaluated under 

~8,000 distinct experimental configurations 

• A companion website: dpcomp.org

6

Principled evaluation of differentially private algorithms 
 using DPBench. In SIGMOD 2016.



Remainder of the talk
• 10 Principles 

• Setup for benchmark study 

• Overview of findings 

• Open problems 

• Our ongoing research efforts (motivated by dpcomp)
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Evaluation principles
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Diversity of inputs (Principles 1-4)

Diverse epsilon, diverse input data (scale, shape, domain size)

End-to-end privacy (Principles 5-7)

private pre- and post-processing; no free parameters; no side 
information.

Sound evaluation of output (Principles 8-10)
measure error variability; measure bias; compare algorithms using 

inputs that result in reasonable privacy and accuracy.



Task: Answering range queries
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Sensitive 
Dataset

name gender nationality grade

Alice Female US 91

Bob Male Canada 84

Carlos Male Peru 82

Darmesh Male India 97

Eloise Female France 88

Faith Female US 78

Ghita Female India 85

... ... … ...

Attributes 
(dimensions)

{gender, grade}

Workload 
of Range Queries

“Number of A female students”  
(count where gender=female 
and grade >= 93)
“Number of C students”  
(count where gender=* and  
 70 <= grade < 80)
…

Task: Given workload of counting range queries on 1-2 
dimensions, compute answers under ε-differential privacy



Diverse datasets
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Principle: Data-dependent algorithms should be 
evaluated on a diverse set of inputs

Frequency vector representation of input
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Frequency vector representation of input
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Properties: 
• domain size: length of frequency vector 
• scale: total number of records in database 
• shape: the frequency vector normalized by scale.

Desideratum: datasets that are diverse with respect to all three 
properties.



Data generation
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Systematically control for domain size and scale

Frequency vector x’
bucket

D, dom

Empirical dist. p
normalize

x’

Frequency vector x 
of scale msample

p, m

Shape

Dataset name Original % Zero Previous
Scale Counts works

1D datasets
ADULT 32,558 97.80% [10, 15]
HEPPH 347,414 21.17% [15]
INCOME 20,787,122 44.97% [15]
MEDCOST 9,415 74.80% [15]
TRACE 25,714 96.61% [1, 11, 27, 29]
PATENT 27,948,226 6.20% [15]
SEARCH 335,889 51.03% [1, 11, 27, 29]
BIDS-FJ 1,901,799 0% new
BIDS-FM 2,126,344 0% new
BIDS-ALL 7,655,502 0% new
MD-SAL 135,727 83.12% new
MD-SAL-FA 100,534 83.17% new
LC-REQ-F1 3,737,472 61.57% new
LC-REQ-F2 198,045 67.69% new
LC-REQ-ALL 3,999,425 60.15% new
LC-DTIR-F1 3,336,740 0% new
LC-DTIR-F2 189,827 11.91% new
LC-DTIR-ALL 3,589,119 0% new
2D datasets
BJ-CABS-S 4268780 78.17% [12]
BJ-CABS-E 4268780 76.83% [12]
GOWALLA 6442863 88.92% [21]
ADULT-2D 32561 99.30% [10]
SF-CABS-S 464040 95.04% [20]
SF-CABS-E 464040 97.31% [20]
MD-SAL-2D 70526 97.89% new
LC-2D 550559 92.66% new
STROKE 19435 79.02% new

Table 2: Overview of datasets.

6.1 Datasets
Table 2 is an overview of the datasets we consider. 11 of the

datasets have been used to evaluate private algorithms in prior work.
We have introduced 14 new datasets to increase shape diversity.
Datasets are described in Appendix A. The table reports the original
scale of each dataset. We use the data generator G described before
to generate datasets with scales of {103,104,105,106,107,108}.

The maximum domain size is 4096 for 1D datasets and 256×256
for 2D datasets. The table also reports the fraction of cells in x that
have a count of zero at this domain size. By grouping adjacent
buckets, we derive versions of each dataset with smaller domain
sizes. For 1D, the domain sizes are {256,512,1024,2048}; for
2D, they are {32 × 32,64 × 64,128 × 128,256 × 256}.

