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We live in a continuous world...

But we work with digital computers...

What is the price of living on the grid?
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Fig. 6. NUS IC sampling timing and waveforms. Left panel: Interface timing between NUS die and ADC. Right panel: Simulated waveforms before and after
being sampled by NIN. Horizontal scale is in nanoseconds.

Fig. 7. NUS IC die photo. Die size is mm.

Fig. 8. NUS test fixture. The NUS IC is mounted on a custom pallet. Also
shown is the 14-bit ADC as well as various test equipment connector interfaces.

C. Nonuniform Sample Pattern

The NUS sampling pattern is a pulse train with nonuniform
spacing between pulses. It is selected to meet a list of certain cri-
teria. First, the pattern is clocked at 4.4 GHz, and reconstruction
produces the equivalent of Nyquist samples taken at this rate.
Second, the pulse widths and spacings must satisfy the clocking
requirements of the ADS5474. Specifically, the minimum pulse
width is 6 clock cycles, the minimum spacing ( ) between
pulses is 12 clock cycles, and the maximum spacing ( ) be-
tween pulses is 27 clock cycles. An example pattern illustrating
these specifications is shown in Fig. 9. In effect, as the sample

spacings vary between 12 and 27 clock cycles, the instanta-
neous sampling rate of the NUS receiver varies between 163
and 367 MHz, which is within the range of the 400 MHz ADC.
We designed the NUS pattern to repeat every 8192 Nyquist

samples, during which time there are 440 pulses which set the
sampling locations. This corresponds to an average sample rate
of 236 MHz. We evaluate the quality of our pattern using a third
criterion: the Fourier transform of favorable patterns will tend
to have a flat, noise-like spectrum. Fig. 10 compares two NUS
patterns with different inter-sample spacings. The pattern shown
in the top plots has strong resonances across the Nyquist band.
In contrast, the pattern shown in the bottom plots, which has
undergone a randomization of its sample locations, has a much
whiter spectrum. The flat spectrum is preferred since then all
signals have equal gain.

III. DATA PROCESSING

In this section, we describe our computational techniques for
efficiently recovering a Nyquist-rate signal from the NUS data
by filling in the missing samples. Sections III-A–III-D describe
our procedures for windowing the NUS data and recovering the
missing samples. Section III-E then briefly discusses additional
practical concerns and the computational complexity of imple-
menting this reconstruction algorithm.

A. Windowing
While the NUS produces an arbitrarily long sequence of

samples, the recovery algorithm can only deal with a finite
number of them at any given time. It is, therefore, necessary
to segment the data stream, and we achieve this by windowing
the signal. An effective windowing process must guard against
edge effects as well as the well-known spectral spreading
effect, which would destroy the very Fourier sparsity we seek
to exploit. Fortunately, the concept of a perfect reconstruction
filter bank (PRFB) [24] can be readily adapted to our pur-
poses. A windowing procedure breaks the infinite signal into
a series of (possibly overlapping) vectors by using an analysis
window. After signal processing, the infinite length signal can
be recovered by stitching together the finite series using the
analysis window. Using windows from a PRFB ensures that
the windowing process itself does not introduce any errors.
An example of a PRFB is a rectangular analysis and synthesis
window with no overlap, but of course this causes spectral
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for some

Observe a sparse combination of sinusoids

Spectrum Estimation: find a combination of sinusoids 
agreeing with time series data

xm =
sX

k=1

cke
i2⇡muk uk 2 [0, 1)

Classic (1790...): Prony’s method

• toep(x) is positive semidefinite, and any null vector 
corresponds to a polynomial that vanishes at 

• MUSIC, ESPRIT, Cadzow, etc.

Assume coefficients are positive for simplicity
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for some

Observe a sparse combination of sinusoids

Spectrum Estimation: find a combination of sinusoids 
agreeing with time series data

xm =
sX

k=1

cke
i2⇡muk uk 2 [0, 1)

x � Fc
sparse

n � N

Fab = exp(i2�ab/N)

Contemporary:

Solve with LASSO: minimize �x � Fc�2
2 + µ�c�1



for some

Observe a sparse combination of sinusoids

Spectrum Estimation: find a combination of sinusoids 
agreeing with time series data

xm =
sX

k=1

cke
i2⇡muk uk 2 [0, 1)

Classic Contemporary
SVD gridding+L1 minimization

grid free
robust

model selection
quantitative theory

 need to know model order
lack of quantitative theory

unstable in practice

discretization error
basis mismatch

numerical instability

Can we bridge the gap?



Linear Inverse Problems
• Find me a solution of

• Φ n x p, n<p

• Of the infinite collection of solutions, which one 
should we pick?

