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Obstacles to adoption

» Privacy researchers have adopted an idealized and simplistic view of a data
analyst’s workflow, often ignoring:

e data representation, data cleaning, model selection, feature selection,
algorithm tuning, iterative analysis.

* Practical performance of privacy algorithms is opaque to users and, in some
cases, poorly understood by researchers.

e The best algorithm for a task may depend on: setting of epsilon, “amount”
of data, tunable algorithm parameters, data pre-processing (cleaning,
representation)

« Algorithm performance can be data-dependent because algorithms adapt
or introduce bias.

* The research community lacks rigorous methodology for empirical
evaluation.



Conflicting results

From Hardt et al. NIPS 2012 From Li et al. PVLDB 2014
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Our inspiration

- Self-critique in machine learning:

* E.g. simple classifiers work well in practice; algorithm improvements
dwarfed by ignored real-world factors; extreme focus on UCI
datasets. Holte 1993, Hand 2006, Carbonell 1992, Wagstaff 2012.

- Value of benchmarks:

* “When a field has good benchmarks, we settle debates and the field
makes rapid progress.” David Patterson, CACM 2012.

- MLcomp:

* Automated help for practitioners selecting algorithms for ML tasks.
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Problem Statement

We ICO I | I e tO | CO I | I For the task of a g q 1d 2-dimensional datasets, which differentially pr yrithms introdu
« Range queries return the number of elements in a dataset whose values fall within a range.

* Low dimensional range queries are important tools for computing histograms, CDFs and quantiles, and serve as building blocks for more complex data analysis tasks like
Bayesian inference.

Version 0.1

. . oy Below is an interactive visualization that exemplifies the problem on 2-dimensional data. The input dataset is shown on the left. It is represented as a 2D histogram of counts over a
DPComp is a web-based tool designed to help both practitioners and resea  wiomgidimposesovertne gomain

On the right we show a noisy histogram representation of the output of a differentially private algorithm executed on the input. The output s also represented as a histogram of counts

the accura cy of state-of-the-art differential ly private a | gori thms. over  uniform grid. The number of ins in the output histogram matches that of the input. While the algorithms themselves may not actually generate a histogram, our visualization
represents the histogram inferred from the noisy counts generated by the algorithm.

Arectangular range query can be specified on the input dataset by clicking and dragging anywhere on the input plot. The count within the range will be printed below. The

range query can be dismissed by clicking anywhere on the input. Range queries on the input are mirrored on the algorithm output. The noisy count and the absolute error are printed

below. The error of an algorithm is measured as the average error over a workload (or a set) of range queries.
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Competitive Algorithms

Is there one algorithm that outperforms the rest, across diverse input settings?

C No single algorithm offers uniformly low error. At small scales, data-dependent algorithms dominate; at large scales data-independent algorithms dominate.

Data Independent
DAWA.

Optina 11.0« © Dua Depencre Settings

Dimensionality

* A companion website: dpc e
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Principled evaluation of differentially-private.-algo

Aregretvalue of 1.0 is optimal, but achieving optimal regret is not pramcally posslble with the current state-of-the-art algorithms because the best algorithm for a configuration

using DPBench. In SIGMOD 2016.
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Remainder of the talk

10 Principles

Setup for benchmark study
Overview of findings

Open problems

Our ongoing research efforts (motivated by dpcomp)



Evaluation principles

Diversity of inputs (Principles 1-4)

Diverse epsilon, diverse input data (scale, shape, domain size)

End-to-end privacy (Principles 5-7)

private pre- and post-processing; no free parameters; no side
information.

Sound evaluation of output (Principles 8-10)

measure error variability; measure bias; compare algorithms using
inputs that result in reasonable privacy and accuracy.




Task: Answering range queries

Sensitive

Dataset

name

gender

nationality

grade

Alice

Female

usS

91

Bob

Male

Canada

84

Carlos

Male

Peru

82

Darmesh

Male

India

97

Eloise

Female

France

88

Faiti

Attributes

(dimensions)

{gender, grade}

Workload
of Range Queries

“‘Number of A female students”
(count where gender=female
and grade >= 93)

“Number of C students”
(count where gender=" and
70 <= grade < 80)

Task: Given workload of counting range queries on 1-2

dimensions, compute answers under e-differential privacy



Diverse datasets

Principle: Data-dependent algorithms should e
evaluated on a diverse set of Inputs

Frequency vector representation of input
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Frequency vector representation of input

100
75
50
25

No. records
of type |

Properties:
- domain size: length of frequency vector
- scale: total number of records in database
- shape: the frequency vector normalized by scale.