For each scale and domain size, we randomly sample 5 data vec-
tors from our data generator and for each data vector, we run the
algorithms 10 times.

6.2 Workloads & Loss Functions
We evaluate our algorithms on different workloads of range queries.

For 1D, we primarily use the Prefix workload, which consists of n
range queries [1, i] for each i ∈ [1, n]. The Prefix workload has
the desirable property that any range query can be derived by com-
bining the answers to exactly two queries from Prefix. For 2D, we
use 2000 random range queries as an approximation of the set of
all range queries.

As mentioned in Section 5, we use L2 as the loss function.

6.3 Algorithms
The algorithms compared are listed in Table 1. The dimension

column indicates what dimensionalities the algorithm can support;
algorithms labeled as Multi-D are included in both experiments.
Complete descriptions of algorithms appear in Appendix B.

6.4 Resolving End-to-End Privacy Violations
Inconsistent side information: Recall that Principle 7 prevents the

inappropriate use of private side information by an algorithm. SF,
MWEM, UGRID, and AGRID assume the true scale of the dataset
is known. To gauge any potential advantage gained from side in-
formation, we evaluated algorithm variants where a portion of the
privacy budget, denoted ⇢

total

, is used to noisily estimate the scale.
To set ⇢

total

, we evaluated the algorithms on synthetic data using
varying values of ⇢

total

. In results not shown, we find that set-
ting ⇢

total

= 0.05 achieves reasonable performance. For the most
part, the effect is modestly increased error (presumably due to the
reduced privacy budget available to the algorithm). However, the
error rate of MWEM increases significantly at small scales (sug-
gesting it is benefiting from side information). In Section 7, all
results report performance of the original unmodified algorithms.
While this gives a slight advantage to algorithms that use side infor-
mation, it also faithfully represents the original algorithm design.

Illegal parameter setting Table 1 shows all the parameters used
for each algorithm. Parameters with assignments have been set ac-
cording to fixed values provided by the authors of the algorithm.
Those without assignments are free parameters that were set in
prior work in violation of Principle 6.

For MWEM, the number of rounds T is a free variable that has
a major impact on MWEM’s error. According to a pre-print ver-
sion of [10], the best performing value of T is used for each task
considered. For the one-dimensional range query task considered,
T is set to 10. Similarly, for AHP, two parameters are left free: ⌘
and ⇢ which were tuned on the input data.

To adhere to Principle 6, we use the learning algorithm for setting
free parameters (Section 5.2) to set free parameters for MWEM
and AHP. In our experiments, the extended versions of the algo-
rithms are denoted MWEM∗ and AHP∗. In both cases, we train
on shape distributions synthetically generated from power law and
normal distributions.

For MWEM∗ we determine experimentally the optimal T ∈ [1,200]
for a range of ✏-scale products. As a result, T varies from 2 to
100 over the range of scales we consider. This improves the per-
formance of MWEM (versus a static setting of T ) and does not
violate our principles for private parameter setting. The success of
this method is an example of data-independent parameter setting.

SF requires three parameters: ⇢, k, F . Parameter F is free only
in the sense that it is a function of scale, which is side information
(as discussed above). For k, the authors propose a recommendation
of k = � n

10
� after evaluating various k on input datasets. Their eval-

uation, therefore, did not adhere to Principle 6. However, because
our evaluation uses different datasets, we can adopt their recom-
mendation without violating Principle 6 – in effect, their experi-
ment serves as a “training phase” for ours. Finally, ⇢ is a function
of k and F , and thus is no longer free once those are fixed.

6.5 Implementation Details
We use implementations from the authors for DAWA, GREEDY H,

H, PHP, EFPA, and SF. We implemented MWEM, H
b

, PRIVELET,
AHP, DPCUBE, AGRID, UGRID and QUADTREE ourselves in
Python. All experiments are conducted on Linux machines running
CentOS 2.6.32 (64-bit) with 16 Intel(R) Xeon(R) CPU E5-2643 0
@ 3.30GHz with 16G or 24G of RAM.