• Leverage structure:

• How do we design algorithms to solve 
underdetermined systems problems with priors?

y = �x

Sparsity Rank Smoothness Symmetry



kxk1 =
pX

i=1

|xi|

• 1-sparse vectors of 
Euclidean norm 1

• Convex hull is the 
 unit ball of the l1 norm

1

1

-1

-1

Sparsity



minimize kxk1

subject to �x = y

x1

x2

Φx=y

Compressed Sensing: Candes, Romberg, Tao, 
Donoho, Tanner, Etc...



• 2x2 matrices
• plotted in 3d

  rank 1
  x2 + z2 + 2y2 = 1

Convex hull:

Rank

kXk⇤ =
X

i

�i(X)



• 2x2 matrices
• plotted in 3d

Nuclear Norm Heuristic

Fazel 2002. 
R, Fazel, and Parillo 2007

Rank Minimization/Matrix Completion

kXk⇤ =
X

i

�i(X)



• Integer solutions:
 all components of x 

are ±1

• Convex hull is the 
 unit ball of the l1 norm

(1,-1)

(1,1)

(-1,-1)

(-1,1)

Integer Programming



minimize kxk1
subject to �x = y

x1

x2

Φx=y

Donoho and Tanner 2008
Mangasarian and R 2009.



• Search for best linear combination of fewest atoms
• “rank” = fewest atoms needed to describe the model

Parsimonious Models

atomsmodel weights

rank



Atomic Norms
• Given a basic set of atoms,     , define the function

• When      is centrosymmetric, we get a norm

• When does this work?  

kxkA = inf{
X

a2A
|ca| : x =

X

a2A
caa}

kxkA = inf{t > 0 : x 2 tconv(A)}

A

minimize kzkA
subject to �z = yIDEA:

A



Atomic Norm Minimization

• Generalizes existing, powerful methods
• Rigorous formula for developing new analysis 

algorithms
• Precise, tight bounds on number of measurements 

needed for model recovery
• One algorithm prototype for a myriad of data-

analysis applications

minimize kzkA
subject to �z = yIDEA:

Chandrasekaran, R, Parrilo, and Willsky



Hierarchical dictionary for image patches

26/42

Union of Subspaces

• X has structured sparsity: linear combination of elements 
from a set of subspaces {Ug}.

• Atomic set: unit norm vectors living in one of the Ug

Permutations and Rankings

• X a sum of a few permutation matrices

• Examples: Multiobject Tracking, Ranked elections, BCS

• Convex hull of permutation matrices: doubly stochastic matrices.



• Moments: convex hull of  of [1,t,t2,t3,t4,...],   
t∈T, some basic set.

• System Identification, Image Processing, 
Numerical Integration, Statistical Inference

• Solve with semidefinite programming

• Cut-matrices: sums of rank-one sign matrices.

• Collaborative Filtering, Clustering in Genetic 
Networks, Combinatorial Approximation 
Algorithms

• Approximate with semidefinite 
programming

• Low-rank Tensors: sums of rank-one tensors

• Computer Vision, Image Processing, 
Hyperspectral Imaging, Neuroscience

• Approximate with alternating least-
squares



• Set of directions that decrease the norm from x 
form a cone:

• x is the unique minimizer if the intersection of this 
cone with the null space of Φ	
  equals {0}

Tangent Cones

y = �z
x

minimize kzkA
subject to �z = y

{z : kzkA  kxkA}
TA(x)

TA(x) = {d : kx + ↵dkA  kxkA for some ↵ > 0}



• Hypercube:

• Sparse Vectors, p vector, sparsity s

• Block sparse, M groups (possibly overlapping), 
maximum group size B, k active groups

• Low-rank matrices: p1 x p2, (p1<p2), rank r

Rates
n � p/2

n � 2s log
�p
s

�
+

5s
4

n � k
⇣p

2 log (M � k) +
p
B
⌘2

+ kB

n � 3r(p1 + p2 � r)



• Suppose we observe

• If     is an optimal solution, then                           
provided that

Robust Recovery (deterministic)

minimize kzkA
subject to k�z � yk  �

kwk2  �

kx� x̂k  2�

✏

x̂

y = �x + w

{z : kzkA  kxkA}

k�z � yk  �

n � pw(TA(x) \ Sp�1)2

(1� ✏)2



• Suppose we observe

• If     is an optimal solution, then                           
provided that

Robust Recovery (statistical)

x̂

y = �x + w

x̂

minimize k�z � yk2 + µkzkA

cone{u : kx+ ukA  kxkA + �kuk}

kx� x̂k2  ⌘(x,A,�, �)µ
And under an additional “cone condition”

Bhaskar, Tang, and R 2011

µ � Ew[k�⇤wk⇤A]
k�x� �x̂k2 

p
µkxkA



• Sparse Vectors, p vector, sparsity s

• Low-rank matrices: p1 x p2, (p1<p2), rank r

Denoising Rates (re-derivations)

1

p
kx̂� x?k22 = O

✓
�2s log(p)
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◆
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p1p2
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�2r
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Spectrum Estimation

u?
k 2 [0, 1)for some

Observe a sparse combination of sinusoids
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Atomic Set