Desideratum: datasets that are diverse with respect to all three

properties.
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Data generation

Systematically control for domain size and scale

Shape Domain size Scale

Collect many real- Coarsen domain Sample with
world datasets replacement

‘ Dataset name Original % Zero | Previous ‘ .
} — Scale Counts works } dom(gradeS) Input: real da‘tase‘t D’ dOma|n aQ ’
N A A T 0,100} target scale
‘ l\'(“()\IF_ 2().7?’47.122 44.97% [1?] ‘ Or
\ ML-DQ)S']‘ ;)%4]3’ Zii()jr [15] N \
| Paret aiss | sov | 1o | {A,B,C,D,F}
‘ SEARCH 335,889 51.03% [1,11,27,29] ‘

'equency vector x’

Empirical dist. p

normalize
2D datasets
BJ-CABS-S
BJ-CABS-E ‘,/é 2
pides p, M Frequency vector x
ADULT-2D | 99.30% | [10]
SF-CABS-S | 464040 | 95.04% | [20] Of Scale m
SF-CABS-E | 464040 | 97.31% | [20] Samp/e
MD-SAL-2D | 70526 | 97. 89% | new
LC-2D | 550559 | 92. 66% | new
STROKE \ 19435 \ 79.02 new
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Measuring error

DEFINITION 7 (SCALED AVERAGE PER-QUERY ERROR). Let
W be a workload of q queries, x a data vector and s = |x|, its
scale. Let y = KK(x, W, €) denote the noisy output of algorithm K.
Given a loss function L, we define scale average per-query error as
L (g, W),

Example (scaled error):

Scaled

Scale Absolute Error Absolute Error
Dataset 1 1,000 100 0.100
Dataset 2 100,000 100 0.001

Scaled error is also error in units of a “population percentage”



Algorithms considerea

Data
Independent

Data
Independent

Algorithm

Data-independent

IDENTITY [7]

PRIVELET [25]

H[11]

Hy [22]

GREEDY H [15]

Data-dependent

UNIFORM

MWEM [10]

MWEM”

AHP [29]

AHP*

DPCUBE [26]

DAWA [15]

QUADTREE [4]

UGRID [21]

AGRID [21]

PHP [1]

EFPA [1]

SF [27]
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Variation with shape

1D

Dom. size: 4096 Scale: 1k
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Scaled error
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Variation with shape

1D
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Variation across shape
(for fixed dimension, domain size, scale)
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Algorithm
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iD

Dom. size: 4096 Scale: 1k
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Data-independent alternatives
1D

_ Scale: 1k Data mdependen’g yardsticks
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Finding: Data-dependence can offer significant improvements

in error (at smaller scales or lower epsilon).
1D 2D
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Scale: 1k

Increasing scale ==
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Finding: Some data-dependent algorithms fail to offer benefits
at larger scales (or higher epsilons).

* Increasing scale s
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Review of FIndings

- No best algorithm:

* No single algorithm offers uniformly low error.
- Significant variation with shape

* Algorithm error varies significantly with dataset shape and algorithms differ on the dataset
shapes on which they perform well.

- Significant trade-offs with “signal strength”
* Data-dependence can offer significant improvements in error, at smaller scales or lower

epsilon values, but some data-dependent algorithms fail to offer benefits at larger scales or
higher epsilons.

- Failure to beat baselines

* Many algorithms are beaten by the IDENTITY baseline at large scales, in both 1D and 2D. At
low scales, many algorithms result in error rates that are comparable to, or worse than, the

Uniform baseline.
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A few open questions

Robust and private algorithm selection

e See: Chaudhuri & Vinterbo, NIPS 2013, and our recent
work “Pythia” SIGMOD 2017.

Specialized data-dependent algorithms, or universal
algorithms that can exploit structure in data”?

Error bounds for data-dependent algorithms

Theory for non-worst case and for realistic parameters
(concrete vs. asymptotic analysis)

Richer, more complete benchmarks”?
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