7. EXPERIMENTAL FINDINGS
We present our findings for the 1D and 2D settings. For the 1D

case, we evaluated 14 algorithms on 18 different datasets, each at 6
different scales and 4 different domain sizes. For 2D, we evaluated
14 algorithms on 9 different datasets, each at 6 scales and 4 domain
sizes. In total we evaluated 7,920 different experimental configu-
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Collect many real-
world datasets

Domain size
Coarsen domain

dom(grades) 
[0,100] 

or  
{A,B,C,D,F}  

or 
{pass, fail}

Scale
Sample with 
replacement

Input: real dataset D,  domain dom,  
          target scale m 

See paper for details



Measuring error

a stronger “signal” about the underlying properties of the data. We
will show that for many current algorithms, increasing scale and
increasing the privacy parameter ✏, have equivalent effects – they
both result a stronger signal. In addition, this sampling strategy
always results in datasets with integral counts (simply multiplying
the distribution by some scale factor may not). Finally, as we ex-
plain below, the sampling approach allows us to relate error rates
of privacy algorithms to empirically measured error.

4.3 Algorithm Repair Functions R
While automatically verifying whether an algorithm performs

additional pre- or post-processing that violates differential privacy
is out of the scope of this benchmark, we discuss two repair func-
tions help adhere to the free parameters and side information prin-
ciples (6 and 7, respectively).

Learning Free Parameter Settings R

param

. We present a
first cut solution to handling free parameters. Recall K

✓

denotes
that private algorithmK is instantiated with a vector of free param-
eters, ✓. The basic idea is to use a separate set of datasets to tune the
parameters; these datasets will not be used in the evaluation. Given
a set of training datasets D

train

, we apply data generator G and
learn a function R

param

∶ (✏, �x�1 , n) → ✓ that given the domain
size, scale and ✏ outputs parameters ✓ that result in the lowest error
for the algorithm. Note that, if an algorithm satisfies scale-epsilon
exchangeability (Sec. 4.6), it is sufficient to vary the product of
scale and ✏, and not both independently. Given this function, the
benchmark extends the algorithm by adaptively selecting param-
eter settings based on scale and epsilon. If the parameter setting
depends on scale, a part of the privacy budget is spent estimating
scale, and this introduces a new free parameter, namely the budget
spent for estimating scale. The best setting for this parameter can
also be learned in a similar manner.

Side Information R

side

. Algorithms which use non-private side
information can typically be corrected by devoting a portion of the
privacy budget to learning the required side information, then us-
ing the noisy value in place of the side information. This process is
difficult to automate but may be possible with program analysis in
some cases. This has the side-effect of introducing a new parame-
ter which determines the fraction of the privacy budget to devote to
this component of the algorithm, which in turn can be set using our
learning algorithm from Sec. 4.3.

4.4 Standards for Measuring Error E
M

Error. DPBENCH uses scaled average per-query error to quan-
tify an algorithm’s error on a workload.

DEFINITION 7 (SCALED AVERAGE PER-QUERY ERROR). Let
W be a workload of q queries, x a data vector and s = �x�1 its
scale. Let ŷ = K(x,W, ✏) denote the noisy output of algorithm K.
Given a loss function L, we define scale average per-query error as
1
s⋅qL(ŷ,Wx).

By reporting scaled error, we avoid considering a fixed absolute
error rate to be equivalent on a small scale dataset and a large scale
dataset. For example, for a given workload query, an absolute error
of 100 on a dataset of scale 1000 has very different implications
than an absolute error of 100 for a dataset with scale 100,000. In
our scaled terms, these common absolute errors would be clearly
distinguished as 0.1 and 0.001 scaled error. Accordingly, scaled
error can be interpreted in terms of population percentages. Using
scaled error also helps us define the scale-epsilon exchangeability
property in Sec. 4.6.

Considering per-query error allows us to compare the error on
different workloads of potentially different sizes. For instance,
when examining the effect of domain size n on the accuracy of
algorithms answering the identity workload, the number of queries
q equals n and hence would vary as n varies.

