
A N I M A A N A N D K U M A R  
D I S T R I B U T E D D E E P L E A R N I N G

T I T L E O F S L I D E

SOFTWARE PACKAGES

DIVERSE &  
LARGE
DATASETS

UTILITY  
COMPUTING

PRACTICAL CONSIDERATIONS FOR MACHINE LEARNING

T I T L E O F S L I D E

CHALLENGES IN DEPLOYING LARGE-SCALE LEARNING

T I T L E O F S L I D E• Complex deep network

• Coding from scratch is impossible

• A single image requires billions floating-point operations

• Intel i7 ~500 GFLOPS

• Nvidia Titan X: ~5 TFLOPS

• Memory consumption is linear with number of layers

CHALLENGES IN DEPLOYING LARGE-SCALE LEARNING

T I T L E O F S L I D E

PROGRAMMABILITY

Simplifying network
definitions

…{ }

EFFICIENCY

In training  
and inference

PORTABILITY

Efficient use  
of memory

DESIRABLE ATTRIBUTES IN A ML SOFTWARE PACKAGE

T I T L E O F S L I D ETensorFlow

CNTKTorch

T I T L E O F S L I D EMXNET IS AWS’S DEEP LEARNING
FRAMEWORK OF CHOICE

BEST ON AWSMOST OPEN

Apache (Integration with AWS)

P R O G R A M M A B I L I T Y

…{ }

…{ }

T I T L E O F S L I D E
single implementation of

backend system and
common operators

performance guarantee
regardless which front-
end language is used

frontend

backend

T I T L E O F S L I D E
import numpy as np
a = np.ones(10)
b = np.ones(10) * 2
c = b * a

• Straightforward and flexible.
• Take advantage of language

native features (loop,
condition, debugger)

• E.g. Numpy, Matlab, Torch, …

• Hard to optimize

PROS

CONS

d = c + 1c
Easy to tweak

with python codes

IMPERATIVE PROGRAMMING

T I T L E O F S L I D E

• More chances for optimization
• Cross different languages
• E.g. TensorFlow, Theano,

Caffe

• Less flexible

PROS

CONS
C can share memory with D
because C is deleted later

A = Variable('A')
B = Variable('B')
C = B * A
D = C + 1
f = compile(D)
d = f(A=np.ones(10),
 B=np.ones(10)*2)

A B

1

+

X

DECLARATIVE PROGRAMMING

T I T L E O F S L I D E
IMPERATIVE

NDARRAY API

DECLARATIVE
SYMBOLIC

EXECUTOR

>>> import mxnet as mx
>>> a = mx.nd.zeros((100, 50))
>>> b = mx.nd.ones((100, 50))
>>> c = a + b
>>> c += 1
>>> print(c)

>>> import mxnet as mx
>>> net = mx.symbol.Variable('data')
>>> net = mx.symbol.FullyConnected(data=net, num_hidden=128)
>>> net = mx.symbol.SoftmaxOutput(data=net)
>>> texec = mx.module.Module(net)
>>> texec.forward(data=c)
>>> texec.backward() NDArray can be set  

as input to the graph

MXNET: MIXED PROGRAMMING PARADIGM

T I T L E O F S L I D E

Embed symbolic expressions into imperative programming

 texec = mx.module.Module(net)
 for batch in train_data:
 texec.forward(batch)
 texec.backward()

 for param, grad in zip(texec.get_params(), texec.get_grads()):
 param -= 0.2 * grad

MXNET: MIXED PROGRAMMING PARADIGM

P O R T A B I L I T Y

T I T L E O F S L I D E

• Fit the core library with all dependencies into a
single C++ source file

• easy to compile on any platform

AMALGAMATION

Beyond BlindTool by Joseph Paul Cohen, demo on Nexus 4

RUNS IN BROWSER  
WITH JAVASCRIPT

T I T L E O F S L I D E

forward backward

segment 1

segment 2

forward

only the
segment

head node
results are

stored

recompute
results

re-
compute
results

backward backward

MEMORY OPTIMIZATION

TRADEOFF MEMORY FOR COMPUTATION

• Needs an extra forward pass

• Reduces the memory complexity from O(n) to O(sqrt(n)), where n is the number of layers