Observe: (signal plus noise)

Classical techniques (Prony, Matrix Pencil, MUSIC, 
ESPRIT, Cadzow), use the fact that noiseless moment 
matrices are low-rank:

rX

k=1

�k

2

664

1
e�ki

e2�ki

e3�ki

3

775

2

664

1
e�ki

e2�ki

e3�ki

3

775

⇤

=

2

664

µ0 µ1 µ2 µ3

µ̄1 µ0 µ1 µ2

µ̄2 µ̄1 µ0 µ1

µ̄3 µ̄2 µ̄1 µ0

3

775 ⌫ 0

x

?
m =

sX

k=1

c

?
ke

i2⇡mu?
k

y = x

? + !



Atomic Norm for Spectrum Estimation

• How do we solve the optimization problem?
• Can we approximate the true signal from partial and 

noisy measurements?
• Can we estimate the frequencies from partial and 

noisy measurements?

IDEA:
minimize kzkA
subject to k�z � yk  �

Atomic Set:

A =

8
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• Convex hull is characterized by linear matrix 
inequalities (Toeplitz positive semidefinite)

• Moment Curve of [t,t2,t3,t4,...],  

Which atomic norm for sinusoids?
for somexm =
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A A [ {�A}

conv(A [ {�A})conv(A)



cos(2⇡u1k)/2� cos(2⇡u2k)/2cos(2⇡u1k)/2 + cos(2⇡u2k)/2

u2 = 0.1411
u1 = 0.1413



Nearly optimal rates

u?
k 2 [0, 1)for some

Observe a sparse combination of sinusoids

Observe: (signal plus noise)

min
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Assume frequencies are far apart:

x

?
m =

sX

k=1

c

?
ke

i2⇡mu?
k

1

n

kx̂� x

?k22  C�

2
s log(n)

n

Error Rate:

1

n

kx̂� x

?k22 � C

0
�

2
s

n

No algorithm can do better than

even if we knew all of the 
frequencies (uk*)

No algorithm can do better than

even if the frequencies are well-
separated
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x̂ = argmin
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2kx� yk22 + µkxkASolve:



• Frequencies generated at 
random with 1/n separation.  
Random phases, fading 
amplitudes.

• Cadzow and MUSIC provided 
model order.  AST and LASSO 
estimate noise power.

P
(�

)

�
• Performance profile over all 

parameter values and settings
• For algorithm s:
Ps(�) =

# {p 2 P : MSEs(p)  �mins MSEs(p)}
#(P)

Lower is better Higher is better

Mean Square Error Performance Profile



Localization Guarantees

Spurious Amplitudes

Weighted Frequency Deviation

Near region approximation
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|ĉl|
�
PLQ
fj�T

d(fj , f̂l)

�2

� C2�

�
k2 ORJ(n)

n



Frequency Localization
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ĉl

������
� C3�

�
k2 ORJ(n)

n

�

l:f̂l�Nj

|ĉl|
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Incomplete Data/Random Sampling

• Observe a random subset of samples

• On the grid, Candes, Romberg & Tao 
(2004)

• Off the grid, new, Compressed 
Sensing extended to the wide 
continuous domain

• Recover the missing part by solving

• Extract frequencies from the dual 
optimal solution

T ⇢ {0, 1, . . . , n� 1}

Full observation

Random sampling

minimize

z
kzkA

subject to zT = xT .



Exact Recovery (off the grid)
Theorem: (Candès and Fernandez-
Granda 2012) A line spectrum with 
minimum frequency separation Δ > 4/s 
can be recovered from the first 2s Fourier 
coefficients via atomic norm minimization.

Theorem: (Tang, Bhaskar, Shah, and R. 
2012) A line spectrum with minimum 
frequency separation Δ > 4/n can be 
recovered from most subsets of the first n 
Fourier coefficients of size at least                   
O(s log(s) log(n)).

• s random samples are better than s equispaced samples.
• On a grid, this is just compressed sensing
• Off the grid, this is new

• No balancing of coherence as n grows. 

{

Δ

WANT {uk, ck}

xm =

sX

k=1

ck exp(2⇡imuk)



GPS UltrasoundRadar

astronomyimaging seismology

x(t) =
kX

j=1

cjg(t� ⌧j)e
i2⇡fjt

x̂(!) = dPSF(!)
kX

j=1

cje
�i2⇡!sj



Summary and Future Work
• Unified approach for continuous problems in 

estimation.
• Obviates incoherence and basis mismatch
• New insight into bounds on estimation error and exact 

recovery through convex duality and algebraic 
geometry

• State-of-the-art results in classic fields of spectrum 
estimation and system identification (ask me later!)

`

• Recovery of general sparse signal trains

• Scaling atomic norm algorithms

• More atomization in signal processing... 
(moments, PDEs, deep atoms)
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