DPBENCH also uses a second notion of error, called population-
based per-query error. The data vector x can be considered a sam-
ple from a potentially infinite population with shape p = x� �x�1.
Rather than measuring the error between the algorithm answers ŷ,
and the true answers Wx on the sample x, population based error
measures the error between ŷ and the answers on the population p.

DEFINITION 8 (POPULATION-BASED AVERAGE PER-QUERY ERROR).
Let W be a workload of q queries, x a data vector, s = �x�1 its
scale and p = x� �x�1 its shape. Let ŷ = K(x,W) denote the
noisy output of algorithm K. Given a loss function L, we define
population-based average per-query error as 1

s⋅qL(ŷ, sWp).
Population-based error captures a combination of two errors –

the error esample = L(Wx, sWp) incurred by using a sample x
of size s, and the error eprivacy = L(ŷ,Wx) incurred by using a
differentially private algorithm. As we will show in the sequel,
population-based error aids in interpreting absolute error rates of
algorithms.

Measuring Error. The error measures (Definitions 7 and 8) are
random variables. We can estimate properties such as their mean
and variance through repeated executions of the algorithm. In ad-
dition to comparing algorithms using mean error, DPBENCH also
compares algorithms based on the 95 percentile of the error. This
takes into account the variability in the error (adhering to Princi-
ple 8) and might be an appropriate measure for a “risk averse” an-
alyst who prefers an algorithm with reliable performance over an
algorithm that has lower mean performance but is more volatile.
Means and 95 percentile error values are computed on multiple
independent repetitions of the algorithm over multiple samples x
drawn from the data generator to ensure high confidence estimates.

DPBENCH also identifies algorithms that are competitive for
state-of-the-art performance for each setting of scale, shape and do-
main size. An algorithm is competitive if it either (i) achieves the
lowest error, or (ii) the difference between its error and the lowest
error is not statistically significant. Significance is assessed using a
unpaired t-test with a Bonferroni corrected ↵ = 0.05�(n

algs

− 1),
for running (n

algs

− 1) tests in parallel. n

algs

denotes the num-
ber of algorithms being compared. Competitive algorithms can be
chosen both based on mean error (a “risk neutral” analyst) and 95
percentile error (a “risk averse” analyst). DPBENCH also empiri-
cally decomposes the error into bias and variance, using standard
statistical techniques.

4.5 Standards for Interpreting Error E
I

When drawing conclusions from experimental results, Principles
10 and 11 should be respected. One way to put error in context is
by comparing with appropriate baselines.

We use IDENTITY and UNIFORM (described in Sec. 2.3) as upper-
bound baselines. Since IDENTITY is a straightforward application
of the Laplace mechanism, we expect a more sophisticated algo-
rithm to provide a substantial benefit over the error achievable with
IDENTITY. Similarly, UNIFORM learns very little about x, only
its scale. An algorithm that offers error rates comparable or worse
than UNIFORM is unlikely to provide useful information in prac-
tical settings. Note that there might be a few settings where these
baselines can’t be beaten (e.g., when shape of x is indeed uniform).
However, an algorithm should be able to beat these baselines in a
majority of settings.
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Scale Absolute Error
Scaled 

Absolute Error

Dataset 1 1,000 100 0.100

Dataset 2 100,000 100 0.001

Example (scaled error):

Scaled error is also error in units of a “population percentage”



Algorithms considered
gorithm is differentially private. More precisely, the sequential ex-
ecution of k algorithms A1, . . . ,A

k

, each satisfying ✏

i

-differential
privacy, results in an algorithm that is ✏-differentially private for
✏ = ∑

i

✏

i

[19]. Hence, we may think of ✏ as representing an al-
gorithm’s privacy budget which can be allocated across its subrou-
tines.

A commonly used subroutine is the Laplace mechanism, a gen-
eral purpose algorithm for computing numerical functions on the
private data. It achieves privacy by adding noise to the function’s
output. We use Laplace(�) to denote the Laplace probability dis-
tribution with mean 0 and scale �.