• Training Deep Nets with Sublinear Memory Cost. T. Chen et al 2016

T I T L E O F S L I D E

Before After

Resnet 130 GB 4 GB

LSTM 270 GB 2.5 GB

• ResNet

» 1000 layers

» batch size 32

• LSTM

» 4 layers

» 1000 hidden size

» 1000 unroll

» batch size 32

EXAMPLES

P E R F O R M A N C E

T I T L E O F S L I D EWRITING
PARALLEL
PROGRAMS
IS PAINFUL

Each forward-backward-update
involves O(num_layer), which is
often 100–1,000, tensor
computations and communications

Dependency graph for 2-layer neural
networks with 2 GPUs

data = next_batch()data[gpu0].copyfrom(data[0:50])

fc1_ograd[gpu0], fc2_wgrad[gpu0] =
FullcBackward(fc2_ograd[gpu0] ,

fc2_weight[gpu0])

fc2_ograd[gpu0] =
LossGrad(fc2[gpu0], label[0:50])

fc2[gpu0] =
FullcForward(fc1[gpu0],

fc2_weight[gpu0])

fc1[gpu0] = FullcForward(data[gpu0],
fc1_weight[gpu0])

fc2_wgrad[cpu] =
 fc2_wgrad[gpu0] + fc2_wgrad[gpu1]

fc2_weight[cpu].copyto(
 fc2_weight[gpu0] ,

fc2_weight[gpu1])

fc2_weight[cpu] -=
lr*fc12_wgrad[gpu0]

fc1_weight[cpu] -= lr *
fc1_wgrad[gpu0]

fc1_wgrad[cpu] =
 fc1_wgrad[gpu0] + fc1_wgrad[gpu1] fc1_ograd[gpu1], fc2_wgrad[gpu1] =

FullcBackward(fc2_ograd[gpu1] ,
fc2_weight[gpu1])

fc2_ograd[gpu1] =
LossGrad(fc2[gpu1], label[51:100])

fc2[gpu1] = FullcForward(fc1[gpu1],
fc2_weight[gpu1])

fc1[gpu1] = FullcForward(data[gpu1],
fc1_weight[gpu1])

fc1_weight[cpu].copyto(
 fc1_weight[gpu0] ,

fc1_weight[gpu1])

data[gpu0].copyfrom(data[51:100])

_, fc1_wgrad[gpu0] =
FullcBackward(fc1_ograd[gpu0] ,

fc1_weight[gpu0])

_, fc1_wgrad[gpu1] =
FullcBackward(fc1_ograd[gpu1] ,

fc1_weight[gpu1])

Each forward-backward-
update involves
O(num_layer), which is
often 100–1,000, tensor
computations and
communications

WRITING PARALLEL PROGRAMS IS HARD

T I T L E O F S L I D E
PCIe Switch

G
PU

G
PU

G
PU

G
PU

CPU

Network Switch

63 GB/s
4 PCIe 3.0 16x

15.75 GB/s
PCIe 3.0 16x

1.25 GB/s
10 Gbit Ethernet

Level-1 Servers

Workers

Level-2 Servers

HIERARCHICAL PARAMETER SERVER IN MXNET

T I T L E O F S L I D E

SCALE TO
MULTIPLE CORES

Deep learning well
suited to GPUs

SCALE ACROSS
GPUS

Up to 16 available
on P2.16xl

SCALE  
ACROSS NODES

Lots and lots of
p2.16xl ;)

SCALABILITY OF MXNET

T I T L E O F S L I D E

SPIN UP LOG IN RUN

github.com/awslabs/deeplearning-benchmark

T I T L E O F S L I D E
4

8

12

16

1 2 4 8 16

Ideal
Inception v3
Resnet

Alexnet
91%
Efficiency

No. of GPUs

T I T L E O F S L I D E

Ideal
Inception v3Resnet

Alexnet

88%
Efficiency

64

128

192

256

1 2 4 8 16 32 64 128 256

No. of GPUs

T I T L E O F S L I D E

Ideal
Inception v3Resnet

Alexnet

88%
Efficiency

64

128

192

256

1 2 4 8 16 32 64 128 256
No. of GPUs

• Cloud formation with Deep Learning AMI

• 16x P2.16xlarge. Mounted on EFS

• Inception and Resnet: batch size 32, Alex net: batch
size 512

• ImageNet, 1.2M images,1K classes

• 152-layer ResNet, 5.4d on 4x K80s (1.2h per epoch),
0.22 top-1 error

ROADMAP FOR MXNET

• Documentation (installation, native documents, etc.)

• Platform support (Linux, Windows, OS X, mobile …)

• Sparse datatypes and tensor operations

• Platform for general distributed machine learning algorithms

TENSORS, DEEP LEARNING & MXNET

Tensors	=	natural	representations	for	many	data	in	Machine	Learning 
	(e.g.	images	are	third	order	tensors	(height,	width,	channels) 

Great	tool	to	better	understand	Deep	Learning	

Tensor	decomposition	has	ability	to	discover	multi-dimensional	dependencies	 
and	produce	compact	low-rank	approximation	of	data 

Tensors	are	first	class	citizens	in	MxNet

TENSORS, DEEP LEARNING & MXNET

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

	AlexNet,	ImageNet	classification	with	deep	convolutional	neural	networks,	NIPS’12,	Alex	
Krizhevsky	et.	al.

Structure	is	lost	when	flattening

TENSOR METHODS, DEEP LEARNING & MXNET

POOL

RELU

CONV

DATA

X~~FLATTEN

FC

TENSOR  
METHODS

TRADITIONAL	APPROACH: 
STRUCTURE	OF	THE	DATA	 

IS	LOST

TENSOR	METHODS: 
LEVERAGE	THE	STRUCTURE  

OF	THE	DATA

TENSORS, DEEP LEARNING & MXNET

POOL

RELU

CONV

DATA

X~~ TENSOR  
METHODS

TRADITIONAL	APPROACH: 
STRUCTURE	OF	THE  

	DATA	IS	LOST

TENSOR	METHODS: 
LEVERAGE	THE	STRUCTURE  

OF	THE	DATA

FLATTEN

TENSOR CONTRACTION

V1

V2 V3
GX

~ ~

!̃ = "̃ ×1 U(1) ×2 U(2) × ⋯ ×N U(N)

Tucker	tensor	decomposition:	express	a	tensor	as	a	
function	of	a	low	rank	tensor	and	projection	matrices	

TENSOR CONTRACTION AS A LAYER

Take	activation	tensor	as	input 

Feed	it	through	a 
	tensor	contraction	layer	(TCL)  

Output	a	low	rank 
	activation	tensor

TENSOR CONTRACTION AS A LAYER

Compact	representation	 
->	less	parameters  
(measured	as	Space	Savings) 
 
 

Similar	and	sometimes	better	  
performance

space saving = 1 −
noriginal parameters

nparameters in compact model

PRELIMINARY RESULTS

Method - Hidden Units in Fully Connected Layers Accuracy
(%)

Space savings
(%)

Baseline Traditional AlexNet, 4096 hidden units 56.29 0

Adding a TCL (256, 5, 5), 4096 hidden units 57.54 -0.11

Adding a TCL (200, 5, 5), 3276 hidden units 56.11 35.73

Replace a FCL with (256, 5, 5) TCL, 4096 Hidden Units 56.63 44.45

Results	on	ImageNet	with	an	AlexNet.	J.	Kossafi	et.	al	2017

AMIs, Cloud Formation and DL

image credit - publicdomainpibtures

One-Click Deep Learning

T I T L E O F S L I D E
P2 INSTANCES

Up to 40k  
CUDA cores

DEEP AMI

Pre-configured for  
deep learning

DEEP TEMPLATE

Deep learning  
clusters

T I T L E O F S L I D E
P2 INSTANCES

Up to 40k  
CUDA cores

p2.16xl instance= 16 K80 GPUs ~ 70 tera flops

World’s fastest supercomputer ~ 93 peta flops

16 p2.16xl instances ~ 1.1 peta flops

GPUDirect™ (peer-to-peer GPU communication)