DEFINITION 2 (LAPLACE MECHANISM [7]). Let f(I) denote
a function on I that outputs a vector in Rd. The Laplace mecha-
nism L is defined as L(I) = f(I)+ z, where z is a d-length vector
of random variables such that z

i

∼ Laplace(�f�✏).
The constant �f is called the sensitivity of f and is the maxi-

mum difference in f between any two databases that differ only by
a single record, �f =max

I,I

′∈nbrs(I) �f(I) − f(I ′)�1.

The Laplace mechanism can be used to provide noisy counts of
records satisfying arbitrary predicates. For example, suppose I

contains medical records and f reports two counts: the number of
male patients with heart disease and the number of female patients
with heart disease. The sensitivity of f is 1: given any database in-
stance I , adding one record to it (to produce neighboring instance
I

′), could cause at most one of the two counts to increase by ex-
actly 1. Thus, the Laplace mechanism would add random noise
from Laplace(1�✏) to each count and release the noisy counts.

2.2 Data Model and Task
The database I is an instance of a single-relation schema R(A),

with attributes A = {A1,A2, . . . ,A
`

}. Each attribute is discrete,
having an ordered domain (continuous attributes can be suitably
discretized). We are interested in answering range queries over this
data; range queries support a wide range of data analysis tasks in-
cluding histograms, marginals, data cubes, etc.

We consider the following task. The analyst specifies a subset of
target attributes, denoted B ⊆ A, and W, a set of multi-dimensional
range queries over B. We call W the workload. For example, sup-
pose the database I contains records from the US Census describ-
ing various demographic characteristics of US citizens. The analyst
might specify B = {age, salary} and a set W where each query is
of the form,

select count(*) from R
where a

low

≤ age ≤ a
high

and s

low

≤ salary ≤ s
high

with different values for a
low

, a
high

, s
low

, s
high

. We restrict our
attention to the setting where the dimensionality, k = �B�, is small
(our experiments report on k ∈ {1,2}). All the differentially private
algorithms considered in this paper attempt to answer the range
queries in W on the private database I while incurring as little
error as possible.

In this paper, we will often represent the database as a multi-
dimensional array x of counts. For B = {B1, . . . ,B

k

}, let n
j

de-
note the domain size of B

j

for j ∈ [1, k]. Then x has (n1 × n2 ×
. . . × n

k

) cells and the count in the (i1, i2, . . . , i
k

)th cell is

select count(*) from R
where B1 = i1 and B2 = i2 and . . .B

k

= i
k

To compute the answer to a query in W, one can simply sum the
corresponding entries in x. (Because they are range queries, the
corresponding entries form a (hyper-)rectangle in x.)

Properties Analysis
H P Dimen- Param- Side Consis- Scale-✏

Algorithm sion eters info tent Exch.
Data-independent
IDENTITY [7] Multi-D – yes yes
PRIVELET [25] X Multi-D – yes yes
H [11] X 1D b = 2 yes yes
H

b

[22] X Multi-D – yes yes
GREEDY H [15] X 1D, 2D b = 2 yes yes

Data-dependent
UNIFORM ∼ Multi-D – no yes
MWEM [10] Multi-D T scale no yes
MWEM∗ Multi-D – no yes
AHP [29] X Multi-D ⇢,⌘ yes yes
AHP∗ X Multi-D – yes yes

DPCUBE [26] ∼ X Multi-D ⇢ = .5, yes yes
n
p

= 10

DAWA [15] X X 1D, 2D ⇢ = .25, yes yes
b = 2

QUADTREE [4] X X 2D c=10 no∗ yes
UGRID [21] X 2D c = 10 scale yes yes

AGRID [21] ∼ X 2D
c = 10,

scale yes yesc2 = 5,
⇢ = .5

PHP [1] X 1D ⇢ = .5 no yes
EFPA [1] 1D – yes yes
SF [27] X 1D ⇢, k,F scale yes∗ no

Table 1: Algorithms evaluated in benchmark. Property column H
indicates hierarchical algorithms and P indicates partitioning.

Parameters without assignments are ones that remain free. Side
information is discussed in Section 4.2. Analysis columns are
discussed in Section 5.5 and Section 7.4. Algorithm variants

MWEM∗ and AHP∗ are explained in Section 6.4.

Example: Suppose B has the attributes age and salary (in tens of
thousands) with domains [1,100] and [1,50] respectively. Then x

is a 100 × 50 matrix. The (25,10)th entry is the number of tuples
with age 25 and salary $100,000.

We identify three key properties of x, each of which significantly
impacts the behavior of privacy algorithms. The first is the domain
size, n, which is equivalently the number of cells in x (i.e., n =
n1 × ⋅ ⋅ ⋅ × n

k

). The second is the scale of the dataset, which is the
total number of tuples, or the sum of the counts in x, which we
write as �x�1. Finally, the shape of a dataset is denoted as p where
p = x� �x�1 = [p1, . . . , pn] is a non-negative vector that sums to
1. The shape captures how the data is distributed over the domain
and is independent of scale.

3. ALGORITHMS & PRIOR RESULTS

3.1 Overview of Algorithm Strategies
The algorithms evaluated in this paper are listed in Table 1. For

each algorithm, the table identifies the dataset dimensionality it
supports as well as other key properties (discussed further below).
In addition, it identifies algorithm-specific parameters as well as the
possible use of “side information” (discussed in Section 4). The ta-
ble also summarizes our theoretical analysis, which is described in
detail later (Sections 5.5 and 7.4). Descriptions of individual algo-
rithms are provided in Appendix B.

In this section, we categorize algorithms as either data-independent
or data-dependent, and further highlight some key strategies em-
ployed, such as the use of hierarchical aggregations and partition-
ing. In addition, we also illustrate how algorithm behavior is af-
fected by properties of the input including dataset shape, scale, and
domain size.

First, we describe a simple baseline strategy: release x after

3

Laplace mechanism 
on frequency vectorData

Independent

Data
Independent

⎬ Extensions of Laplace 
mechanism

Noisy total count; 
assume uniformity.

Private partitioning; measurement 
over reduced domain.

⎬ 2D-grid based techniques
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Variation with shape

16

Error for a dataset 
Dimensions: 1 
Shape: Patent  
Domain size: 4096 
Scale: 1000

1D
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Variation with shape
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Variation across shape}
1D
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Finding: Algorithm error varies significantly with dataset 
shape

1D 2D
Dom. size: 4096 Scale: 1k
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Finding: Algorithms differ on the 
dataset shapes on which they 

perform well.

1D

Adult Dataset
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“Easy” for DAWA, MWEM
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Data-independent alternatives
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1D
Identity: Laplace noise added  
             to frequency vector x

HB: hierarchy of noisy counts
[Qardaji et al. ICDE 2013]

Data independent yardsticks
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Finding: Data-dependence can offer significant improvements 
in error (at smaller scales or lower epsilon).

1D
Scale: 1k
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1D

Scale: 1k
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Increasing scale
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1D

2D

Finding: Some data-dependent algorithms fail to offer benefits 
at larger scales (or higher epsilons).

Increasing scale

Increasing scale



Review of Findings
• No best algorithm: 

• No single algorithm offers uniformly low error. 

• Significant variation with shape 

• Algorithm error varies significantly with dataset shape and algorithms differ on the dataset 
shapes on which they perform well. 

• Significant trade-offs with “signal strength” 

• Data-dependence can offer significant improvements in error, at smaller scales or lower 
epsilon values, but some data-dependent algorithms fail to offer benefits at larger scales or 
higher epsilons. 

• Failure to beat baselines 

• Many algorithms are beaten by the IDENTITY baseline at large scales, in both 1D and 2D. At 
low scales, many algorithms result in error rates that are comparable to, or worse than, the 
Uniform baseline.
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A few open questions
• Robust and private algorithm selection 

• See: Chaudhuri & Vinterbo, NIPS 2013, and our recent 
work “Pythia” SIGMOD 2017. 

• Specialized data-dependent algorithms, or universal 
algorithms that can exploit structure in data? 

• Error bounds for data-dependent algorithms 

• Theory for non-worst case and for realistic parameters 
(concrete vs. asymptotic analysis) 

• Richer, more complete benchmarks?
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