AMAZON MACHINE IMAGES
http://bit.ly/deepami

Deep Learning any way you want on AWS

• Tool for data scientists and developers

• Setting up a DL system takes (install) time & skill

• Keep packages up to date and compiled (MXNet, TensorFlow, Caffe, Torch, Theano, Keras)

• Anaconda, Jupyter, Python 2 and 3

• NVIDIA Drivers for G2 and P2 instances

• Intel MKL Drivers for all other instances (C4, M4, …)

http://bit.ly/deepami

Introducing Amazon AI

Polly
Text-to-Speech

Apache MXNet
Deep learning engine

Rekognition Lex
Image Analysis ASR & NLU

Rekognition: Search & Understand Visual Content

Real-time &
batch image

analysis

Object & Scene
Detection

Facial Detection Face SearchFacial Analysis

T I T L E O F S L I D E

Rekognition: Object & Scene Detection

Bay
Beach
Coast
Outdoors
Sea
Water
Palm_tree
Plant
Tree
Summer
Landscape
Nature
Hotel

99.18%

99.18%

99.18%

99.18%

99.18%

99.18%

99.21%

99.21%

99.21%

58.3%

51.84%

51.84%

51.24%

Category Confidence

Rekognition: Facial Analysis

Emotion: calm: 73%
Sunglasses: false (value: 0)
Mouth open wide: 0% (value: 0)
Eye closed: open (value: 0)
Glasses: no glass (value: 0)
Mustache: false (value: 0)
Beard: no (value: 0)

Lex: Build Natural, Conversational Interactions In Voice & Text

Voice & Text
“Chatbots”

Powers
Alexa

Voice interactions
on mobile, web

& devices

Text interaction
with Slack & Messenger

Enterprise
Connectors

(with more coming) Salesforce
Microsoft Dynamics

Marketo
Zendesk

Quickbooks
Hubspot

T I T L E O F S L I D E
Origin Seattle

Destination London Heathrow

Departure Date

Flight Booking

“Book a flight to
London”

Automatic
Speech Recognition

Natural Language
Understanding

Book Flight

London

Grammar
Graph

Utterances

Knowledge
Graph

Flight booking

London Heathrow

Prompt

LocationLocation

“When would you like to fly?”

“When would you like to
fly?”

Polly

T I T L E O F S L I D E
Origin Seattle

Destination London Heathrow

Departure Date

Flight Booking

“Next Friday”

“When would you like to
fly?”

Amazon Polly: Life-like Speech Service

Converts text
to life-like speech

47 voices 24 languages Low latency,
real time

Fully managed

Let’s listen…

“Today in Seattle, WA, it’s 11°F”

‘"We live for the music" live from the Madison Square Garden.’

1. Automatic, Accurate Text Processing

Polly: A Focus On Voice Quality & Pronunciation

Polly: A Focus On Voice Quality & Pronunciation

2. Intelligible and Easy to Understand

1. Automatic, Accurate Text Processing

2. Intelligible and Easy to Understand

3. Add Semantic Meaning to Text

“Richard’s number is 2122341237“

“Richard’s number is 2122341237“
Telephone Number

Polly: A Focus On Voice Quality & Pronunciation

1. Automatic, Accurate Text Processing

2. Intelligible and Easy to Understand

3. Add Semantic Meaning to Text

4. Customized Pronunciation

“My daughter’s name is Kaja.”

“My daughter’s name is Kaja.”

Polly: A Focus On Voice Quality & Pronunciation

1. Automatic, Accurate Text Processing

T I T L E O F S L I D EACADEMIC
ENGAGEMENTS

• Apply for AWS credits for your research

https://aws.amazon.com/grants/

• Apply for AWS credits for educat ion

https://aws.amazon.com/education/awseducate/

• Conduct research and bui ld products at AWS:

internships and ful l t ime posit ions!

• Send me an emai l : anima@amazon.com

mailto:anima@amazon.com

